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Abstract. We calculate the norms of the operators connected to the action of the Beurling–

Ahlfors transform on radial function subspaces introduced by Bañuelos and Janakiraman. In par-

ticular, we find the norm of the Beurling–Ahlfors transform acting on radial functions for p > 2,

extending the results obtained by Bañuelos and Janakiraman, Bañuelos and Osȩkowski, and Volberg

for 1 < p ≤ 2.

1. Introduction and main results

The Beurling–Ahlfors transform is a singular operator defined by

Bf(z) = −
1

π
p. v.

ˆ

C

f(w)

(z − w)2
dw,

where the integration is with respect to the Lebesgue measure on the complex
plane C. It plays an important role in the study of quasiconformal mappings and
partial differential equations (see e.g. [1, 13]).

A longstanding conjecture of Iwaniec [13] states that for 1 < p < ∞,

‖B‖Lp(C)→Lp(C) = p∗ − 1,

where p∗ = max{p, p
p−1

}. While the lower bound ‖B‖Lp(C)→Lp(C) ≥ p∗−1 was already

known to Lehto [14], the question about the opposite estimate remains open. Most
results rely on the ideas of Burkholder and the Bellman function technique [7, 19, 4,
11, 2, 8], with the current best being ‖B‖Lp(C)→Lp(C) ≤ 1.575(p∗−1) due to Bañuelos
and Janakiraman [2] (see also [8] for an asymptotically better estimate as p → ∞).

However, some sharp results are known for the Beurling–Ahlfors transform re-
stricted to the class of radial functions [3, 12, 5, 16, 18, 6]. In this case we have the
representation (see [3])

BF (z) =
z̄

z

(

f(|z|2)−H0f(|z|
2)
)

,

where f : [0,∞) → C is an integrable function, F (z) = f(|z|2) is the associated radial
function, and H0 is the Hardy operator defined by the formula

H0f(t) =
1

t

ˆ t

0

f(s) ds.

Bañuelos and Janakiraman [3, Theorem 4.1] (and later, using other techniques,
Bañuelos and Osȩkowski [5, Theorem 5.1], Volberg [18]) proved that for 1 < p ≤ 2 and
any radial function F ∈ Lp(C), we have ‖BF‖p ≤

1
p−1

‖F‖p. The constant 1/(p− 1)
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is the best possible and coincides with the constant from Iwaniec’s conjecture. As for
p > 2, Bañuelos and Osȩkowski [5] observed that ‖BF‖p ≤

2p
p−1

‖F‖p. This bound is

asymptotically sharp (and does not agree with the behavior conjectured in the case
of all, not only radial, functions).

In their paper, Bañuelos and Janakiraman [3] went a step further and considered
for m ∈ N the operators

(I − (1 +m)Hm)f(t) = f(t)−
1 +m

t1+m/2

ˆ t

0

f(s)sm/2 ds, f ∈ L1
loc
([0,∞)),

which correspond to the action of the Beurling–Ahlfors transform on the radial func-
tion subspaces

{F ∈ Lp(C) : F (reiθ) = f(r)e−imθ}.

They proved [3, Section 5] that

‖Hm‖Lp([0,∞))→Lp([0,∞)) =
1

m/2 + (p− 1)/p
, 1 < p < ∞,

(with the extremal family fε(t) = t−1/p+ε1{t∈(0,1)}), and conjectured [3, Conjecture 1]
that the Lp-norm of the operator I − (1 +m)Hm is equal to

(1 +m)‖Hm‖Lp([0,∞))→Lp([0,∞)) − 1 =
m/2 + 1/p

m/2 + (p− 1)/p

for 1 < p < 2. For p > 2, this number is smaller than one, and cannot be a candidate
for the norm of I−(1+m)Hm, since the operator (1+m)Hm : Lp([0,∞)) → Lp([0,∞))
is not invertible (see Remark 3.4).

In fact, the formula

Hmf(t) =
1

t1+m/2

ˆ t

0

f(s)sm/2 ds

defines a bounded operator on the space Lp([0,∞)) (1 < p < ∞) not only for natural
m, but for all m > −2(p− 1)/p (see Propositon 3.1). The main goal of this article is
to find the Lp-norm of the operator I − λHm for 1 < p < ∞, m > −2(p− 1)/p, and
λ ∈ R. The case λ = 1+m, m ∈ N, corresponds to the action of the Beurling–Ahlfors
transform on radial function subspaces considered by Bañuelos and Janakiraman, but
it turns out that Conjecture 1 of [3] does not hold.

For the formulation of the main result we denote gp,m = m/2 + (p − 1)/p for
m > −2(p− 1)/p and 1 < p < ∞.

Theorem 1.1. If 1 < p < ∞, m > −2(p− 1)/p, and λ ∈ R, then

(1.1) ‖f − λHmf‖p ≤ Cp,m,λ‖f‖p, f ∈ Lp([0,∞)),

where

Cp
p,m,λ = sup

{

(β − gp,m)|α− λ|p + (gp,m − α)|β − λ|p

(β − gp,m)|α|p + (gp,m − α)|β|p
: α < gp,m < β

}

.

The inequality is sharp. Moreover, the constant Cp
p,m=0,λ=1 is equal to

(1.2) Cp
p := sup

α≤(p−1)/p

|α− 1|p

p(1− α)− 1 + |α|p
=

{

1
(p−1)p

if 1 < p ≤ 2,
(1+|αp|)p−2

p−1
if p > 2,

where, for 2 < p < ∞, αp ∈ R is the unique negative solution to the equation
(p− 1)αp + 2− p = |αp|

p−2αp.
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Remark 1.2. Even for 1 < p < 2, the norm of the operator I − (1 +m)Hm is
sometimes greater than the conjectured value (1+m)g−1

p,m−1. E.g. for p = 3/2, m = 1,
λ = 2, we have Cp

p,m,λ ≈ 1.81 (attained in the neighbourhood of (α, β) = (0.4, 5.7)),

whereas ((1 +m)g−1
p,m − 1)p = (7/5)3/2 ≈ 1.66. In fact, it turns out that for positive

integer m (and λ = 1+m) we always have Cp,m,λ > (1+m)g−1
p,m−1 (see Remark 3.8).

