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Abstract. In this paper we obtain the existence of bounded very weak solutions for the

Dirichlet boundary value problem of a class of non-uniformly elliptic equations with L1 integrability

conditions by using the regularizing effect of the interaction between the coefficient of lower order

term and the datum in the right-hand side.

1. Introduction

Suppose that Ω is a bounded domain of RN (N ≥ 2) with Lipschitz boundary
∂Ω. In this paper we are concerned with the following non-uniformly elliptic Dirichlet
boundary problem

(1.1)

{

−div
(

DξΦ(∇u)
)

+ a(x)g(u) = f(x) in Ω,

u = 0 on ∂Ω,

where Φ: RN 7→ R+ is a C1 nonnegative, strictly convex function, DξΦ: RN → RN

represents the gradient of Φ(ξ) with respect to ξ and ∇u represents the gradient with
respect to x. Without loss of generality we may assume that Φ(0) = 0. Our main
assumptions are that Φ(ξ) satisfies

(i) the super-linear condition

(1.2) lim
|ξ|→∞

Φ(ξ)

|ξ|q
= ∞,

where q > 1.
(ii) the symmetric condition: there exists a positive number C > 0 such that

(1.3) Φ(−ξ) ≤ CΦ(ξ), ξ ∈ RN .

The continuous function g(s) satisfies

(1.4) lim
s→−∞

g(s) = −∞, lim
s→∞

g(s) = ∞,

and for all s ∈ R,

(1.5) |g(s)| ≤ C1|s|
α + C2,

where α = q − 1, C1, C2 are positive constants.
Moreover, we assume that

(1.6) a(x), f(x) ∈ L1(Ω),
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and there exists Q ∈ (0,+∞) such that,

(1.7) |f(x)| ≤ Qa(x), a.e. x ∈ Ω.

There are several well-known examples of functions Φ(ξ) satisfying the assump-
tions (1.2) and (1.3). Some of them are listed here.

Example 1.1.

Φ(ξ) =
1

p
|ξ|p, p > q.

In this case, equation (1.1) is the p-Laplacian equation.

Example 1.2.

Φ(ξ) =
1

p1
|ξ1|

p1 +
1

p2
|ξ2|

p2 + · · ·+
1

pN
|ξN |

pN , pi > q, i = 1, 2, . . . , N,

where ξ = (ξ1, ξ2, . . . , ξN). In this case, equation (1.1) is the anisotropic p-Laplacian
equation.

Example 1.3.

Φ(ξ) = e
|ξ|2

2 − 1.

The energy functional

(1.8) E(u) =

ˆ

Ω

exp(|∇u|2) dx

originates from the exponential harmonic mappings. It has been studied in [10, 14,
15], especially for the regularity theory.

The main purpose of this paper is to establish the existence of solutions for
problem (1.1) under the integrability conditions (1.6) and (1.7). In general, a solution
of an elliptic equation having a right-hand side in L1(Ω) is not bounded and has no
finite energy. The solutions may not belong to Sobolev space W 1,1

0 (Ω). So in this
case it is reasonable to work with entropy solutions or renormalized solutions, which
need less regularity than the usual weak solutions. The notion of entropy solutions
was first proposed by Bénilan et al. in [4] for the nonlinear elliptic problems. It was
then adapted to the study of some nonlinear elliptic and parabolic problems. We
refer to [2, 5, 6, 16] for details. Recently, Arcoya and Boccardo in [3] studied the
regularizing effect of the interaction between the coefficient of the zeroth order term
and the datum in the following elliptic equations:

−div(M(x)∇u) + a(x)u = f(x),

−div(M(x)∇u) + a(x)g(u) = f(x),

−div(M(x, u)∇u) + a(x)u = B(x, u,∇u) + f(x),

and obtained some interesting and surprising results that the bounded solutions with
finite energy exist for the corresponding Dirichlet problems of the above equations.
Our work can be seen as a natural outgrowth of the results in [3] to the more general
quasilinear problem (1.1). To this aim, we first employ a unifying method developed
in [17] (see [7] for the parabolic case) to prove the existence of weak solutions for
problem (1.1) under the integrability conditions that f ∈ LN (Ω) and a ∈ L∞(Ω). It
is worth pointing out that we do not assume polynomial or exponential growth for
function Φ as in [1, 8, 14]. Based on this result and the regularizing effect of the
interaction between the coefficient of lower order term and the datum, we obtain the
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existence of bounded very weak solutions for problem (1.1) under the L1 integrability
conditions (1.6) and (1.7) by using the approximation techniques.

