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Abstract. In this paper we are going to investigate some properties of almost periodic functions

in view of the Lebesgue measure with particular emphasis on their behavior under convolution.

These considerations allow us to establish the main result concerning almost periodic in view of

the Lebesgue measure solutions to linear differential equations of the first order. We also apply the

theory of continued fractions to examine asymptotic behavior of a certain classical almost periodic

function of that type. For that purpose we provide a new general method of calculation of certain

type of limits.

1. Introduction

The theory of almost periodic functions was started by Danish mathematician
Bohr (see [3, 4, 5]) who in the years 1924–1926 published series of very extensive
and careful lectures in which, basing on so-called relatively dense sets, he introduced,
in particular, the precise notion of a continuous uniformly almost periodic function.
Therefore uniformly almost periodic (briefly: u.a.p.) functions are commonly called
Bohr almost periodic (briefly: B-a.p.) functions. Let us add that Bohr based his
investigation on earlier considerations of Bohl and Escalangon. Almost periodic
functions present natural generalization of periodic functions from the point of view
of some algebraic properties as well as from a totally different point of view in the
theory of function spaces.

There are many generalizations of B-a.p. functions. Among these generalizations
a particular role seem to play almost automorphic functions (see e.g. [7, 8, 14] and
many other papers on that topic). Another very important classes of almost periodic
functions were introduced by Stepanov [17] in 1926, when he was dealing with locally
integrable functions in view of some integrable metrics. Now, in the literature such
functions are called Stepanov almost periodic (briefly: Sp-a.p.) functions. Let us
add that for functions of such type, as in the case of u.a.p. functions, there exists the
mean value and a theorem on approximations by trigonometric polynomials holds,
too.

Let us also add, roughly speaking, that a bridge between almost automorphic
and Sp-a.p. functions create Stepanov-like almost automorphic functions which have
been investigated recently in many papers (see e.g. [10, 15] and others).
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Stepanov also introduced the notion of almost periodic function in view of the
Lebesgue measure (briefly: µ-a.p. function). He then had not called them almost
periodic functions in view of the Lebesgue measure but measurably almost periodic
functions. In the case of µ-a.p. functions one considers measurable functions which
in contradiction to Sp-a.p. functions do not have to be locally integrable. Hence the
mean value of such functions does not have to exist, however, for such functions a
theorem on approximation by generalized trigonometric polynomials holds. Let us
indicate that a collection of interesting results on µ-a.p. functions one can find for
example in the papers [18, 19]. Moreover, let us emphasize that µ-a.p. functions
possess much more complex nature than Sp-a.p. functions and therefore, according
to our best knowledge, their applications in the theory of evolution equations have
not been examined so far.

Non-continuous almost periodic functions in particular have applications in bio-
mathematics, electrical nets and in analysis of neuron nets (see e.g. [12]).

The main goal of this article is to examine µ-a.p. functions with particular em-
phasis on their behavior under convolution (one of our motivation here is the paper
[7]). Our considerations are illustrated by collection of nontrivial examples. These
considerations allowed us to prove the main result concerning µ-a.p. solutions to
a non-homogeneous linear equation with a µ-a.p. non-homogeneous term. Let us
emphasize that the situation under consideration differs from the case when one con-
siders either u.a.p. functions or almost automorphic functions. Moreover, we have
examined asymptotic behavior of the classical µ-a.p. function, defined by the formula

x → 1

2 + cosx+ cos (x
√
2)

for x ∈ R.

To achieve our goal we have used the theory of continued fractions which is described
in many monographs on number theory (see e.g. [13]). Moreover, we provide a general
rule of calculation of limits of a certain type.

For completeness, in the next section we collect basic definitions and results which
will be used in the sequel. Because that section is quite long (we had to focus in it
on µ-a.p. functions, Sp-a.p. functions and we had to prove a few lemmas concerning
continued fractions) we did not focus on B-a.p. functions. The reader could find many
details concerning these classical almost periodic functions for example in [1, 9, 11, 16]
and in many other monographs on this topic.

2. Preliminaries

At the beginning of this section we collect basic definitions and results concerning
Stepanov almost periodic functions and almost periodic functions in view of the
Lebesgue measure.

Let Σ be σ-algebra of subsets of R which are measurable in the Lebesgue sense, µ
be the Lebesgue measure on Σ, and let X be the space of all Σ-measurable functions
f : R → R. For f, g ∈ X we set f = g ⇐⇒ f(x) = g(x) for µ-a.e. x ∈ R. Let p ≥ 1.
As usual, by Lp(R) we will denote the set of all functions R → R measurable in the
Lebesgue sense, pth power of absolute value of which is integrable in the Lebesgue
sense over R. By Lp

loc
(R) we will denote the set of all functions R → R measurable in

the Lebesgue sense, pth power of absolute value of which is integrable in the Lebesgue
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sense over every bounded subset of R. For f, g ∈ Lp
loc
(R). Let us define

DSp(f, g) = sup
u∈R

(
ˆ u+1

u

|f(t)− g(t)|p dt
) 1

p

.

It is easily to check that DSp defines a metric on the set Lp
loc

.
For a function f : R → R by fτ for τ ∈ R we denote the function fτ : R → R,

defined by the formula fτ (x) = f(x+ τ), for x ∈ R.

Definition 1. [20, 1] A number τ ∈ R is said to be (Sp, ε)-almost period (briefly:
(Sp, ε)-a.p.) of a function f ∈ Lp

loc
(R), p ≥ 1, if DSp(f, fτ ) ≤ ε.

Definition 2. [20, 1] A function f ∈ Lp
loc
(R), p ≥ 1 is said to be Sp-almost

periodic (briefly: Sp-a.p.), if for every ε > 0 there exists a relatively dense set of its
(Sp, ε)-almost periods.

For η > 0 and f, g ∈ X we define

D(η; f, g):= sup
u∈R

µ
(
{x ∈ [u, u+ 1] : |f(x)− g(x)| ≥ η}

)
.

Moreover, we denote D(η; f):=D(η; f, 0).
Now we recall the notion of (ε, η)-almost period of a function f ∈ X and the

definition of an almost periodic function in view of the Lebesgue measure.

Definition 3. [18] Let f ∈ X . If for ε, η > 0 we have D(η; fτ , f) ≤ ε, then the
real number τ is said to be (ε, η)-almost period (briefly: (ε, η)-a.p.) of the function
f .

By E{ε, η; f} we will denote the set of all (ε, η)-a.p. of the function f , that is

E{ε, η; f}:=
{
τ ∈ R : sup

u∈R
µ
(
{x ∈ [u, u+ 1] : |f(x+ τ)− f(x)| ≥ η}

)
≤ ε
}
.

Definition 4. [18] A function f ∈ X is said to be almost periodic in view of

the Lebesgue measure µ (briefly: µ-a.p.), if for arbitrary numbers ε, η > 0, the set

E{ε, η; f} is relatively dense. By M̃ we will denote the set of all µ-a.p. functions.

One can define almost periodic functions in view of the Lebesgue measure in the
following equivalent way.

Definition 5. [2] Fix d > 0. A function f ∈ X is said to be µ-a.p. or measurably

almost periodic, if for any ε > 0, the set

Ed{ε; f}:=
{
τ ∈ R : ∀u ∈ R µ

(
{x ∈ [u, u+ d] : |f(x+ τ)− f(x)| ≥ ε}

)
< εd

}

is relatively dense.

A straightforward reasoning confirms that the above two definitions are equiva-
lent. It is well-known that if f is a bounded µ-a.p. function, then f is Sp-a.p. for
every p ≥ 1. Moreover, every bounded and uniformly continuous µ-a.p. function is
Bohr almost periodic (see [20]). The following results provides nontrivial examples
of µ-a.p. functions.

Theorem 1. [18] Let F : Ω → C, where Ω = {x+ iy ∈ C : − a < y < a}, a > 0,
be a bounded holomorphic function. Assume that the function g : R → R given by

the formula g(x) = F (x) for x ∈ R is Bohr almost periodic. Then the function f
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defined by the formula

f(x) =





1

g(x)
for x ∈ R such that g(x) 6= 0,

0 for x ∈ R such that g(x) = 0,

is µ-a.p.

We are going also to use Theorem 1 in Section 5 (Example 7). Now we are going
to describe briefly the notion of the so-called D-convergence.

Definition 6. [18] A sequence (fn), where fn ∈ X for N ∈ N is said to be
D-convergent to a function f ∈ X , if the following condition is satisfied

∀ε > 0 ∀η > 0 ∃N ∈ N ∀n > N D(η; fn, f) < ε.