On the other hand, if 1 < p < 2, λ = 1 + m, and m is small, then we can have
Cp,m,λ = (1 +m)g−1

p,m − 1 (e.g. for p = 3/2, m = 1/4, λ = 5/4).

Remark 1.3. Apart from the case m = 0, λ = 1, there are simple formulas for
Cp,m,λ if λ ≤ 0 or p = 2 (see Section 3.3). Note also that Cp,m,λ ≥ max{|λg−1

p,m−1|, 1}
(see Lemma 3.3). Moreover, a sufficient and necessary condition for Cp,m,λ = |λg−1

p,m−
1| to hold can be formulated (see the proof of Proposition 3.7 and Section 3.3).

Remark 1.4. Throughout the paper we work with real-valued functions, but
Theorem 1.1 also holds (with the same constant) for complex-valued functions (see
Lemma 3.9).

The results of Theorem 1.1 are new already for p > 2, m = 0, and λ = 1, and give
immediately the following extension of results obtained by other authors [3, 5, 18].

Corollary 1.5. For 1 < p < ∞ and any complex-valued radial function F ∈
Lp(C), we have the sharp inequality ‖BF‖p ≤ Cp‖F‖p.

The article is organized as follows. A complete and purely analytical proof of
inequality (1.1) is contained in Section 3. Section 2 is designed to show a bigger
picture. We prove a maximal martingale inequality connected to the special case
m = 0 and λ = 1. We also identify the constant Cp,0,1 and try to explain the main
ideas behind the construction of the special functions used in the proofs.

2. Backstage: the martingale inequality

2.1. Motivation and results. For a martingale f = (fn)
∞
n=0 denote its one-

sided maximal function by f ∗
n = sup0≤j≤n fj . We also use the notation f ∗

∞ = sup0≤n fn
and f∞ = limn→∞ fn (if the limit exist a.s.).

Recall that the Lp-norm, 1 < p < ∞, of the Hardy operator H0 is equal to
p/(p−1). This number is also the best constant in Doob’s inequality: for a martingale
(fk)

n
k=0 we have ‖f ∗

n‖p ≤ p
p−1

‖fn‖p. It turns out that the martingale inequality can

be used to derive the estimate ‖H0f‖p ≤
p

p−1
‖f‖p for nonnegative and nonincreasing

functions [10]; a simple rearrangement argument gives then ‖H0f‖p ≤ p
p−1

‖f‖p for

all real-valued f ∈ Lp([0,∞)).
We consider the following maximal inequality.

Theorem 2.1. For any martingale (fn)
∞
n=0, we have

(2.1) ‖fn − f ∗
n‖p ≤ Cp‖fn‖p, 1 < p < ∞, n ≥ 0,

where Cp is defined in (1.2). The inequality is sharp.

The quantity ‖fn − f ∗
n‖p seems natural to study, but the main motivation is

the aforementioned link to the Hardy operator (see Section 2.7 for details). Note
that this approach is different from that of Bañuelos and Osȩkowski [5], who used
estimates for pure-jump martingales, and the analytical approaches of Bañuelos and
Janakiraman [3], and Volberg [18].
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Corollary 2.2. Let 1 < p < ∞. If f ∈ Lp([0,∞)) is real-valued and nonincreas-
ing, then

‖f −H0f‖p ≤ Cp‖f‖p.

Quite unexpectedly, some difficulties arise at the stage of rearrangements. In our
setting it is possible that

‖g −H0g‖p < ‖f −H0f‖p,

where g denotes the nonincreasing rearrangement of a real-valued function f ∈
Lp([0,∞)) (examples can be found with f being a (positive) step function, in which
case H0g, ‖g−H0g‖p, ‖f −H0f‖p can be explicitly calculated). Hence, it seems that
Corollary 2.2 does not directly imply Theorem 1.1 (for m = 0, λ = 1). Fortunately,
it is possible to use the tools from the proof of the martingale inequality (and adapt
them to work not only for m = 0, but for m > −2(p− 1)/p and all λ ∈ R) to obtain
our main result (see Sections 2.7 and 3).

2.2. Method of the proof of Theorem 2.1 and a lower bound for the

best constant. We follow Burkholder’s approach to the Doob inequality [9, p. 14]:
in order to prove inequality (2.1), it suffices to find an appropriate special function
(for further reading about maximal martingale inequalities see also [15, Chapter 7]).

Proposition 2.3. Let V (x, y) = |x− y|p−Cp|x|p and suppose that U : R2 → R

satisfies the following conditions.

1. (Majorization) If x ≤ y, then V (x, y) ≤ U(x, y).
2. (Initial condition) For all x ∈ R, we have U(x, x) ≤ 0.
3. (Maximal condition) If x ≤ y, h ∈ R, then

U(x+ h, (x+ h) ∨ y) ≤ U(x + h, y).

4. (Concavity) For all y ∈ R, the function U(·, y) : R → R is concave.

Then ‖fn − f ∗
n‖p ≤ C‖fn‖p for any martingale (fn)

∞
n=0 and any n ≥ 0.

Proof. It suffices to consider the inequality for simple martingales (in which case
all expressions below are integrable). Conditions 3 and 4 imply that

EU(fn, f
∗
n) = EU

(

fn−1 + (fn − fn−1), (fn−1 + (fn − fn−1)) ∨ f ∗
n−1

)

≤ EU(fn−1 + (fn − fn−1), f
∗
n−1)

≤ EU(fn−1, f
∗
n−1) + E(fn − fn−1)Ux+(fn−1, f

∗
n−1),

where Ux+ denotes the right derivative. Moreover, E(fn − fn−1)Ux+(fn−1, f
∗
n−1) =

0 because f is a martingale. Hence, EU(fn, f
∗
n) ≤ EU(fn−1, f

∗
n−1). Thus, using

Conditions 1 and 2, we arrive at

‖fn − f ∗
n‖

p
p − Cp‖fn‖

p
p = EV (fn, f

∗
n)

≤ EU(fn, f
∗
n) ≤ . . . ≤ EU(f0, f

∗
0 ) = EU(f0, f0) ≤ 0.