The solutions of equation (1.1) are understood in the following sense.

Definition 1.4. A function u ∈ W 1,q
0 (Ω) ∩ L∞(Ω) with DξΦ(∇u) ∈ L1(Ω) is

called a bounded very weak solution to problem (1.1) if for every ϕ ∈ C1
0 (Ω), we have

(1.9)

ˆ

Ω

DξΦ(∇u) · ∇ϕdx+

ˆ

Ω

ag(u)ϕdx =

ˆ

Ω

fϕ dx.

Remark 1.5. Notice that we only assume that DξΦ(∇u) ∈ L1(Ω) instead of
DξΦ(∇u) · ∇u ∈ L1(Ω) in Definition 1.4. For this reason we call the solution “very
weak”.

Now we state our main result.

Theorem 1.6. Assume that the structure conditions (1.2)–(1.5) and the inte-

grability conditions (1.6) and (1.7) hold. Then there exists a bounded very weak

solution u ∈ W 1,q
0 (Ω) ∩ L∞(Ω) for problem (1.1).

The rest of this paper is organized as follows. In Section 2, we first list some basic
results that will be used later. Next we construct a sequence of the approximation
solutions. Then we find the limit of a subsequence is the solution as required. In the
following C will represent a generic constant that may change from line to line even
if in the same inequality.

2. Preliminaries and the proof of main result

2.1. Some properties about Φ(ξ). Let Φ(ξ) be a nonnegative convex func-
tion. We define the polar function of Φ(ξ) as

(2.1) Ψ(η) = sup
ξ∈RN

{η · ξ − Φ(ξ)},

which is also known as the Legendre transform of Φ(ξ). It is easy to see that Ψ(η) is a
convex function. Observe that the super-linear condition (1.2) implies the 1-coercive
condition (see [13], Chapter E)

(2.2) lim
|ξ|→∞

Φ(ξ)

|ξ|
= ∞

holds. Suppose that Φ(ξ) is a nonnegative convex C1 function with Φ(0) = 0. Then,
for all ξ, η, ζ ∈ RN , we have the following inequalities:

Φ(ξ) ≤ ξ ·DΦ(ξ),(2.3)

(DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ 0,(2.4)

ξ · η ≤ Φ(ξ) + Ψ(η),(2.5)

Ψ(DΦ(ζ)) + Φ(ζ) = DΦ(ζ) · ζ.(2.6)

Moreover, if Φ(ξ) satisfies the super-linear condition (2.2), then its polar function
Ψ(η) also satisfies (2.2). We refer to [7, 11, 17] for the details.

2.2. The proof of main results. In this subsection we first give a reasonable
definition of weak solutions and then prove the existence of weak solutions for problem
(1.1). Let q = 1 + α > 1 be the constant defined as in (1.2).
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Definition 2.1. A function u ∈ W 1,q
0 (Ω) with DξΦ(∇u) · ∇u ∈ L1(Ω) and

a(x)g(u) ∈ L1(Ω) is called a weak solution to problem (1.1) if for every ϕ ∈ C1
0 (Ω),

we have

(2.7)

ˆ

Ω

DξΦ(∇u) · ∇ϕdx+

ˆ

Ω

ag(u)ϕdx =

ˆ

Ω

fϕ dx.

Theorem 2.2. Assume that the structure conditions (1.2)–(1.5) hold. If f ∈
LN(Ω) and a ∈ L∞(Ω), then there exists a weak solution u ∈ W 1,q

0 (Ω) for problem

(1.1).

Proof. We consider the variational problem

min{J(v) | v ∈ V },

where V = {v ∈ W 1,q
0 (Ω) | Φ(∇v) ∈ L1(Ω)}, and functional J is

J(v) =

ˆ

Ω

Φ(∇v) dx+

ˆ

Ω

aG(v) dx−

ˆ

Ω

fv dx

with G(v) =
´ v

0
g(s) ds. It is straightforward to check that functional J(v) is coer-

cive, lower bounded and lower semi-continuous in V . Therefore, from the standard
technique in Calculus of Variations (see for instance [9]), one can show J(v) has a
minimizer u(x) in V . Then it is sufficient to prove that the minimizer u(x) satisfies
the Euler–Lagrange equation of functional J weakly.