The function f is said to be D-limit of the sequence (fn).

It can be proved that D-convergence is weaker that the convergence in view of
the Lebesgue measure but it is stronger than the local convergence in view of the
Lebesgue measure. Moreover, D-convergent is metrizable.

Definition 7. [18] The functional
·: X → R+ is defined by the formula

f= sup
u∈R

ˆ u+1

u

|f(t)|
1 + |f(t)| dt, where f ∈ X .

Using the above functional one can define the metric on X in a classical way.
Moreover, one can prove (see [18]) that a sequence (fn), where fn ∈ X for n ∈ N, is
D-convergent to a function f ∈ X if and only if (fn) is convergent to f in view of the
metric generated by that functional. The following result describes the important
property of a D-limit.

Theorem 2. [18] If a sequence (fn) of elements of the metric space M̃ is D-

convergent to a function f ∈ X , then f ∈ M̃ .

In the next definition an important subclass of the space X is described.

Definition 8. [20] Let (λn) be an arbitrary sequence of positive numbers, con-
vergent to zero. Define

X̃ = {f ∈ X : sup
u∈R

µ({x ∈ [u, u+ 1] : λn|f(x)| ≥ 1}) → 0 as n → ∞},

or equivalently

X̃ = {f ∈ X : D(1;λnf) → 0 as n → ∞}.
One can check that the above class does not depend on a choice of the sequence (λn).
In what follows we will apply the following

Theorem 3. [18] If f is µ-a.p., then f ∈ X̃ .

Now, we are going to collect basic definitions and facts concerning continued
fractions which will be needed in the sequel. As usual, every infinite sequence of real
numbers 〈a0; a1, a2, . . .〉 will be called an infinite continued fraction, provided aj ≥ 1
(j = 1, 2, . . .). The numbers a1, a2, . . . are said to be quotients of the continued

fraction, while the number rk = [a0; a1, . . . , ak] is said to be its kth convergent. If
all the quotients are positive integers and a0 is an integer, then such a continued
fraction is said to be an arithmetic continued fraction. One can easily prove that the
limit limn→∞[a0; a1 . . . , an] exists; it is said to be the value of the continued fraction

〈a0; a1, a2, . . .〉 and it is denoted by [a0; a1, a2, . . .]. For example, it is easy to check
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that
√
2− 1 = [0; 2, 2, . . .]; we will use this equality in the next section. It is easy to

establish the following

Lemma 1. If a0 ∈ R, a1, . . . , an, a
′
n ≥ 1 and a′n > an, then

|[a0; a1, . . . , an−1, an]− [a0; a1, . . . , an−1, a
′
n]| ≤

1

n
.

For better calculation of convergents of continued fractions we recall the definition
of two sequences of polynomials (Pn)

∞
n=−1 and (Qn)

∞
n=−1 which coefficients are non-

negative integers.

Definition 9. Set

P−1 = 1, Q−1 = 0, P0(x0) = x0, Q0(x0) = 1,

and

Pk+1(x0, . . . , xk+1) = xk+1Pk(x0, . . . , xk) + Pk−1(x0, . . . , xk−1),

and

Qk+1(x0, . . . , xk+1) = xk+1Qk(x0, . . . , xk) +Qk−1(x0, . . . , xk−1)

for k ∈ N0.

Lemma 2. [13] If a is the value of an infinite continued fraction 〈a0; a1, a2, . . .〉,
and rn = Pn

Qn
is its nth convergent, then

1

2QnQn+1
<
∣∣∣a− Pn

Qn

∣∣∣ < 1

QnQn+1
<

1

Q2
n

.

If the continued fraction 〈a0; a1, a2, . . .〉 is arithmetic, then the fraction Pn

Qn
is irre-

ducible.

Definition 10. [13] We say that a rational number a
b

(b > 0; a and b are coprime)

is the best rational approximation of a real number α, if for all the fractions a′

b′
with

positive integers denominators of which are less than b, the following inequality holds

|bα− a| < |b′α− a′|.
Theorem 4. [13] Let 〈a0; a1, a2, . . .〉 be an arithmetic infinite continued fraction

of irrational value α. Then every rational number, being the best rational approxi-

mation of α, is equal to some convergent of this fraction and, conversely, for k ≥ 1,
kth convergent of this fraction is the best rational approximation of the number α.

Now, we are going to establish a few simple lemmas.

Lemma 3. Let be given an infinite arithmetic continued fraction

〈a0; a1, a2, . . .〉.
Let us define two sequences (Qm)

∞
m=−1, (Pm)

∞
m=−1 as in Definition 9. Then:

(i) there exists no index m ∈ N such that Qm and Qm+1 are even numbers;

(ii) there exists no index m ∈ N such that Pm and Pm+1 are even numbers.

Proof. Suppose that Qm i Qm+1 are even numbers. Let s be the lowest index
such that Qs and Qs+1 are even numbers. Obviously 1 ≤ s ≤ m. We have

Qs+1 = as+1Qs +Qs−1,

and therefore

Qs−1 = Qs+1 − as+1Qs.
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We know that Qs i Qs+1 are even, so Qs−1 is also an even number, which contradicts
to the definition of s. The proof of (ii) is analogous. �

Lemma 4. Let be given an arithmetic infinite continued fraction 〈a0; a1, a2, . . .〉.
If there exists an index k ∈ N such that for n ≥ k the numbers an are odd, then

in the sequence ( Pm

Qm
)∞m=1 there are infinitely many fractions with odd numerators as

well as odd denominators.

Proof. Suppose that only finitely many terms of the sequence ( Pm

Qm
)∞m=1 are frac-

tions with odd numerators as well as odd denominators. Hence there exists an index
N ∈ N such that for every m ≥ N , Pm or Qm is an even number. Let M = max[N, k].
Then for every m ≥ M , am is an odd number and Pm is an even number, or Qm is
an even number. It is known that for m ≥ −1, Pm and Qm are coprime. Two cases
may appear. First, suppose that PM is an even number. Then, by Lemma 3, PM+1

is an odd number. Moreover, QM is an odd number, so QM+1 is an even number.
Because

(1) QM+2 = aM+2QM+1 +QM ,

and

(2) PM+2 = aM+2PM+1 + PM ,

so PM+2 and QM+2 are odd numbers, what gives a contradiction.
Assume now that PM is an odd number. Then QM is an even number, so QM+1

is an odd number and PM+1 is an even number. In view of (1) and (2), we infer that
PM+2 i QM+2 are odd numbers, what gives a contradiction. �

The following lemma is an elementary observation.

Lemma 5. Let x ∈ R. Then there exists at most one number n ∈ Z such that

|x− 2n| < 1.

Lemma 6. If for some positive integers k, n it holds

|α(2k + 1)− 2n + 1| < 1

where α ∈ R \Q and 2p−1
2k+1

is mth convergent (m ≥ 1) of the number α, then p = n.

Proof. Since 2p−1
2k+1

is mth convergent of the number α, we have

|α− Pm

Qm

| < 1

QmQm+1
,

and thus

|α(2k + 1)− (2p− 1)| = |αQm − Pm| <
1

Qm+1
≤ 1.

In view of Lemma 5, the number n is uniquely determined. Hence p = n. �

Finally, for τ > 0 let us define the function f τ : R → R by the formula

(3) f τ (x) =
∣∣x+ 1

2
τ − nτ

∣∣,
where n ∈ Z satisfies the inequalities

(4) (n− 1)τ ≤ x < nτ.

Let us notice that in view of the Archimedes principle, there exists a unique
integer n satisfying the inequalities (4), and therefore the function f τ is correctly
defined.
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The following lemma is also a very simple consequence of the Archimedes prin-
ciple.

Lemma 7. Let τ > 0. Then f τ (x) ≤ 1
2
τ , for every x ∈ R.

3. Asymptotic behavior of the classical µ-a.p. function

In this section we are going to investigate asymptotic behavior of the classical
µ-a.p. function given by the formula

(5) f(x) =
1

2 + cosx+ cos (x
√
2)

for x ∈ R.

More precisely, our goal is to prove the following

Theorem 5. Let the function f : R → R be defined as in (5). Then for λ < 0
we have f(x) = o(e−λx) at +∞, that is

(6) lim
x→+∞

eλx

2 + cosx+ cos (x
√
2)

= 0.

In the proof of Theorem 5 we will use the following convergence test.