This ends the proof. �

Remark 2.4. In the above proof it is enough to have E(fn−fn−1)Ux+(fn−1, f
∗
n−1)

≤ 0. This inequality holds if f is a nonnegative submartingale and Ux+(x, y) ≤ 0 for
y ≥ 0. This additional assumption is satisfied by the function U which we construct
in Section 2.5. In particular, for any martingale (fn)

∞
n=0 also

∥

∥|fn| − sup
0≤j≤n

|fj|
∥

∥

p
≤ Cp‖fn‖p
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holds, since (|fn|)
∞
n=0 is a nonnegative submartingale whenever (fn)

∞
n=0 is a martin-

gale. This bound is sharp in the case 1 < p ≤ 2 (see the example in Sectiion 2.6),
but the constant Cp does not seem to be the best possible for p > 2.

There is an abstract way of finding a candidate for the function from Proposi-
tion 2.3. Namely, let V (x, y) = |x− y|p − Cp|x|p and define

U0(x, y) = sup{EV (f∞, f ∗
∞ ∨ y) : f0 = x},

where the supremum is taken over the class M consisting of all simple martingales
f = (fn)

∞
n=0 on the probability space [0, 1] equipped with the Borel σ-algebra and the

Lebesgue measure (the filtration may vary). This approach has one main drawback:
the expression defining U0 is hard to work with. Nonetheless, we can use the function
U0 to extract important information: a lower bound for the constant C = C(p) with
which the martingale inequality holds (and on which the function V depends). For
explicit examples of extremal martingales see Section 2.6.

Sharpness of (2.1). Let 1 < p < ∞ be fixed. First note that by the triangle and
Doob’s inequality the estimate (2.1) holds with some finite constant. Let us denote
it by C (of course it may depend on p) and let V , U0 be the functions defined in the
preceding paragraph. Note that, as for now, we do not claim that U0 < +∞.

Clearly, U0(x, y) ≥ V (x, x ∨ y) (since a constant martingale, fn ≡ x, belongs
to M), U0(x, y) = U0(x, x ∨ y) (since f0 ≤ f ∗

∞), and U0(ax, ay) = |a|pU0(x, y).
A “splicing” argument (cf. [15]) gives us concavity of U0(·, y): if λ ∈ (0, 1), f, g ∈ M,
f0 = x1, and g0 = x2, then the process defined by h0 = λx1 + (1− λ)x2 and

hn(ω) = fn−1(ω/λ)1{ω∈[0,λ)} + gn−1

(

(ω − λ)/(1− λ)
)

1{ω∈[λ,1)}, n ≥ 1,

is a simple martingale starting from x = λx1 + (1− λ)x2. Hence

U0(x, y) ≥ EV (h∞, h∗
∞ ∨ y) = λEV (f∞, f ∗

∞ ∨ y) + (1− λ)EV (g∞, g∗∞ ∨ y),

which after taking the suprema over f and g yields the claim.
Moreover, if f ∈ M satisfies f0 = y, then EV (f∞, f ∗

∞ ∨ y) = EV (f∞, f ∗
∞) ≤ 0,

where the inequality follows from the assumption that the martingale inequality is
satisfied with constant C. Therefore U0(y, y) ≤ 0 for all y ∈ R, and hence U0(x, y) <
+∞ for any x, y ∈ R. Indeed, U0 is concave with respect to the first variable, and
a concave function on the real line, which takes values in the set (−∞,+∞], and is
equal to +∞ at some point, is identically equal to +∞.

We now exploit the function U0 to get an estimate of the constant C. Fix
α ≤ (p− 1)/p and δ, t ∈ (0, 1). The properties of U0 imply

U0(1, 1) ≥
δ

1− α+ δ
U0(α, 1) +

1− α

1− α + δ
U0(1 + δ, 1)

≥
δ

1− α+ δ
V (α, 1) +

1− α

1− α+ δ
U0(1 + δ, 1 + δ)

≥
δ

1− α+ δ
V (α, 1) + (1− t)

1− α

1− α + δ
(1 + δ)pU0(1, 1)

+ t
1− α

1− α+ δ
(1 + δ)pV (1, 1),

which can be rewritten in the form

U0(1, 1)
1− α + δ − (1− t)(1− α)(1 + δ)p

δ
≥ V (α, 1) + t

1− α

δ
(1 + δ)pV (1, 1).
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Now, for δ < 1/p, we put t = δ(p − pα − 1)/(1 − α) (note that t ∈ [0, 1], since
α ≤ (p− 1)/p), take δ → 0+, and arrive at

0 ≥ V (α, 1) + (p(1− α)− 1)V (1, 1).

Using the definition of the function V we can solve this inequality with respect to C.
Taking the supremum over α ≤ (p− 1)/p yields then

Cp ≥ sup
α≤(p−1)/p

|α− 1|p

p(1− α)− 1 + |α|p

(note that p(1 − α) − 1 + |α|p is strictly positive for α 6= 1, since the function
α 7→ pα − p + 1 is tangent to the convex function α 7→ |α|p at α = 1). Hence the
best constant with which the martingale inequality is satisfied is not smaller than
the right-hand side of the above inequality. �

2.3. Finding the concave majorant. In this subsection we give some informal
reasoning, which is helpful in guessing an explicit formula for the function U satisfying
the assumptions of Proposition 2.3. As before, we denote V (x, y) = |x−y|p−Cp|x|p.
We look for a function U such that U(·, y) is not only concave, but even affine: let

U(x, y) = p(|αy − y|p−2(αy − y)− Cp|αy|p−2αy)(x− αy) + |αy − y|p − Cp|αy|p

be the tangent to V (·, y) at the point x = αy (for some α, yet to be determined).
Note that if V was concave with respect to the first variable, then such a choice of
U would automatically guarantee the majorization property (i.e. V (x, y) ≤ U(x, y)).
Unfortunately, this is not the case in our setting (cf. Lemma 3.6).