Since u ∈ V is a minimizer, we have λu ∈ V, λ ∈ (0, 1), and

J(u) ≤ J(λu),

which implies
ˆ

Ω

Φ(∇u) dx+

ˆ

Ω

aG(u) dx−

ˆ

Ω

fu dx

≤

ˆ

Ω

Φ(λ∇u) dx+

ˆ

Ω

aG(λu) dx− λ

ˆ

Ω

fu dx.

Recalling (2.4), we know

Φ(∇u)− Φ(λ∇u) ≥ (1− λ)DξΦ(λ∇u) · ∇u.

Then

(1− λ)

ˆ

Ω

DξΦ(λ∇u) · ∇u dx ≤ (1− λ)

ˆ

Ω

fu dx+

ˆ

Ω

a(G(λu)−G(u)) dx

≤ (1− λ)

ˆ

Ω

fu dx+ C(1− λ)‖a‖L∞(Ω)

ˆ

Ω

[|u|1+α + |u|] dx.

Dividing the above inequality by 1− λ, and passing to limits as λ→ 1, we have

lim inf
λ→1

ˆ

Ω

DξΦ(λ∇u) · ∇u dx ≤

ˆ

Ω

fu dx+ C

ˆ

Ω

[|u|1+α + |u|] dx.

Since DξΦ(λ∇u) · ∇u ≥ 0, by Fatou’s Lemma we conclude that
ˆ

Ω

DξΦ(∇u) · ∇u dx ≤

ˆ

Ω

fu dx+ C

ˆ

Ω

[|u|1+α + |u|] dx.

Due to (1.2) and (2.2), for every δ > 0, there exist constants Cδ > 0 such that

(2.8) |ξ|1+α ≤ δΦ(ξ) + Cδ, |ξ| ≤ δΦ(ξ) + Cδ.
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By Hölder’s and Sobolev’s inequalities, (1.5) and (2.8), we have
∣

∣

∣

∣

ˆ

Ω

fu dx

∣

∣

∣

∣

≤ ‖f‖LN (Ω)‖u‖L1∗(Ω) ≤ C‖f‖LN (Ω)‖∇u‖L1(Ω)

≤ Cδ

ˆ

Ω

Φ(∇u) dx+ Cδ

(2.9)

and

(2.10)

ˆ

Ω

|∇u|1+α dx+

ˆ

Ω

|∇u| dx ≤ δ

ˆ

Ω

Φ(∇u) dx+ Cδ.

By choosing δ sufficiently small we can deduce from (2.3) that

1

2

ˆ

Ω

DξΦ(∇u) · ∇u dx ≤ C.

It follows from (2.6) that DξΦ(∇u) · ∇u ∈ L1(Ω) and Ψ(DξΦ(∇u)) ∈ L1(Ω).
For some fixed ϕ(x) ∈ C1

0(Ω), we know that J(u) ≤ J(λu+(1−λ)ϕ), ∀λ ∈ (0, 1).
Denote ξλ = λ∇u+ (1− λ)∇ϕ. In light of (2.4), we find

Φ(∇u)− Φ(ξλ) ≥ (1− λ)DξΦ(ξλ) · (∇u−∇ϕ),

and deduce as above to have
ˆ

Ω

DξΦ(ξλ) · (∇u−∇ϕ) dx

≤

ˆ

Ω

fu dx−

ˆ

Ω

fϕ dx+
1

1− λ

ˆ

Ω

a[G(ξλ)−G(u)] dx.

(2.11)

Consider

h(λ) = Φ(ξλ) = Φ(λ∇u+ (1− λ)∇φ).

It is obvious that h is a convex function in R. Then by the monotonicity of a convex
function’s derivative, we know

h′(0) ≤ h′(λ) ≤ h′(1), λ ∈ (0, 1),

which yields that

(2.12) DξΦ(∇φ) · (∇u−∇ϕ) ≤ DξΦ(ξλ) · (∇u−∇ϕ) ≤ DξΦ(∇u) · (∇u−∇φ).