Theorem 6. Let a ∈ R and let f, g : R → R be functions satisfying on the

interval (a,+∞) the following conditions:

1◦ f is nonincreasing and f(x) ≥ 0;
2◦ g is continuous g(x) > 0;
3◦ all the points from the interval (a,+∞) at which g attains a local minimum

can be arrange in a increasing sequence (an)n∈N divergent to +∞.

Then

lim
x→+∞

f(x)

g(x)
= 0,

whenever

lim
n→+∞

f(an)

g(an+1)
= 0.

Proof. In view of 2◦ and 3◦, on every interval [an, an+1], where n ∈ N, we have

g(x) ≥ min{g(an), g(an+1)} for x ∈ [an, an+1].

Thus, by 1◦, we get

(7)
f(x)

g(x)
≤ f(an)

min{g(an), g(an+1)}
for x ∈ [an, an+1].

Because for n ≥ 2 we have

0 ≤ f(an)

g(an)
≤ f(an−1)

g(an)
→ 0 as n → +∞

and
f(an)

g(an+1)
→ 0 as n → +∞,

so

lim
n→+∞

f(an)

min{g(an), g(an+1)}
= 0.

Now, since an → +∞ as n → +∞, by (7) we get

lim
x→+∞

f(x)

g(x)
= 0. �
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In the proof of Theorem 5 we will also need the following

Proposition 1. Let the function g : R → R be defined by the formula

g(x) = 1 + cos x+
1√
2
[1 + cos(x

√
2)] for x ∈ R.

Then

(i) if z > 0 is a critical point of the function g, then g(z) ≥ 1
2!

(
1
8z

)8 − 1
4!

(
1
8z

)16
;

(ii) all the points from the interval (0,+∞), at which the function g attains a

local minimum form an increasing sequence (an)n∈N, divergent to +∞;
(iii) for the sequence defined at (ii), the following estimation holds: an+1−an ≤ 2π.

Proof. Let us prove (i). We have

g′(x) = 0 ⇐⇒ − sin x− sin (x
√
2) = 0 ⇐⇒ sin x = sin (−x

√
2).

The last equation is satisfied for

x = −x
√
2 + 2kπ or x = π − (−x

√
2)− 2kπ, where k ∈ Z.

Since we are interested in positive solutions to these equations, we may assume that
solutions to the first equation form a sequence (xk)k∈N, where xk = (

√
2 − 1)2kπ,

while solutions to the second equation form a sequence (yk)k∈N, where yk = (
√
2 +

1)(2kπ − π). We are going to prove the property (i) separately for each of these
sequences.

In view of Theorem 4 and Lemma 2 we know that if Pm

Qm
is mth convergent of the

number
√
2− 1 for m ≥ 1 and p

q
is a rational number such that 1 ≤ q ≤ Qm, p ∈ Z,

then the following estimation holds

1

2QmQm+1
<
∣∣∣(
√
2− 1)− Pm

Qm

∣∣∣ ≤
∣∣∣(
√
2− 1)− p

q

∣∣∣.

Hence

(8)
qπ

2QmQm+1
<
∣∣(
√
2− 1)qπ − pπ

∣∣ for 1 ≤ q ≤ Qm, p ∈ Z.

Now we are going to estimate Qm for the continued fraction [0; 2, 2, . . .] of the
number

√
2− 1 from the above as well as from the below. We have

Q−1 = 0, Q0 = 1, Qm+1 = 2Qm +Qm−1 for m ≥ 0.

Using mathematical induction we will check that 2m ≤ Qm, for m ≥ 1. For m = 1
we have

Q1 = 2Q0 +Q−1 = 2 · 1 + 0 = 2 ≥ 21.

Suppose that the inequality under consideration holds for some index m ≥ 1. Then

Qm+1 = 2Qm +Qm−1 ≥ 2Qm ≥ 2m · 2 = 2m+1.

In an analogous way we check that Qm ≤ 3m, for m ≥ 1. For m = 1 we have

Q1 = 2 ≤ 31.

Now assume that the inequality under consideration holds for some index m ≥ 1.
Then

Qm+1 = 2Qm +Qm−1 ≤ 3Qm ≤ 3 · 3m = 3m+1,

because Qm−1 < Qm for m ≥ 1. Hence

2m ≤ Qm ≤ 3m for every m ≥ 1.
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Thus, by the inequality (8) we get the following estimation

1

32m+2
<

qπ

32m+2
≤ qπ

2 · 3m3m+1
≤ qπ

2QmQm+1

<
∣∣(
√
2− 1)qπ − pπ

∣∣,

so

(9)
1

32m+2
<
∣∣(
√
2− 1)qπ − pπ

∣∣,

for fixed m ≥ 1 and 1 ≤ q ≤ Qm. Since 2m ≤ Qm, the inequality (9) even more so
holds for 1 ≤ q ≤ 2m ≤ Qm and p ∈ Z (m ≥ 1).

Now we are going to estimate g(xk). Let us notice that

g(xk) ≥ 1 + cosxk = 1− cos (xk + π) = 1− cos (f 2π(xk)),

because cosine is an even and 2π-periodic function and

f 2π(xk) = |xk + π − 2nkπ| = |(
√
2− 1)2kπ + π − 2nkπ|.

By the earlier estimations, we infer that if 1 ≤ 2k ≤ 2m for any indexes k,m ∈ N,
then

1

32m+2
<
∣∣(
√
2− 1)2kπ + π − 2nkπ

∣∣ = f 2π(xk).

We claim that
1

32 log2 k+6
< f 2π(xk) for every k ∈ N.

Indeed, for k ∈ N we find m = m(k) such that the following condition is satisfied

2m−1 < 2k ≤ 2m.

Then the following inequality holds

m < log2 k + 2,

and thus
1

32 log2 k+6
<

1

32m+2
< f 2π(xk).

Now, let z = xk for some index k ∈ N. Then

k =
z

(
√
2− 1)2π

,

and therefore z > k, and

1

32 log2 z+6
<

1

32 log2 k+6
< f 2π(xk) = f 2π(z).

Moreover, we have

1

32 log2 z+6
>

1

42 log2 z+6
>

(
1

8z

)4

.

Hence for z = xk, k ∈ N, the following estimation holds

f 2π(z) >

(
1

8z

)4

.

Moreover, by Lemma 7, we know that 0 ≤ f 2π(z) ≤ π. Hence, because cosine is a
decreasing function on the interval [0, π], so

cos

(
1

8z

)4

> cos (f 2π(z)),
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and thus

1− cos

(
1

8z

)4

< 1− cos (f 2π(z)).

Since the following inequality

1− cosx >
x2

2
− x4

24

holds for every x ∈ (0, 1], we get

g(z) ≥ 1

2!

(
1

8z

)8

− 1

4!

(
1

8z

)16

for z = xk, k ∈ N.

Now, we are going to prove (i) in the case when z = yk for k ∈ N. Let us notice
that

g(yk) = g
(
(
√
2 + 1)(2kπ − π)

)

= 1 + cos
[
(
√
2 + 1)(2kπ − π)

]
+

1√
2

{
1 + cos

[√
2(
√
2 + 1)(2kπ − π)

]}

= 1 + cos
[√

2(2kπ − π)− π
]
+

1√
2

{
1 + cos

[
(2 +

√
2)(2kπ − π)

]}

= 1− cos
[√

2(2kπ − π)
]
+

1√
2

{
1 + cos

[√
2(2kπ − π)

]}

= 1 +
1√
2
−
(
1− 1√

2

)
cos
[√

2(2kπ − π)
]
≥ 2√

2
=

√
2.

Therefore g(yk) ≥
√
2. Hence, if z = yk for some k ∈ N, then g(z) ≥

√
2 and z > 1.

Then

g(z) ≥
√
2 >

1

2 · 88 >
1

2 · 88 − 1

4!816
≥ 1

2!

(
1

8z

)8

− 1

4!

(
1

8z

)16

,

because the function ϕ, defined by the formula

ϕ(z):=
1

2!

(
1

8z

)8

− 1

4!

(
1

8z

)16

is decreasing on the interval
(

1

8 8
√
6
,+∞

)
. The proof of (i) is complete.

Now, we are going to prove (ii). By (i) we know that if z > 0 is a critical
point of the function g, then either it is a term of the sequence (xn)n∈N or a term
of the sequence (yn)n∈N. Now, we establish that all the critical points belonging
to the interval (0,+∞) can be arranged in a increasing sequence (cn)n∈N divergent
to +∞. The sequence (xn)n∈N is an arithmetic one with the common difference
of 2π(

√
2 − 1), while the sequence (yn)n∈N is an arithmetic one with the common

difference of 2π(
√
2 + 1). Moreover, for any m,n ∈ N we have xn 6= ym and x1 < y1.