The maximal condition states that U(x+ h, x+ h) ≤ U(x+ h, y) for x+ h > y,
and implies Uy(x, x) ≤ 0. Let us assume that Uy(x, x) = 0. Some calculations reveal
that this condition is equivalent to

Cp = |α−1 − 1|p−2(α−1 − 1)
((

(p− 1)(1− α)
)−1

− 1
)

(provided that α /∈ {0, 1}). Taking such C we arrive at

U(x, y) = −
|1− α|p−2

p− 1
|y|p−2y(px− y(p− 1)).

Note that for this choice the initial condition (i.e. U(x, x) ≤ 0) is also satisfied.
Moreover, the preceding subsection suggests that for the right choice of α we

should have

|α−1 − 1|p−2(α−1 − 1)
((

(p − 1)(1 − α)
)−1

− 1
)

= sup
α′≤(p−1)/p

|α′ − 1|p

p(1− α′)− 1 + |α′|p
.

We identify the correct values of α = α(p) and C = C(p) in some technical lemmas
in the next section. This is relatively easy in the case 1 < p ≤ 2, where one can
simply take α(p) = (p− 1)/p.

In Section 2.5 we check that for these choices the function U is indeed the majo-
rant of V . We prove the martingale inequality (2.1) in Section 2.6.

2.4. Technical lemmas. The first three results are needed to identify the value
of the optimal constant in the martingale inequality (2.1).

Lemma 2.5. For each p ∈ (2,∞), there exists exactly one number αp ≤ (p−1)/p
such that

|αp − 1|p

p(1− αp)− 1 + |αp|p
= sup

α≤(p−1)/p

|α− 1|p

p(1− α)− 1 + |α|p
= sup

α6=1

|α− 1|p

p(1− α)− 1 + |α|p
.
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Moreover, (p− 1)αp + 2− p = |αp|
p−2αp and αp < −(p− 1)1/(p−2) < 0.

Proof. Recall that p(1 − α) − 1 + |α|p is strictly positive for α 6= 1 (since the
function α 7→ pα − p + 1 is tangent to the convex function α 7→ |α|p at α = 1).
Moreover, limα→1 |α− 1|p/(p(1− α)− 1 + |α|p) = 0. Hence the function

h(α) =
|α− 1|p

p(1− α)− 1 + |α|p
1{α6=1}

is continuous. Its derivative (for α 6= 1) is equal to

h′(α) =
p|α− 1|p−2(α− 1)(p(1− α)− 1 + |α|p)− |α− 1|p(−p+ p|α|p−2α)

(p(1− α)− 1 + |α|p)2
,

which is nonpositive if and only if

(α− 1)
(

(p(1− α)− 1 + |α|p)− (α− 1)(−1 + |α|p−2α)
)

≤ 0,

which we can simplify to

(2.2) (α− 1)
(

|α|p−2α− (p− 1)α− 2 + p
)

≤ 0

The function α 7→ (p − 1)α + 2 − p is linear and tangent (at α = 1) to the
function α 7→ |α|p−2α, which is strictly concave on (−∞, 0] and strictly convex on
[0,∞). Therefore, the equation (p− 1)α + 2− p = |α|p−2α has exactly one negative
solution, which we denote by αp. Moreover, the inequality (2.2) holds if and only if
α ∈ [αp, 1]. Hence, the function h is increasing on (−∞, αp], decreasing on [αp, 1],
and increasing on [1,∞). The observation that limα→±∞ h(α) = 1 ends the proof of
the first part of the lemma.

Moreover, the inequality (2.2) does hold for α = −(p− 1)1/(p−2) and hence αp <
−(p− 1)1/(p−2). �

Lemma 2.6. Let αp be the number defined for p > 2 in Lemma 2.5. Then

|α−1
p − 1|p−2(α−1

p − 1)
((

(p− 1)(1− αp)
)−1

− 1
)

=
|αp − 1|p

p(1− αp)− 1 + |αp|p

=
(1 + |αp|)

p−2

p− 1
> 1.

Proof. We have

(

(p− 1)(1− αp)
)−1

− 1 =
(p− 1)αp + 2− p

(p− 1)(1− αp)
=

|αp|
p−2αp

(p− 1)(1− αp)

and hence the first and third expressions are equal. Also

p(1− αp)− 1 + |αp|
p = p(1− αp)− 1 + αp((p− 1)αp + 2− p) = (p− 1)(αp − 1)2

and hence the second and third expressions are equal. Finally, the inequality follows
directly from the estimate for αp from the preceding lemma. �

Lemma 2.7. Let p ∈ (1, 2). If we denote αp = (p− 1)/p, then

1

(p− 1)p
=

|αp − 1|p

p(1− αp)− 1 + |αp|p
= sup

α≤(p−1)/p

|α− 1|p

p(1− α)− 1 + |α|p

= |α−1
p − 1|p−2(α−1

p − 1)
((

(p− 1)(1− αp)
)−1

− 1
)

.
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The proof is less involved than in the case p > 2. Therefore we leave the details
of checking that the function

α 7→
|α− 1|p

p(1− α)− 1 + |α|p
, α ∈ (−∞, (p− 1)/p],

attains its maximum at α = (p − 1)/p to the readers. Let us only remark that in
contrast to the case p > 2, for 1 < p < 2 we have

sup
α6=1

|α− 1|p

p(1− α)− 1 + |α|p
= ∞.

We also need the following technical lemma.

Lemma 2.8. If p ∈ (1, 2), then

pp−2 ≥ (p− 1)p−1,

(p+ 1)p−1 ≥ (2p− 1)(p− 1)p−1.

Proof. Both inequalities are satisfied in the limit for p → 1+ and p → 2−. To
prove the first, we notice that the difference of the logarithms of both sides is a
concave function since

(

(p− 2) ln(p)− (p− 1) ln(p− 1)
)′′

=
p− 2

(p− 1)p2
≤ 0,

for p ∈ (1, 2).
In order to prove the second inequality, we substitute s = p−1, divide both sides

by (2s+1)ss, take the logarithm of both sides, and arrive at the following equivalent
formulation of the assertion:

s ln(1 + 2/s)− ln(2s+ 1) ≥ 0, s ∈ (0, 1).