Recalling (1.3) and (2.6), we have

|DξΦ(∇u) · ∇ϕ| ≤ Ψ(DξΦ(∇u)) + Φ(∇ϕ) + Φ(−∇ϕ)

≤ Ψ(DξΦ(∇u)) + (C + 1)Φ(∇ϕ).
(2.13)

As Ψ(DξΦ(∇u)) ∈ L1(Ω) and ϕ ∈ C1
0(Ω), it is easy to know DξΦ(∇ϕ) · (∇u−∇ϕ) ∈

L1(Ω) and DξΦ(∇u) · (∇u−∇ϕ) ∈ L1(Ω). By the Lebesgue dominated convergence
theorem, we have

ˆ

Ω

lim
λ→1

DξΦ(ξλ) · (∇u−∇ϕ) dx = lim
λ→1

ˆ

Ω

DξΦ(ξλ) · (∇u−∇ϕ) dx.

Since g is a continuous function, then

lim
λ→1

1

1− λ

ˆ

Ω

[G(ξλ)−G(u)] dx =

ˆ

Ω

[

lim
λ→1

1

1− λ

ˆ λu+(1−λ)ϕ

u

g(s) ds

]

dx

=

ˆ

Ω

g(u)(ϕ− u) dx.
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Furthermore, recalling (2.11) we have
ˆ

Ω

DξΦ(∇u) · (∇u−∇ϕ) dx ≤

ˆ

Ω

fu dx−

ˆ

Ω

fϕ dx+

ˆ

Ω

ag(u)ϕdx−

ˆ

Ω

ag(u)u dx.

Denote

A0 =

ˆ

Ω

DξΦ(∇u) · ∇u dx−

ˆ

Ω

fu dx+

ˆ

Ω

ag(u)u dx.

Then we conclude that, for every ϕ(x) ∈ C1
0(Ω),

ˆ

Ω

DξΦ(∇u) · ∇ϕdx−

ˆ

Ω

fϕ dx+

ˆ

Ω

ag(u)ϕdx ≥ A0.

By a scaling argument, it follows that
ˆ

Ω

DξΦ(∇u) · ∇ϕdx−

ˆ

Ω

fϕ dx+

ˆ

Ω

ag(u)ϕdx = 0.

It means that u(x) is a weak solution of problem (1.1). �

Now we are ready to prove the existence of bounded very weak solutions of
problem (1.1). We would like to point out that our approach is much influenced by
[3].

Proof of Theorem 1.6. We first introduce the approximated problems. Let
{fn}, {an} defined by

(2.14) fn(x) =
f(x)

1 + 1
n
|f(x)|

, an(x) =
a(x)

1 + Q

n
|a(x)|

be two sequences of functions strongly convergent to f and a in L1(Ω). By Theo-
rem 2.2, we obtain the weak solution un ∈ W 1,q

0 (Ω) of the approximation problem

−div
(

DξΦ(∇un)
)

+ ang(un) = fn(x),

which satisfies

(2.15)

ˆ

Ω

DξΦ(∇un) · ∇ϕdx+

ˆ

Ω

ang(un)ϕdx =

ˆ

Ω

fnϕdx, ∀ϕ ∈ C1
0(Ω).

Since ψ(s) = s
(

1 + s
n

)−1
is increasing, we know from (1.7) that

(2.16) |fn(x)| =
|f(x)|

1 + 1
n
|f(x)|

≤
Qa(x)

1 + Q

n
a(x)

= Qan(x).

Recalling (1.4), we can choose k0 > 0 such that

(2.17) g(s)s ≥ 0

and

(2.18) |g(s)| ≥ Q

for every s ∈ (k0,+∞). We define

Gk0(s) =











0 if |s| ≤ k0,

s− k0 if s > k0,

s+ k0 if s < −k0.
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Choosing Gk0(un) as a test function in (2.15) yields
ˆ

Ω

DξΦ(∇un) · ∇Gk0(un) dx+

ˆ

Ω

ang(un)Gk0(un) dx ≤

ˆ

Ω

|fn| · |Gk0(un)| dx

≤ Q

ˆ

Ω

an|Gk0(un)| dx,

which further follows from (2.17) that
ˆ

Ω

DξΦ(∇Gk0(un)) · ∇Gk0(un) dx+

ˆ

Ω

an[|g(un)| −Q]|Gk0(un)| dx ≤ 0.

Thus we conclude from (2.18) that ‖un‖L∞(Ω) ≤ k0 and the sequence {un} is bounded
in L∞(Ω).