Hence between two consecutive terms of the sequence (xn)n∈N there can be at most
one term of the sequence (yn)n∈N. Thus let (nk)k∈N be a sequence of positive integers
such that xnk

< yk < xnk+1, for every k ∈ N. The sequence (nk)n∈N is strictly
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increasing, obviously. No, we are going to construct the sequence (cn)n∈N. Let

cn :=xn for 1 ≤ n ≤ n1;

cn1+1 := y1;

cn :=xn−1 for n1 + 2 ≤ n ≤ n2 + 1;

cn2+2 := y2;

cn :=xn−2 for n2 + 3 ≤ n ≤ n3 + 2;

cn3+3 := y3

and, in general,

cn :=xn for 1 ≤ n ≤ n1;

cn :=xn−k for nk + k + 1 ≤ n ≤ nk+1 + k, where k ∈ N

cnk+k := yk for k ∈ N.

Then (cn)n∈N is an increasing sequence containing all the positive critical points of
the function g.

The function g attains local extreme values at all the critical points, because

g′′(x) = − cos x−
√
2 cos (x

√
2)

and

g′′(xk) = (−1 −
√
2) cos

(
2
√
2kπ

)
, g′′(yk) = (1−

√
2) cos

[√
2(2kπ − π)

]
.

Since

2
√
2kπ 6= π

2
+ 2sπ and

√
2(2kπ − π) 6= π

2
+ 2rπ for s, r ∈ Z,

we have g′′(xn) 6= 0 and g′′(ym) 6= 0 for m,n ∈ N. Hence every two terms of the
sequence (cn)n∈N either are pairs of type (maximum, minimum) or pairs of type
(minimum, maximum). Thus (cn)n∈N is a sequence at terms of which the function
g attains local maximum values and local minimum values, alternately. Hence there
exists a subsequence (an)n∈N of the sequence (cn)n∈N such that the function g attains
local minimum values at all of its terms.

Now, we prove the property (iii). If an = xk for some indexes n, k ∈ N and
in the interval [xk, xk+2] there is a term of the sequence (ym)m∈N, then we have the
following situation

an = xk < ym < xk+1 < xk+2 or an = xk < xk+1 < ym < xk+2,

so the function g attains a local minimum value at the point xk+1 or ym, respectively,
that is an+1 = xk+1 or an+1 = ym. Hence

an+1 − an = xk+1 − xk = 2π(
√
2− 1) < 2π

or

an+1 − an = ym − xk < xk+2 − xk = 4π(
√
2− 1) < 2π,

respectively. If an = xk for some indexes n, k ∈ N and in the interval [xk, xk+2] there
is no term of the sequence (ym)m∈N, then we have the following situation

an = xk < xk+1 < xk+2,

so at the point xk+2 the function g attains a local minimum value, that is an+1 = xk+2,
and thus

an+1 − an = xk+2 − xk = 4π(
√
2− 1) < 2π.
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If however an = ym for some indexes n,m ∈ N, then there exists an index k ∈ N

such that
xk < an = ym < xk+1 < xk+2.

Moreover, in the interval [xk, xk+2] there could be at most one term of the sequence
(ym)m∈N. Hence the function g attains at the point xk+2 a local minimum value, that
is an+1 = xk+2, so

an+1 − an = xk+2 − ym ≤ xk+2 − xk = (
√
2− 1)4π < 2π.

Thus, in all the cases we have an+1 − an < 2π for n ∈ N . �

Now, we are ready to provide

Proof of Theorem 5. Let us notice that for x ∈ (0,+∞) the following inequalities
are satisfied

(10) 0 ≤ eλx

2 + cosx+ cos (x
√
2)

≤ eλx

1 + cos x+ 1√
2
[1 + cos (x

√
2)]

.

We are going to prove that

(11) lim
x→+∞

eλx

1 + cosx+ 1√
2
[1 + cos (x

√
2)]

= 0.

Taking f(x) = eλx and g(x) = 1 + cosx + 1√
2
[1 + cos (x

√
2)] for x ∈ R and

applying Theorem 6 and Proposition 1, under the same notation we have

eλan

1 + cos (an+1) +
1√
2
[1 + cos (an+1

√
2)]

≤ eλan

1
2!

(
1

8an+1

)8 − 1
4!

(
1

8an+1

)16 ≤ e−2πλeλan+1

1
2!

(
1

8an+1

)8 − 1
4!

(
1

8an+1

)16 .

Moreover,

lim
n→∞

e−2πλeλan+1

1
2!

(
1

8an+1

)8 − 1
4!

(
1

8an+1

)16 = 0,

because
e−2πλeλan+1

1
2!

(
1

8an+1

)8 − 1
4!

(
1

8an+1

)16 =
e−2πλeλan+1

1
2

(
1

8an+1

)8[
1− 1

12

(
1

8an+1

)2]

and
e−2πλeλan+1

1
2

(
1

8an+1

)8 → 0, and also
1

1− 1
12

(
1

8an+1

)2 → 1 as n → +∞,

since an+1 → +∞. Now, using Proposition 1 we get the equality (11). In view of the
inequality (10) the proof of Theorem 5 is complete. �

The result we are going to establish now gives more information about the nature
of the limit (6). The question is the following: what can we say about that limit if we
replace in (6), eλx by an arbitrary function f , and

√
2 by an arbitrary real number?

The answer gives the following

Theorem 7. For every function f : R → R+, every a ∈ R and every ε > 0

∃α∈R∃xn→+∞ |a− α| < ε and lim
n→∞

f(xn)

2 + cos xn + cos (αxn)
= +∞.
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Proof. Let us fix f : R → R+, a ∈ R and ε > 0. We may assume that a /∈
Q, since the set R \ Q is dense in R. Now, we are going to construct a number
α satisfying the above conditions. That number α will be a value of an infinite
arithmetic continued fraction

〈a0, a1, . . .〉.
First, from the representation of a as the infinite continued fraction a = [b0; b1, . . .]
we choose s initial terms of the sequence in such a way the condition 1

s
< ε

2
to be

satisfied. Let us put an = bn for 0 ≤ n ≤ s. Further, having m (m ≥ s) initial
terms of the sequence (an), as am+1 we take an arbitrary odd number satisfying the
inequality

am+1 >
1

Qm

(
π

√
m

2f(Qmπ)
−Qm−1

)
.

We can do that, because the values Qm, Qm−1 are defined, since we already know m
initial terms of the representation of the number α. Then, by Lemma 1 we get

|α− a| ≤ |α− [b0; b1, . . . , bs0]|+ |[b0; b1, . . . , bs0 ]− a| < ε.

Let yk = π + 2kπ for k ∈ N. We have

f(yk)

2 + cos yk + cos (αyk)
=

f(yk)

1 + cos (αyk)
=

f(yk)

1− cos (αyk + π)
=

f(yk)

1− cos f 2π(αyk)
.

The following estimation obviously holds on the interval (0, π]

2

x2
≤ 1

1− cosx
.

Thus, because 0 < f 2π(αyk) ≤ π, we get

2f(yk)

[f 2π(αyk)]2
≤ f(yk)

1− cos f 2π(αyk)
.

Since beginning with the index s all the denominators an are odd, by Lemma 4 in
the sequence of the convergents (rm) there are infinitely many fractions with odd
numerators as well as odd denominators. Let (rml

) be a subsequence of the sequence
(rm) such that Qm1

> 1 and Pml
, Qml

are odd numbers. Then for every l ∈ N there
exists kl ∈ N such that

(12) πQml
= ykl.

The condition (12) is satisfied because the sequence (yk
π
) actually is the sequence of

all odd numbers greater than 1. Moreover, the sequences (ml) and (kl) are strictly
increasing sequences of positive integers. We have

f 2π(αykl) = |αQml
π − (2nl − 1)π| < π.

Because

|α− Pml

Qml

| < 1

Qml
Qml+1

,

so

|αQml
π − Pml

π| < π

Qml+1
≤ π.

Hence, because Pml
is odd and nl is uniquely determined, so, by the Lemma 6,

2nl − 1 = Pml
. We have

ml < 2f(ykl)

(
Qml+1

π

)2

,
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because

aml+1 >
1

Qml

(
π

√
ml

2f(Qml
π)

−Qml−1

)
.