The left-hand side is a concave function, since for s ∈ (0, 1),

(

s ln(1 + 2/s)− ln(2s+ 1)
)′′

=
4(s3 − 1)

s(s+ 2)2(2s+ 1)2
≤ 0.

Hence the assertion of the lemma holds. �

2.5. The special function. Define the constant Cp by the formula

Cp
p = sup

α≤(p−1)/p

|α− 1|p

p(1− α)− 1 + |α|p
=

{

1
(p−1)p

if 1 < p ≤ 2,
(1+|αp|)p−2

p−1
if p > 2.

Here αp ∈ R, 2 < p < ∞, is the unique negative solution to the equation (p− 1)αp+
2− p = |αp|

p−2αp (see Lemma 2.5). We also denote αp = (p− 1)/p for 1 < p ≤ 2.
We introduce the special functions

V (x, y) = |x− y|p − Cp
p |x|

p,

U(x, y) = −
|1− αp|

p−2

p− 1
|y|p−2y(px− (p− 1)y)

=

{

− 1
(p−1)pp−2 |y|

p−2y(px− (p− 1)y) if 1 < p ≤ 2,

−Cp
p |y|

p−2y(px− (p− 1)y) if p > 2.

The following proposition is the core of the proof of the martingale inequality and
the main result (in the case m = 0, λ = 1). Note that the assertion is stronger than
the majorization condition from Proposition 2.3.
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Proposition 2.9. For 1 < p < ∞ and any x, y ∈ R, we have V (x, y) ≤ U(x, y).

Proof for 2 < p < ∞. The inequality is satisfied for y = 0 and x = y, so by
homogeneity it is enough to consider it for y = 1 and x 6= 1. We can rewrite it as

Cp
p (|x|

p − px+ p− 1) ≥ |x− 1|p.

For x 6= 1 the left-hand side is positive (the function x 7→ px − p + 1 is tangent to
the convex function x 7→ |x|p at x = 1), and therefore we conclude that the assertion
is equivalent to

Cp
p ≥ sup

x 6=1

|x− 1|p

p(1− x)− 1 + |x|p
,

which is true by Lemma 2.5. �

Remark 2.10. The above proof stresses the fact that Cp is chosen exactly so,
that the statement is true, but we can also use a slightly different approach. Again,
it is enough to consider y = 1. The function V (·, 1) is continuously differentiable,
its second derivative exists in all but two points, and moreover Vxx(x, 1) = 0 if and

only if |x−1|p−2 = Cp
p |x|

p−2 or equivalently x = 1/(1±C
p/(p−2)
p ). Hence the function

V (·, 1) is concave on the interval (−∞, a], convex on the interval [a, b], and again

concave on the interval [b,∞), where a = 1/(1 − C
p/(p−2)
p ), b = 1/(1 + C

p/(p−2)
p ).

Moreover U(·, 1) is the tangent to V (·, 1) at the points αp and 1. This implies the
inequality V (x, 1) ≤ U(x, 1) for x ∈ R (see Lemma 3.6 below).

We turn to the case 1 < p < 2 (for p = 2 the assertion is trivial). The argument
is similar to that above, but slightly more complicated.

Proof for 1 < p < 2. The inequality is satisfied for y = 0, so by homogeneity it
is enough to consider it for y = 1. We can rewrite it as (recall that αp = (p− 1)/p)

Cp
p

(

|x|p − p
αp−1
p

1− αp
(x− αp)

)

≥ |x− 1|p.

It is easy to see that left-hand side is strictly positive (the global minimum is attained
for x = αp(1 − αp)

−1/(p−1), for which the expression in the brackets on the left-hand
side is equal to

|αp|
p(1− αp)

−p/(p−1)
(

1− p+ p(1− αp)
1/(p−1)

)

,

which is positive by the first inequality from Lemma 2.8). Therefore we conclude
that the assertion is equivalent to the inequality

(2.3) Cp
p ≥

|x− 1|p

|x|p − p
αp−1
p

1−αp

(x− αp)

holding for every x ∈ R. We denote the right-hand side of the above inequality by
R(x). A calculation shows that R′(x) is positive if and only if

p|x− 1|p−2(x− 1)

(

|x|p − p
αp−1
p

1− αp
(x− αp)

)

− |x− 1|p
(

p|x|p−2x− p
αp−1
p

1− αp

)

= p|x− 1|p−2(x− 1)
(

T (x)− S(x)
)

≥ 0,
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where we have denoted

S(x) =
αp−1
p

1− αp

(

(p− 1)x− pαp + 1
)

= pαp−1
p

(

(p− 1)x− p+ 2
)

,

T (x) = |x|p−2x.

The function T is convex on (−∞, 0) and concave on (0,∞), since 1 < p < 2.
Moreover, S(αp) = T (αp) and

S ′(αp) = p(p− 1)αp−1
p < (p− 1)αp−2

p = T ′(αp).

We conclude that the equation S(x) = T (x) has three solutions: x1 < 0, x2 = αp,
and x3 > αp. Moreover, x3 ≥ (p+1)/p > 1 since S((p+1)/p) ≤ T ((p+1)/p) by the
second inequality from Lemma 2.8.

Therefore, the function R is decreasing on each of the intervals (−∞, x1), (αp, 1),
(x3,∞), and increasing on (x1, αp) and (1, x3). Since R(αp) = (1/αp − 1)p = Cp

p

and limx→−∞R(x) = 1 ≤ Cp
p , in order to prove (2.3) it is enough to check that

Cp
p ≥ R(x3). But S(x3) = T (x3) = xp−1

3 , so

|x3|
p − p

αp−1
p

1− αp
(x3 −αp) = x3S(x3)− p

αp−1
p

1− αp
(x3 −αp) =

αp−1
p

1− αp
(p− 1)(x3 − 1)2

and consequently

R(x3) =
1− αp

αp−1
p

·
(x3 − 1)p−2

(p− 1)
=

pp−2

(p− 1)p
(x3 − 1)p−2.