As a consequence, we take un as a test function in (2.15) to deduce
ˆ

Ω

Φ(∇un) dx− max
|s|≤k0

|g(s)s|

ˆ

Ω

an dx

≤

ˆ

Ω

DξΦ(∇un) · ∇un dx+

ˆ

Ω

ang(un)un dx ≤ k0

ˆ

Ω

|fn| dx,

that is

(2.19)

ˆ

Ω

Φ(∇un) dx ≤ k0

ˆ

Ω

|f | dx+ max
|s|≤k0

|g(s)s|

ˆ

Ω

a dx.

From (1.2) we may choose a subsequence of {un} (denote it by the original sequence)
and a function u ∈ W 1,q

0 (Ω) such that

∇un ⇀ ∇u weakly in Lq(Ω),

un → u strongly in Lq(Ω),

and
ˆ

Ω

Φ(∇u) dx ≤ lim inf
n→∞

ˆ

Ω

Φ(∇un) dx.

However, in order to obtain the existence of bounded very weak solutions, this
is not enough to pass to a limit under the integral signs and more information is
needed on the gradients. We shall prove that a subsequence of the sequence {∇un}
converges to ∇u almost everywhere in Ω .

We first claim that {∇un} is a Cauchy sequence in measure. Let δ > 0, and
denote

E1 := {x ∈ Ω: |∇un| > h} ∪ {|∇um| > h},

E2 := {x ∈ Ω: |un − um| > 1}

and

E3 := {x ∈ Ω: |∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ 1, |∇un −∇um| > δ},

where h will be chosen later. It is obvious that

{x ∈ Ω: |∇un −∇um| > δ} ⊂ E1 ∪ E2 ∪ E3.

In view of (2.19) and (2.8), there exists constant C > 0 such that

meas{x ∈ Ω: |∇un| ≥ h} ≤
‖∇un‖Lq(Ω)

hq
≤
C

hq
.

Let ε > 0. We may choose h = h(ε) large enough such that

(2.20) meas(E1) ≤ ε/3, for all n,m ≥ 0.
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On the other hand, we know that {un} converges to u strongly in Lq(Ω). Then
there exists N1(ε) ∈ N such that

(2.21) meas(E2) ≤ ε/3, for all n,m ≥ N1(ε).

Moreover, since Φ is C1 and strictly convex, then there exists a real valued
function m(h, δ) > 0 such that

(2.22) (DΦ(ξ)−DΦ(ζ)) · (ξ − ζ) ≥ m(h, δ) > 0,

for all ξ, ζ ∈ RN with |ξ|, |ζ | ≤ h, |ξ − ζ | ≥ δ. By taking T1(un − um) as a test
function in (2.15), we obtain

m(h, δ)meas(E3) ≤

ˆ

E3

[DξΦ(∇un)−DξΦ(∇um)] · (∇un −∇um) dx

=

ˆ

E3

[fn − fm]T1(un − um) dx

+

ˆ

E3

[ang(un)− amg(um)]T1(un − um) dx

≤ ‖fn − fm‖L1(Ω) + ‖ang(un)− amg(um)‖L1(Ω) := αn,m,

which implies that

meas(E3) ≤
αn,m

m(h, δ)
≤ ε/3,

for all n,m ≥ N2(ε, δ). It follows from (2.20) and (2.21) that

meas{x ∈ Ω : |∇un −∇um| > δ} ≤ ε, for all n,m ≥ max{N1, N2},

that is {∇un} is a Cauchy sequence in measure. Then we may choose a subsequence
(denote it by the original sequence) such that

∇un → v a.e. in Ω.

As ∇un converges ∇u weakly in Lq(Ω), we deduce that v coincides with the weak
gradient of u. Therefore, we have

(2.23) ∇un → ∇u a.e. in Ω.

In view of (2.19) and (2.6), we know that

(2.24)

ˆ

Ω

Ψ(DξΦ(∇un)) dx ≤ C.

Applying Lemma 2.8 in [17] and (2.23), we conclude that (up to a subsequence)

(2.25) DξΦ(∇un)⇀ DξΦ(∇u) weakly in L1(Ω).

Finally, using the inequality

|an(x)g(un)| ≤ a(x) max
|s|≤k0

|g(s)|,

we obtain the L1(Ω) convergence of the sequence {an(x)g(un)} to a(x)g(u) by the
Lebesgue dominated convergence theorem. Recalling (2.25) and the L1(Ω) conver-
gence of fn(x), we pass to the limits in (2.15) to conclude that u is a bounded very
weak solution in the sense of Definition 1.4. �
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