Therefore

aml+1Qml
+Qml−1 > π

√
ml

2f(Qml
π)

,

so
Q2

ml+1 > π2 ml

2f(Qml
π)

,

and thus

2f(ykl)

(
Qml+1

π

)2

> ml.

Hence, we have

ml < 2f(ykl)

(
Qml+1

π

)2

≤ 2f(ykl)

[f 2π(αykl)]
2
≤ f(ykl)

1− cos f 2π(αykl)
=

f(ykl)

2 + cos ykl + cosαykl
.

Therefore

lim
l→∞

f(ykl)

2 + cos ykl + cosαykl
= +∞.

We put xl = ykl, for l ∈ N, what completes the proof. �

4. Some comments on Stepanov almost periodic functions

It is well-known that if f is a bounded µ-a.p. function, then it is Sp-a.p. function
for every p ≥ 1. Below we establish a necessary and sufficient condition for a µ-a.p.
function to be an S1-a.p.

Remark 1. Let us notice that if f is a locally integrable function, then applying
the absolute continuity of the integral, we get

∀u ∈ R ∀ε > 0 ∃δ > 0 ∀A ⊂ [u, u+ 1], µ(A) ≤ δ =⇒
ˆ

A

|f(t)| dt ≤ ε.

In what follows we will be interested in the case when this property is satisfied
uniformly in view of u ∈ R, that is when the following condition holds

(13) ∀ε > 0 ∃δ > 0 ∀u ∈ R ∀A ⊂ [u, u+ 1], µ(A) ≤ δ =⇒
ˆ

A

|f(t)| dt ≤ ε.

The condition (13) implies the local integrability, because it is enough to notice that
ˆ u+1

u

|f(t)| dt ≤ [
1

δ
] + 1,

where δ > 0 is chosen for ε = 1 and [1
δ
] denotes éntier of 1

δ
. Moreover, the above

inequality implies that

sup
u∈R

ˆ u+1

u

|f(t)| dt < +∞.

Remark 2. Let us notice that any bounded function measurable in the Lebesgue
sense, satisfies the condition (13), since

ˆ

A

|f(t)| dt ≤
ˆ

A

M dt = µ(A)M ≤ δM.

Applying absolute continuity of the Lebesgue integral we infer also that in the case
of a measurable periodic function it means that the function under consideration is
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locally integrable or, equivalently, if T > 0 is a period of such a function f , then the

condition (13) is equivalent to the inequality
´ T

0
|f(t)| dt < +∞.

For δ ∈ (0, 1] and f ∈ L1
loc
(R) put

ϕ(δ) = sup
u∈R

sup
A⊂[u,u+1],µ(A)≤δ

ˆ

A

|f(t)| dt.

Then the condition (13) is equivalent to the equality

(14) lim
δ→0+

ϕ(δ) = 0.

The following result can be found in the paper [17]. For convenience of the reader
we are going to state it along with the proof.

Theorem 8. A locally integrable µ-a.p. function f is S1-a.p. if and only if

lim
δ→0+

ϕ(δ) = 0.

Proof. Suppose that (14) is satisfied and fix ε > 0. Then there exists δ > 0 such
that ϕ(δ) ≤ ε

3
. Choose τ ∈ E{δ, ε

3
; f}. Then, for u ∈ R we have

ˆ u+1

u

|f(t+ τ)− f(t)| dt

≤
ˆ

Au

|f(t+ τ)| dt+
ˆ

Au

|f(t)| dt+
ˆ

A′

u

|f(t+ τ)− f(t)| dt ≤ ε,

where

Au =
{
t ∈ [u, u+ 1] : |f(t+ τ)− f(t)| ≥ ε

3

}

and

A′
u = [u, u+ 1] \ Au.

Therefore DS1(fτ , f) ≤ ε. Thus each (δ, ε
3
)-a.p. of f is (S1, ε)-a.p. of f . Since f is

µ-a.p., the set E{δ, ε
3
; f} is relatively dense what implies that f is S1-a.p.

Now, assume that f is S1-a.p. and that the condition (13) is not satisfied. Then
there exist ε > 0 and sets Aun

, n ∈ N, such that µ(Aun
) ≤ 1

n
, Aun

⊂ [un, un+1]
and
´

Aun
|f(t)| dt > ε. Since f is S1-a.p., from the sequence (un) one can extract a

subsequence (unk
) such that funk

→ f̃ in the topology defined by the metric DS1,

where fun
(x) = f(x + un). Without loss of a generality let us assume that fun

→ f̃
in that topology. Let us define An = Aun

− un for n ∈ N. Then An ⊂ [0, 1] and
´

An
|fun

(t)| dt > ε. Moreover, there exists an index n ∈ N such that

ˆ 1

0

|fun
(t)− f̃(t)| dt < ε

2
and

ˆ

An

|f̃(t)| dt < ε

2
.

Then, we have

ε

2
>

ˆ 1

0

|fun
(t)− f̃(t)| dt ≥

ˆ

An

|fun
(t)− f̃(t)| dt ≥

ˆ

An

||fun
(t)| − |f̃(t)|| dt

≥
ˆ

An

|fun
(t)| − |f̃(t)| dt ≥ ε−

ˆ

An

|f̃(t)| dt > ε

2
,

what completes the proof. �
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Now, we are going to investigate the convolution of S1-a.p. functions with the
function gλ : R → R (λ < 0) given by the formula

gλ(x) =

{
eλx, for x ≥ 0,

0, for x < 0.

Let us notice that in such a case we have

(f ∗ gλ)(x) =
ˆ +∞

−∞
f(t)gλ(x− t) dt =

ˆ x

−∞
f(t)eλ(x−t) dt = eλx

ˆ x

−∞
f(t)e−λt dt.

Remark 3. Let us notice that for a locally integrable function the existence of
the convolution (for every x ∈ R) of a locally integrable function f with the function
gλ is equivalent to the condition

∣∣∣∣
ˆ 0

−∞
f(t)e−λt dt

∣∣∣∣ < +∞.

Moreover, by the above equality and the fact that fgλ is also locally integrable, it
follows that the convolution under consideration is a continuous function.

The result we are going to prove now is a useful test which allows to check if the
convolution of a given S1-a.p. with the function gλ exists, as well as if it is a µ-a.p.
function.

Theorem 9. If a function µ-a.p. f satisfies the condition (13), then the convo-

lution f ∗ gλ exists for every x ∈ R and it is a uniformly almost periodic function.

Proof. First, we prove that the convolution f ∗ gλ exists, so we check that
∣∣∣∣
ˆ 0

−∞
f(t)e−λt dt

∣∣∣∣ < +∞.

We have
∣∣∣∣
ˆ 0

−∞
f(t)e−λt dt

∣∣∣∣ ≤
ˆ 0

−∞
|f(t)|e−λt dt =

+∞∑

−n=0

ˆ n

n−1

|f(t)|e−λt dt

≤
+∞∑

−n=0

e−λn

ˆ n

n−1

|f(t)| dt < +∞,

because supu∈R
´ u+1

u
|f(t)| dt < +∞ and the series

∑+∞
−n=0 e

−λn is convergent.
We are going to establish now that f ∗gλ is a uniformly almost periodic function.

Fix ε > 0. Since f satisfies the condition (13), there exists δ > 0 such that

ϕ(δ) ≤ ε

3
∑+∞

−m=−1 e
−λm

.

Moreover, let

η′ =
ε

3
∑+∞

−m=−1 e
−λm

and τ ∈ E{δ, η′; f}.

For u ∈ R let us define the following sets

Au = {t ∈ [u, u+ 1] : |f(t+ τ)− f(t)| ≥ η′} and A′
u = [u, u+ 1] \ Au.
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Then for x ∈ R we have

|(f ∗ gλ)(x+ τ)− (f ∗ gλ)(x)| = |eλ(x+τ)

ˆ x+τ

−∞
f(t)e−λt dt− eλx

ˆ x

−∞
f(t)e−λt dt|

≤ eλx
ˆ x

−∞
|f(t+ τ)− f(t)|e−λt dt

≤ eλ[x]
ˆ [x]+1

−∞
|f(t+ τ)− f(t)|e−λt dt

= eλ[x]
+∞∑

−n=−[x]

ˆ n+1

n

|f(t+ τ)− f(t)|e−λt dt

= eλ[x]
+∞∑

−n=−[x]

e−λ(n+1)

ˆ n+1

n

|f(t+ τ)− f(t)| dt

= eλ[x]
+∞∑

−n=−[x]

e−λ(n+1)

(
ˆ

An+τ

|f(t)|dt+
ˆ

An

|f(t)| dt

+

ˆ

A′

n

|f(t+ τ)− f(t)| dt
)

≤ ε.