Hence, Cp
p ≥ R(x3) is equivalent to 1 ≤ p(x3 − 1) (recall that p − 2 < 0). Since we

already know that x3 ≥ (p+ 1)/p, the proof is finished. �

2.6. Proof of the martingale inequality. In order to prove the martingale
inequality, we just gather the results of the preceding sections.

Proof of inequality (2.1). For p ∈ (1,∞), the functions V and U defined in
Section 2.5 satisfy all assumptions of Proposition 2.3. Indeed, the majorization prop-
erty follows from Proposition 2.9. The initial condition is satisfied, since U(x, x) =
−|x|p|1−αp|

p−2/(p−1) ≤ 0. If y ≤ 0 ≤ x+h, then U(x+h, x+h) ≤ 0 ≤ U(x+h, y).
If on the other hand y < x+ h < 0 or 0 < y < x+ h, then there exists ξ ∈ (y, x+ h)
such that

U(x+ h, x+ h)− U(x+ h, y) = Uy(x+ h, ξ)(x+ h− y)

= p|1− αp|
p−2|ξ|p−2(ξ − x− h)(x+ h− y) ≤ 0.

This implies the maximal condition. Finally, U is clearly concave with respect to the
first variable. Hence the martingale inequality (2.1) holds by Proposition 2.3. �

Moreover, from the abstract argument in Subsection 2.2 we already know that
the constant Cp is optimal. Let us however give explicit extremal examples here.

Sharpness of (2.1). Fix 1 < p < ∞, α ∈ (−∞, (p− 1)/p) \ {0} and s ∈ (0, 1),
and let β = β(s) be given by the relation sα + (1 − s)β = 1. Observe that if s
is sufficiently small (depending on p, α), then (1 − s)βp > 1 (indeed, the inequality
(1 − sα)p > (1 − s)p−1 can be verified by comparison of derivatives at s = 0). We
consider a martingale (fn)

∞
n=0 such that f0 = 1, and such that conditioned on the

event {(fn, f
∗
n) = (x, x)}, one of the following events occurs:



The L
p-norms of the Beurling–Ahlfors transform on radial functions 83

(1) With probability s we have fn+1 = αx and the martingale stops, i.e. fn+1 =
fn+2 = . . .; note that in this case f ∗

n+1 = fn = x.
(2) With probability 1 − s, we have fn+1 = βx and the evolution continues ac-

cording to our rules. In this case f ∗
n+1 = fn+1.

Note that fn takes values in the set {α, αβ, αβ2, . . . , αβn−1, βn}. Moreover, P(fn =
αβk) = s(1− s)k for k ∈ {0, . . . , n− 1}, P(fn = βn) = (1− s)n, and

E |fn|
p1{fn 6=βn} =

n−1
∑

k=0

s(1− s)k(|α|βk)p = s|α|p
1− (1− s)nβnp

1− (1− s)βp
.

Also, fn − f ∗
n = (1 − 1/α)fn if fn 6= βn, and fn − f ∗

n = 0 if fn = βn. Hence, the
p-th power of the constant with which the martingale inequality (2.1) holds has to
be equal at least

lim
s→0+

lim
n→∞

‖fn − f ∗
n‖

p
p

‖fn‖
p
p

= lim
s→0+

lim
n→∞

|1− 1/α|ps|α|p 1−(1−s)nβnp

1−(1−s)βp

s|α|p 1−(1−s)nβnp

1−(1−s)βp + (1− s)nβnp

= lim
s→0+

|α− 1|ps

s|α|p + (1− s)βp − 1
=

|α− 1|p

|α|p − pα + p− 1
,

where we used (1 − s)βp > 1 in the second last equality, and β = (1 − sα)/(1 − s)
in the last equality. To obtain the sharpness of (2.1) we take α → (p− 1)/p− in the
case 1 < p ≤ 2 or take α = αp (see Lemma 2.5) in the case p > 2. �

Remark 2.11. In the above example fn converges a.s. to a random variable f∞,
but E |f∞|p = +∞. In the case 1 < p ≤ 2 one can consider α > (p− 1)/p instead of
α < (p− 1)/p to obtain an example in which E |f∞|p < ∞.

2.7. Relation to Theorem 1.1 for m = 0. As announced before, the
martingale inequality implies the main result for m = 0 and λ = 1 in the special case
of nonincreasing functions.

Proof of Corollary 2.2. First note that a standard approximation arguments
yields a continuous time version of (2.1): for any martingale (Xt)t≥0 with right-
continuous trajectories, we have

‖Xt − sup
0≤s≤t

Xs‖p ≤ Cp‖Xt‖p.

Let f ∈ Lp([0, 1]) be a nonincreasing function. On the probability space [0, 1],
equipped with the Lebesgue measure, consider the filtration

Ft = σ
(

[0, 1− t],B([1 − t, 1])
)

, t ∈ [0, 1],

(i.e. the σ-algebra Ft is generated by the set [0, 1 − t] and all Borel subsets of the
interval [1 − t, 1]) and the martingale Xt = E(f |Ft), t ∈ [0, 1]. Using the definition
of the filtration, we get the explicit formula

Xt(ω) =







1

1− t

ˆ 1−t

0

f(s) ds if ω ∈ [0, 1− t),

f(ω) if ω ∈ [1− t, 1].
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In particular, the martingale is right-continuous. Hence,

Cp
p‖f‖

p
Lp([0,1]) = Cp

p E |X1|
p ≥ E |X1 − sup

0≤t≤1
Xt|

p

=

ˆ 1

0

∣

∣

∣
f(ω)− sup

0≤t≤1

{

1{ω<1−t}
1

1− t

ˆ 1−t

0

f(s) ds+ 1{ω≥1−t}f(ω)
}
∣

∣

∣

p

dω

=

ˆ 1

0

∣

∣f(ω)−
1

ω

ˆ ω

0

f(s) ds
∣

∣

p
dω = ‖f −H0f‖

p
Lp([0,1]),

where the second last equality follows from the fact that f is nonincreasing. A rescal-
ing argument (see proof of inequality (1.1) in Section 3) yields Cp‖f‖Lp([0,∞)) ≥
‖f −H0f‖Lp([0,∞)) for nonincreasing functions f ∈ Lp([0,∞)). �

Let us now briefly sketch of the proof of the main result for m = 0, λ = 1, and not
necessarily nonincreasing functions. The key idea is to use the tools from the proof of
the martingale inequality proof, i.e. the special functions V and U from Section 2.5,
rather than to apply it directly. The following lemma is needed (its proof is based on
integration by parts and we shall prove a more general result later, cf. Lemma 3.5).