It means that E{δ, η′; f} ⊂ E{ε; f ∗ gλ}. Obviously, if the convolution f ∗ gλ exists,
then it is a continuous function. Hence f ∗gλ is a uniformly almost periodic function.

�

The construction which we are going to present in the next example will be used
in a few subsequent examples. In this example we will need the following simple

Lemma 8. Let f : (a, b) → [0,+∞) be a nonincreasing function. Moreover, let

U ⊂ (a, b) any set which is measurable in the Lebesgue sense and such that µ(U) ≤ δ,
where 0 < δ < b− a. Then

ˆ

U

f(t) dt ≤
ˆ

(0,δ)

f(t) dt.

Example 1. Let us define the sets

An = 2 · 3nZ− 3n; n ∈ N

and the sequence of functions (fn):

fn(x) =

{
1√
x−z

, for x ∈ [z + 1
n+1

, z + 1
n
), z ∈ An,

0, otherwise,

for n ∈ N. Every function fn is well defined, since for z 6= z′, the sets [z+ 1
n+1

, z+ 1
n
)

and [z′ + 1
n+1

, z′ + 1
n
) are disjoint. Let

f =
∞∑

n=1

fn.

The function f is well defined, since for every interval [z, z + 1], z ∈ Z only finitely
many functions fn are not equal zero on this interval. Indeed, let us fix z ∈ Z. Then
there exists an index n0 ∈ N such that

−3n0 < z < z + 1 < 3n0.
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Then z, z + 1 /∈ An0
. We have An+1 ⊂ An for n ∈ N, because

2 · 3n+1z − 3n+1 = 2 · 3n(3z − 1)− 3n,

for z ∈ Z. Thus z, z + 1 /∈ An for n ≥ n0. Moreover, if for some n ∈ N, z ∈ An,
then there exists m ∈ N such that z ∈ Am \ Am+1 and if [u, u + 1] ∩ [z, z + 1] 6= ∅
for u ∈ R and z ∈ An, then for x ∈ [u, u+ 1] \ [z, z + 1] we have f(x) = 0. Now, we
establish that the sequence of function (gk), defined by the formulae

gk =

k∑

n=1

fn

is D-convergent to the function f .
Fix ε, η > 0. Then for every z ∈ Z, the functions f and gk are equal on the

interval [z + 1
k+1

, z + 1). For u ∈ R w have

µ({x ∈ [u, u+ 1] : f(x) = gk(x)}) ≥ 1− 1

k + 1
.

Hence, we get

sup
u∈R

µ({x ∈ [u, u+ 1] : |f(x)− gk(x)| < η}) ≥ 1− 1

k + 1
,

so

sup
u∈R

µ({x ∈ [u, u+ 1] : |f(x)− gk(x)| ≥ η}) ≤ 1

k + 1
.

Hence, for sufficiently large k we have D(η; f, gk) ≤ ε, what means that the sequence
(gk) is D-convergent to the function f . All the functions gk are measurable in the
Lebesgue sense as well as 2 · 3k-periodic. Hence gk is µ-a.p. for any k ∈ N and f is
µ-a.p. as the limit of the D-convergent sequence of µ-a.p. functions.

Now, we are going to prove that f satisfies the condition (13). Fix ε > 0.

Let us take arbitrary u ∈ R and A ⊂ [u, u + 1] such that µ(A) ≤ ε2

4
. Then, if

[u, u+ 1] ∩ [z, z + 1] 6= ∅ for some z ∈ An \ An+1, applying Lemma 8, we get
ˆ

A

f(t) dt =

ˆ

A∩(z,z+1)

f(t) dt ≤
ˆ

A∩(z,z+1)

1√
t− z

dt

≤
ˆ

(z,z+ ε2

4
)

1√
t− z

dt =

ˆ

(0, ε
2

4
)

1√
t
dt = ε.

Next, if [u, u+ 1] ∩ [z, z + 1] = ∅ for every z ∈ An and n ∈ N, then we have
ˆ

A

f(t) dt = 0.

In both cases
ˆ

A

f(t) dt ≤ ε.

Hence it is clear that the condition (13) holds and thus f ∗ gλ is a uniformly almost
periodic function.

Remark 4. Let us notice that the conclusion in Theorem 9 is stronger than in
Bruno–Pankov’s theorem proved in [6] (actually they proved that in this situation f ∗
gλ is an Sp-a.p. function). However, as the following example shows, the convolution
of an S1-a.p. function with a function integrable in the Lebesgue sense, does not have
to be uniformly almost periodic.
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Example 2. Let us reconsider the function f from the previous example. More-
over, let

g(x) =

{
1√
−x

, for x ∈ [−1, 0),

0, for x ∈ R \ [0, 1),
Obviously g ∈ L1(R). The convolution of f and g is not uniformly almost periodic,
because for z ∈ An \ An+1 we have

(f ∗ g)(z) =
ˆ +∞

−∞
f(z − t)g(t) dt =

ˆ 0

−1

f(z − t)g(t) dt =

ˆ z+1

z

f(t)g(z − t) dt

=

ˆ z+1

z+ 1

n+1

f(t)g(z − t) dt =

ˆ z+1

z+ 1

n+1

1

t− z
dt =

ˆ 1

1

n+1

1

t
dt = ln (n + 1),

because
n∑

i=1

[
z +

1

i+ 1
, z +

1

i

)
=

[
z +

1

n + 1
, z + 1

)
.

Hence this convolution is not a bounded function and thus it is not uniformly almost
periodic. However, by the Bruno–Pankov theorem it is an S1-a.p. function.

5. Convolutions of µ-a.p. functions

At the beginning of this section we provide some comments concerning the con-
volution of a µ-a.p. function with a function belonging to the space L1(R). The first
example will show that the convolution of a µ-a.p. function with a function integrable
in the Lebesgue sense does not have to exists.

Example 3. Let f be a periodic extension of the function

h(x) =

{
1
x
, for x ∈ (0, 1],

0, for x = 0,

on the set R. Let g = χ[0,1] be the characteristic function of the interval [0, 1]. Then
for every x ∈ R we have

(f ∗ g)(x) =
ˆ +∞

−∞
f(x− t)g(t) dt =

ˆ x

x−1

f(t) dt =

ˆ 1

0

1

t
dt = +∞,

so the convolution f ∗ g does not exists.

Remark 5. If f is a measurable in the Lebesgue sense period function and
g ∈ L1(R), then f ∗ g is periodic and therefore it is also a µ-a.p. function, if it exists.
Indeed, if T > 0 is a period of the function f , then for almost all x ∈ R we have

(f ∗ g)(x+ T ) =

ˆ +∞

−∞
f(x+ T − t)g(t) dt =

ˆ +∞

−∞
f(x− t)g(t) dt = (f ∗ g)(x).

Remark 6. Let us notice that a necessary condition for the existence of the
convolution f ∗χ[0,1] is local integrability of the function f . Indeed, if for some u ∈ R

there were
ˆ u+ 1

2

u

|f(t)| dt = +∞,

then
ˆ u+ 1

2

u

f+(t) dt = +∞ or

ˆ u+ 1

2

u

f−(t) dt = +∞.
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Assume that the first equality is satisfied (in the second case the reasoning is similar).
Then for x ∈ [u+ 1

2
, u+ 1] we have

ˆ x

x−1

f+(t) dt ≥
ˆ u+ 1

2

u

f+(t) dt = +∞.

Therefore

(f ∗ χ[0,1])(x) =

ˆ x

x−1

f(t) dt

is neither finite or defined for x ∈ [u + 1
2
, u + 1]. Thus the convolution f ∗ gλ does

not exists. Therefore, in the rest of the paper we are going to consider only locally
integrable µ-a.p. functions.

The next example shows that the existence of the convolution of a µ-a.p. function
with a function g ∈ L1(R) does not have to imply that it is µ-a.p.

Example 4. Let

An := 2 · 3nZ− 3n; n ∈ N,

and let us define the sequence of functions (fn), where

fn(x) =

{
1

x−z
, for x ∈ [z + 1

n+1
, z + 1

n
), z ∈ An,

0, otherwise,

for n ∈ N. The same arguments as in Example 1 establish that f is µ-a.p. Moreover, f
is locally integrable in the Lebesgue sense, because on every interval [u, u+1], u ∈ R

only finitely many functions fn are not identically equal to zero.
Let g = χ[0,1]. Then the convolution f ∗ g exists for every x ∈ R, however, it is

not a µ-a.p. function. Indeed, for x ∈ R we have

(f ∗ g)(x) =
ˆ +∞

−∞
f(x− t)g(t) dt =

ˆ 1

0

f(x− t) dt =

ˆ x

x−1

f(t) dt.

Let z ∈ An \ An+1. Then

(15)

ˆ z+ 1

2

z

f(t) dt =

ˆ z+ 1

2

z+ 1

n+1

1

t− z
dt =

ˆ 1

2

1

n+1

1

t
dt = ln

n+ 1

2
.

For x ∈ [z + 1
2
, z + 1] we have

(f ∗ g)(x) =
ˆ x

x−1

f(t) dt ≥
ˆ z+ 1

2

z

f(t) dt = ln
n+ 1

2
.

Hence, for every N > 0 we get

sup
z∈Z

µ({x ∈ [z, z + 1] : (f ∗ g)(x) ≥ N}) ≥ 1

2
.

It is well known that if w is a µ-a.p. function, then it satisfies the following condition

sup
u∈R

µ({x ∈ [u, u+ 1] : |w(x)| ≥ N}) → 0 as N → ∞,

so f ∗ g /∈ X̃ .

Now, we are going to investigate the convolution of µ-a.p. functions with the
function gλ : R → R (λ < 0).
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Remark 7. Similarly as in the case of the characteristic function of the interval
[0, 1], it can be proved that a necessary condition for the existence of the convolution
of a function f with the function gλ is local integrability of the function f .

The result below gives a sufficient condition under which, in particular, the con-
volution of a µ-a.p. function with the function gλ is not a µ-a.p. function.

Theorem 10. Let f be a nonnegative locally integrable function. If the convo-

lution f ∗ gλ exists and

(16) sup
u∈R

ˆ u+1

u

f(t) dt = +∞,

then it is not a µ-a.p. function.

Proof. Since the function f satisfies the condition (16), there exists a sequence
(un) such that

ˆ un+1

un

f(t) dt ≥ n.

For x ∈ [0, 1] we have

(f ∗ g)(un + 1 + x) = eλ(un+1+x)

ˆ un+1+x

−∞
f(t)e−λt dt ≥ eλ(un+2)

ˆ un+1

−∞
f(t)e−λt dt

≥ eλ(un+2)

ˆ un+1

un

f(t)e−λt dt ≥ eλ(un+2−un)

ˆ un+1

un

f(t) dt ≥ e2λn.

Thus for every N > 0 we have

sup
u∈R

µ({x ∈ [u, u+ 1] : (f ∗ gλ)(x) ≥ N}) = 1 9 0, as N → +∞.

Therefore f ∗ gλ /∈ X̃ and hence it is not a µ-a.p. function. �

Now, we are going to consider a few nontrivial examples.

Example 5. Let us reconsider the function f defined in Example 2. We are going
to prove now that the convolution f ∗gλ exists. Let us consider z ∈ Am \Am+1. Then

ˆ z+1

z

fn(t)e
−λt dt ≤ e−λ(z+1)

ˆ z+ 1

m

z+ 1

m+1

1

t− z
dt = e−λ(z+1)

ˆ 1

m

1

m+1

1

t
dt

= e−λ(z+1) ln
m+ 1

m
≤ e−λ(z+1) ln 2.

From the above inequality we infer that f is locally integrable, because on every
interval [z, z + 1], z ∈ Z, only finitely many functions fn are not identically equal
zero. Now, we are going to estimate

ˆ 0

−∞
fn(t)e

−λt dt.

The support of every function fn for n ∈ N is contained in the set
⋃

z∈An
[z, z + 1].

Since we are interested in x ≤ 0, we consider z ∈ An such that z + 1 ≤ 0. Such
z can be arrange in a sequence (zk), which terms are defined by the formula zk =



830 Dariusz Bugajewski and Adam Nawrocki

2 · 3n(1− k)− 3n, k = 1, 2, 3, . . . . Then

ˆ 0

−∞
fn(t)e

−λt dt =
+∞∑

k=1

ˆ zk+1

zk

fn(t)e
−λt dt ≤ ln 2

+∞∑

k=1

e−λ(zk+1)

= e−λ ln 2e−λ3n
+∞∑

k=1

e2kλ3
n

= e−λ ln 2e−λ3n e2λ3
n

1− e2λ3n

≤ e−λ ln 2eλ3
n 1

1− e6λ
.

In view of Beppo–Levy’s theorem, we have

ˆ 0

−∞
f(t)e−λt dt =

+∞∑

n=1

ˆ 0

−∞
fn(t)e

−λt dt ≤ e−λ ln 2

1− e6λ

+∞∑

n=1

eλ3
n

< +∞.

Hence the convolution f ∗ gλ exists for all x ∈ R. The condition (16) follows from
(15). Thus this convolution is not a µ-a.p. function.

In the next example we are going to investigate the convolution of the classical
µ-a.p. function defined in (5) with the function gλ.

Example 6. Let f be the function defined in (5). We prove that f ∗ gλ exists.
For that we establish that

ˆ a

−∞

e−λt

2 + cos t + cos (
√
2t)

dt < +∞.

for some a ∈ R. From the proof of Theorem 5 we know that

eλx

2 + cosx+ cos (
√
2x)

≤ e2πλe−an+1

1
2!

(
1

8an+1

)8 − 1
4!

(
1

8an+1

)16 ,

for x ∈ [an, an+1], n ∈ N. Moreover, by Proposition 1 (iii) we know that an+1 − an <
2π. Thus an+1 < x+ 2π and consequently

eλx

2 + cosx+ cos (
√
2x)

≤ eλx

1
2!

(
1

8(x+2π)

)8 − 1
4!

(
1

8(x+2π)

)16 for x ≥ a1.

Now, it is enough to notice that the integral

ˆ +∞

a1

eλt

1
2!

(
1

8(t+2π)

)8 − 1
4!

(
1

8(t+2π)

)16 dt

is convergent. Indeed, because

1

2!

(
1

8(x+ 2π)

)8

− 1

4!

(
1

8(x+ 2π)

)16

=
1

2

(
1

8(x+ 2π)

)8
[
1− 1

12

(
1

8(x+ 2π)

)8
]
,
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so
ˆ +∞

a1

eλt

1
2!

(
1

8(t+2π)

)8
− 1

4!

(
1

8(t+2π)

)16 dt =
ˆ +∞

a1

eλt

1
2

(
1

8(t+2π)

)8 [
1− 1

12

(
1

8(t+2π)

)8] dt

≤
ˆ +∞

a1

eλt

1
2

(
1

8(t+2π)

)8 [
1− 1

12

(
1

8(a1+2π)

)8] dt

=
1

1− 1
12

(
1

8(a1+2π)

)8
ˆ +∞

a1

eλt

1
2

(
1

8(t+2π)

)8 dt

=
e−2λπ

1− 1
12

(
1

8(a1+2π)

)8
ˆ +∞

a1+2π

eλt

1
2

(
1
8t

)8 dt.

The integral
ˆ +∞

a1+2π

eλt

1
2

(
1
8t

)8 dt

is convergent and thus the integral
ˆ +∞

a1

eλt

2 + cos t + cos (
√
2t)

dt

is convergent. Obviously
ˆ +∞

a1

eλt

2 + cos t + cos (
√
2t)

dt =

ˆ −a1

−∞

e−λt

2 + cos t+ cos (
√
2t)

dt,

so the convolution f ∗ gλ exists for x ∈ R, because f is locally integrable as a
continuous function.

A straightforward reasoning shows that the following estimation holds on the
interval [0, 2π]:

1 + cosx ≤ |x− π|.
Similarly one can check that on the interval [0, 2π/

√
2] the following estimation holds

1 + cos (x
√
2) ≤ |x

√
2− π|.

Let f1, f2 : R → R be functions of a period 2π and 2π√
2
, respectively, where f1(x) =

|x − π| for x ∈ [0, 2π] and f2(x) = |x
√
2 − π| for x ∈ [0, 2π√

2
]. Then for every x ∈ R

we have 1 + cosx ≤ f1(x) and 1 + cos x
√
2 ≤ f2(x). The function f1 is equal to

zero on the set {π + 2aπ : a ∈ Z}, while the function f2 is equal to zero on the set
{ 1√

2
(π + 2bπ) : b ∈ Z}. One can easily check that the set {a + b 1√

2
: a, b ∈ Z} is a

dense group in R, therefore the set {2aπ + 2bπ 1√
2
: a, b ∈ Z} is dense in R. Hence

for every η > 0 there exist a, b ∈ Z such that

0 < 2aπ + 2bπ
1√
2
+

π√
2
− π < η.