Lemma 2.12. If 1 < p < ∞ and f : [0, 1] → R is continuous, then

(p− 1)

ˆ 1

0

|H0f(t)|
p dt ≤ p

ˆ 1

0

|H0f(t)|
p−2H0f(t)f(t) dt.

Instead of looking at the values of V , U in the points (fn, supk≤n fk), where
(fn)

∞
n=0 is a martingale, we consider their values in the points (f(t), H0f(t)), where

f : [0, 1] → R is a continuous function. We use Proposition 2.9 with x = f(t) and
y = H0f(t), integrate over t ∈ [0, 1], and apply Lemma 2.12, arriving at

ˆ 1

0

|f(t)−H0f(t)|
p dt− Cp

p

ˆ 1

0

|f(t)|p dt

≤ −
|1− αp|

p−2

p− 1

ˆ 1

0

|H0f(t)|
p−2H0f(t)

(

pf(t)− (p− 1)H0f(t)
)

dt ≤ 0.

Standard approximation and a simple scaling argument gives ‖f − H0f‖Lp([0,∞)) ≤
Cp‖f‖Lp([0,∞)). As for sharpness, it is enough to consider the functions

fα(t) = 1{t∈[0,1)} + αtα−11{t∈[1,∞)}, α < (p− 1)/p.

It turns out that this approach can be adapted to work in a more general setting.
This is done with all details in the next section.

3. Proof of Theorem 1.1

3.1. Notation, preliminary results. For 1 < p < ∞ and m > −2(p − 1)/p,
we denote

gp,m =
m

2
+

p− 1

p
.

Clearly, gp,m is a positive number. Moreover, we have the following slight extension
of [3, Proposition 5.1].

Proposition 3.1. For 1 < p < ∞ and m > −2(p− 1)/p, the formula

Hmf(t) =
1

t1+m/2

ˆ t

0

f(s)sm/2 ds



The L
p-norms of the Beurling–Ahlfors transform on radial functions 85

defines a bounded operator on the space Lp([0,∞)). Moreover,

‖Hm‖Lp([0,∞))→Lp([0,∞)) = g−1
p,m.

Proof. If f ∈ Lp([0,∞)) is bounded, then the function Hmf is well defined (since
m/2 > −1), and the Minkowski integral inequality yields

‖Hmf‖p =
(

ˆ ∞

0

∣

∣

∣

1

t1+m/2

ˆ t

0

f(s)sm/2 ds
∣

∣

∣

p

dt
)1/p

=
(

ˆ ∞

0

∣

∣

∣

ˆ 1

0

f(ut)um/2 du
∣

∣

∣

p

dt
)1/p

≤

ˆ 1

0

(

ˆ ∞

0

|f(ut)|p dt
)1/p

um/2 du

=

ˆ 1

0

um/2−1/p‖f‖p du = g−1
p,m‖f‖p.

A standard density argument implies the claim. The family t 7→ t−1/p+ε1{t∈[0,1]}
extremizes the norm as ε → 0+. �

We define the set Ωp,m, the function cp,m,λ : Ωp,m → R, and the constant Cp,m,λ

by the formulas:

Ωp,m = {(α, β) ∈ R
2 : α < gp,m < β},

cp,m,λ(α, β) =
((β − gp,m)|α− λ|p + (gp,m − α)|β − λ|p

(β − gp,m)|α|p + (gp,m − α)|β|p

)1/p

, (α, β) ∈ Ωp,m,

Cp,m,λ = sup{cp,m,λ(α, β) : (α, β) ∈ Ωp,m}.

Recall that our aim is to show that Cp,m,λ = ‖I − λHm‖Lp([0,∞))→Lp([0,∞)). The first
lemma shows that Cp,m,λ is a lower bound for the norm of the operator I − λHm. It
also serves as a proof that Cp,m,λ is finite.

Lemma 3.2. If 1 < p < ∞, m > −2(p− 1)/p, λ ∈ R, then

‖I − λHm‖Lp([0,∞))→Lp([0,∞)) ≥ Cp,m,λ.

Proof. Fix 1 < p < ∞ and m > −2(p − 1)/p. For α < gp,m < β, consider the
function

(3.1) fα,β(t) = βtβ−gp,m−1/p1{t∈[0,1)} + αtα−gp,m−1/p1{t∈[1,∞)},

which clearly belongs to the space Lp([0,∞)). We have

Hmfα,β(t) = tβ−gp,m−1/p1{t∈[0,1)} + tα−gp,m−1/p1{t∈[1,∞)}

and

‖fα,β − λHmfα,β‖
p
p =

|β − λ|p

p(β − gp,m)
−

|α− λ|p

p(α− gp,m)
,

‖fα,β‖
p
p =

|β|p

p(β − gp,m)
−

|α|p

p(α− gp,m)
.

Thus we see that ‖I − λHm‖Lp([0,∞))→Lp([0,∞)) ≥ Cp,m,λ. �

The next lemma summarizes further observations about the constant Cp,m,λ.

Lemma 3.3. If 1 < p < ∞, m > −2(p− 1)/p, and λ ∈ R, then

Cp,m,λ ≥ max{|1− λg−1
p,m|, 1}.