Putting a′ = −a, we have

0 < 2bπ
1√
2
+

π√
2
− 2a′π − π < η.
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Thus there exists a sequence (an) and a sequence of positive numbers (εn) such
that εn → 0 as n → +∞ (εn ≤ π − 1), an ∈ {π + 2aπ : a ∈ Z} and an + εn ∈
{ 1√

2
(π + 2bπ) : b ∈ Z}. On the interval [an + εn, an + εn + 1] we have f1(x) = x− an

and f2(x) = x
√
2−

√
2(an + εn). Hence

ˆ an+εn+1

an+εn

1

f1(t) + f2(t)
dt =

ˆ an+εn+1

an+εn

1

t− an +
√
2(t− an − εn)

dt

=

ˆ εn+1

εn

1

y +
√
2(y − εn)

dy =
1

1 +
√
2

ˆ εn+1

εn

1

y −
√
2

1+
√
2
εn

dy

=
1

1 +
√
2

(
ln

∣∣∣∣∣εn + 1−
√
2

1 +
√
2
εn

∣∣∣∣∣− ln

∣∣∣∣∣εn −
√
2

1 +
√
2
εn

∣∣∣∣∣

)
→ +∞ as n → ∞.

Therefore, because
ˆ an+εn+1

an+εn

1

f1(t) + f2(t)
dt ≤

ˆ an+εn+1

an+εn

1

2 + cos t+ cos (t
√
2)

dt,

so the function f satisfies the condition (16). Thus the convolution f ∗ gλ is not a
µ-a.p. function.

It appears that slightly modifying the function from Example 6 one can get the
opposite conclusion.

Example 7. Let the function f : R → R be defined by the formula

f(x) =
1

4

√
2 + cos x+ cos (x

√
2)
.

We establish that f is µ-a.p. Let us notice that

g(x) =
4

√
2 + cosx+ cos (x

√
2), for x ∈ R,

is uniformly almost periodic as the composition of a B-a.p. function with a uniformly
continuous function (x → 4

√
x is obviously uniformly continuous on the interval [0, 4]).

The function g satisfies the condition of Theorem 1. Moreover, the function 4
√
g

satisfies the condition of Theorem 1, because

sup
u∈R

µ({x ∈ [u, u+ 1] : | 4
√
g(x)| ≤ α}) = sup

u∈R
µ({x ∈ [u, u+ 1] : |g(x)| ≤ α4}).

Now, we are going to establish, that the function f satisfies the condition (13). We
have the following estimation

1 + cos x ≤ 2 + cosx+ cos (x
√
2) for x ∈ R.

Define

h(x) =

{
1

4
√
1+cos x

, for x ∈ R such that 1 + cos x > 0,

0, for x ∈ R such that 1 + cos x = 0.

Then
1

4

√
2 + cosx+ cos (x

√
2)

≤ h(x)
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for almost all x ∈ R. Moreover, the function h is 2π-periodic, so to prove that the
function h satisfies the condition (13), it is enough to show that

ˆ 2π

0

h(t) dt < +∞.

Using the estimation

1− cosx ≥ x2

2
− x4

24

for x ∈ (0, 1), we have

ˆ 2π

0

1
4
√
1 + cos t

dt =

ˆ π

−π

1
4
√
1− cos t

dt = 2

ˆ π

0

1
4
√
1− cos t

dt

= 2

ˆ 1

0

1
4
√
1− cos t

dt+ 2

ˆ π

1

1
4
√
1− cos t

dt

≤ 2

ˆ 1

0

1

4

√
t2

2
− t4

24

dt+ 2

ˆ π

1

1
4
√
1− cos 1

dt

≤ 2
1

4

√
1
2
− 1

24

ˆ 1

0

1√
t
dt+ 2

ˆ π

1

1
4
√
1− cos 1

dt < +∞.

Hence the function h satisfies the condition (13). Thus the function f satisfies the
condition (13). By Theorem 9, the convolution f ∗ gλ is a µ-a.p. function.

At the end of this section we provide the example of a continuous µ-a.p. function
the convolution of which with gλ does not exist.

Example 8. Let An = 2 · 3nZ − 3n for n ∈ N. To simplify notation let us put
an = n3e−λ3n for n ∈ N. Define the sequence of functions

fn(x) =





anx− an(z +
1
2
− 1

n+1
) for x ∈ [z + 1

2
− 1

n+1
, z + 1

2
), z ∈ An,

−anx+ an(z +
1
2
+ 1

n+1
) for x ∈ [z + 1

2
, z + 1

2
+ 1

n+1
), z ∈ An,

0 for the other x ∈ R,

for n ∈ N. Moreover, let

f =
+∞∑

n=1

fn.

A similar reasoning as in Example 1 establishes that f is µ-a.p. Because every
function fn is continuous and on every bounded interval only finitely many functions
fn are not identically equal to zero, so the function f is continuous. Then f is a
continuous µ-a.p. function for which we have

ˆ 0

−∞
f(x)e−λx dx ≥

ˆ −3n+1

−3n
f(x)e−λx dx ≥

ˆ −3n+1

−3n
fn(x)e

−λx dx

≥ e−λ(−3n+1)

ˆ −3n+1

−3n
fn(x) dx =

n3e−λ

(n+ 1)2
,

because −3n ∈ An for n ∈ N. Thus the convolution f ∗ gλ does not exist.
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6. Final remarks about linear differential equations

In this section we are going to deal with µ-a.p. solutions to the linear differential
equation of the form

(17) y′(x) = λy(x) + f(x), x ∈ R.

As follows from the lemma below, it does make sense for that to examine the
function

(18) y(x) = eλx
ˆ x

−∞
f(t)e−λtdt, x ∈ R.

Lemma 9. Let us consider the equation (17), where λ < 0 and f ∈ C(R). If

the integral
´ 0

−∞ f(t)e−λtdt is well defined and finite, and y0 is µ-a.p. solution to this

equation, then

y0(x) = eλx
ˆ x

−∞
f(t)e−λt dt.

Proof. Because all of the solutions to the above equations are of the shape

y(x) = ceλx + eλx
ˆ x

0

f(t)e−λt dt,

so there exists c0 ∈ R such that

y0(x) = c0e
λx + eλx

ˆ x

0

f(t)e−λt dt.

Then, since y0 is µ-a.p. solution to the equation under consideration, there exists
a sequence (τn) such that τn → −∞, as n → +∞ and a sequence (xn) such that
xn ∈ [0, 1] for n ∈ N and the following inequality holds
∣∣∣∣c0e

λxneλτn + eλ(xn+τn)

ˆ xn+τn

0

f(t)e−λt dt− c0e
λxn − eλxn

ˆ xn

0

f(t)e−λt dt

∣∣∣∣ < 1.

Therefore∣∣∣∣c0e
λτn + eλτn

ˆ xn+τn

0

f(t)e−λt dt

∣∣∣∣ < e−λ + |c0|+
∣∣∣∣
ˆ xn

0

f(t)e−λt dt

∣∣∣∣ ≤ M

for some constant M > 0. Hence
∣∣∣∣c0 +

ˆ xn+τn

0

f(t)e−λt dt

∣∣∣∣ < Me−λτn → 0 as n → +∞,

and thus

c0 −
ˆ 0

−∞
f(t)e−λt dt = 0. �

Our considerations included in two previous sections lead to the following result.

Theorem 11. Suppose that λ < 0 and f : R → R is µ-a.p. and continuous.

Then one of the following cases holds:

(i) the function (18) is a µ-a.p. to the equation (17);
(ii) the function (18) is a solution to the equation (17), but it is not µ-a.p. func-

tion;

(iii) the function (18) is not defined.
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Proof. The case (i) follows from Theorem 9. Actually, under the assumptions
of this theorem, the function (18) is a uniformly almost periodic solution to the
equation (17).

The case (ii) follows from Example 6, while the case (iii) follows from Example 8.
�

Remark 8. Let us add in connection with item (i) of the above theorem that
Stepanov-like almost automorphic solutions to more general equations than the equa-
tion (17) were investigated for example in the papers [10] and [15].

Acknowledgements. We would like to thank the referee for all his/her comments.
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