Also, if the above inequality is strict, then the supremum in the definition of Cp,m,λ is
attained at some point of the set Ωp,m. Moreover, Cp,m,λ > 1 unless λ = 0 or p = 2.
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Proof. Throughout the proof we consider only (α, β) ∈ Ωp,m. For α 6= 0, we can
write the function cpp,m,λ as a convex combination:

(3.2) cpp,m,λ(α, β) = w1(α, β) · |1− λ/α|p + w2(α, β) · |1− λ/β|p,

where

w1(α, β) =
(β − gp,m)|α|

p

(β − gp,m)|α|p + (gp,m − α)|β|p
,

w2(α, β) =
(gp,m − α)|β|p

(β − gp,m)|α|p + (gp,m − α)|β|p
.

Using (3.2) we see that

lim
α,β

cpp,m,λ(α, β) =

{

1 if α → −∞ and β → ∞,

|1− λg−1
p,m|

p if α → g−p,m and β → g+p,m,

which implies the first part of the assertion.
We now claim, that if (α, β) → ∂Ωp,m or α2 + β2 → ∞, then

(3.3) lim sup
α,β

cpp,m,λ(α, β) ≤ max{1, |1− λg−1
p,m|

p}.

It follows from (3.2) that (3.3) holds if α → −∞ and β → g+p,m, or α → g−p,m and
β → ∞. If on the other hand α → −∞ or α → g−p,m, and β → β∞ ∈ (gp,m,∞), then
w2(α, β) → 0, and consequently

lim
α,β

cpp,m,λ(α, β) ∈ {1, |1− λg−1
p,m|}.

Similarly, (3.3) also holds if α → α∞ ∈ (−∞, gp,m) \ {0} and β → g+p,m or β → ∞
(because then w1(α, β) → 0). Finally, if α → 0 and β → g+p,m or β → ∞, then

lim sup
α,β

cpp,m,λ(α, β) ≤ lim
α,β

(β − gp,m)|α− λ|p + (gp,m − α)|β − λ|p

(gp,m − α)|β|p

= max{1, |1− λg−1
p,m|}.

These observations imply that if the supremum in the definition of Cp,m,λ is strictly
greater than max{1, |1− λg−1

p,m|}, then it is attained at some point of the set Ωp,m.
The last part of the assertion clearly holds if λ < 0. Assume henceforth that

λ > 0 and p 6= 2. Choose A > 0 and B > max{λ− gp,m, 0} so that the inequality

Ap−1B > (gp,m + A)(B + gp,m)
p−1

is satisfied (i.e. pick A sufficiently large if p > 2 or B sufficiently large if 1 < p < 2).
Since

(A+ λ)p − Ap ≥ pλAp−1,

pλ(B + gp,m)
p−1 ≥ (gp,m +B)p − (gp,m +B − λ)p,

such a choice of A,B implies that

((A+ λ)p − Ap)B > (gp,m + A)((gp,m +B)p − (gp,m +B − λ)p),

which is equivalent to cp,m,λ(−A, gp,m +B) > 1. �
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Remark 3.4. We can see that ‖I − λHm‖Lp([0,∞))→Lp([0,∞)) ≥ 1 in another way.
Indeed, for fn(t) = 1{t∈[n,n+1)} have ‖fn‖p = 1, but

‖Hmfn‖
p
p

=

ˆ ∞

0

∣

∣

∣

t1+m/2 − n1+m/2

(1 +m/2)t1+m/2
1{t∈[n,n+1)} +

(n+ 1)1+m/2 − n1+m/2

(1 +m/2)t1+m/2
1{t∈[n+1,∞)}

∣

∣

∣

p

dt

≤

ˆ ∞

n

((n+ 1)1+m/2 − n1+m/2

(1 +m/2)t1+m/2

)p

dt

=
((n + 1)1+m/2 − n1+m/2)p

(1 +m/2)p(p+ pm/2− 1)np+pm/2−1
−−−→
n→∞

0.

Hence the operator λHm : Lp([0,∞)) → Lp([0,∞)) is not invertible, and consequently
we cannot have ‖I − λHm‖Lp([0,∞))→Lp([0,∞)) < 1.

3.2. Key tools. The first result generalizes Lemma 2.12 presented above with-
out proof.

Lemma 3.5. If 1 < p < ∞, m > −2(p− 1)/p, and f : [0, 1] → R is continuous,
then

(p(1 +m/2)− 1)

ˆ 1

0

|Hmf(t)|
p dt ≤ p

ˆ 1

0

|Hmf(t)|
p−2Hmf(t)f(t) dt.

Proof. Define F (t) =
´ t

0
f(s)sm/2 ds. Since f is continuous, we have F ′(t) =

f(t)tm/2 (in particular, Hmf(t) = F (t)/t1+m/2 → f(0)/(1 +m/2) as t → 0+). Hence
integration by parts yields

(p(1 +m/2)− 1)

ˆ 1

0

|Hmf(t)|
pdt = (p(1 +m/2)− 1)

ˆ 1

0

t−p(1+m/2)|F (t)|p dt

=
[

− t−p(1+m/2)+1|F (t)|p
]1

0
+ p

ˆ 1

0

t−p(1+m/2)+1|F (t)|p−2F (t)f(t)tm/2 dt

= −|F (1)|p + lim
t→0+

t|F (t)/t1+m/2|p + p

ˆ 1

0

|Hmf(t)|
p−2Hmf(t)f(t) dt

= −|F (1)|p + p

ˆ 1

0

|Hmf(t)|
p−2Hmf(t)f(t) dt.

This implies the assertion of the lemma. �

Moreover, the following elementary lemma is useful for us.

Lemma 3.6. Suppose that v : R → R is continuously differentiable and strictly
concave on (−∞, a), strictly convex on (a, b), and strictly concave on (b,∞) for some
a, b ∈ R. Let u : R → R be an affine function tangent to v at two points. Then
v(x) ≤ u(x) for x ∈ R.

Proof. Denote c = u′(x), x ∈ R. There exist α < β, such that v(α) = u(α),
v(β) = u(β), and v′(α) = v′(β) = c. By Rolle’s theorem applied to the function
v− u, there exists γ ∈ (α, β) such that v′(γ) = c. Since the function v′ attains every
value at most thrice, we conclude that α ∈ (−∞, a], γ ∈ (a, b), and β ∈ [b,∞). The
assertion follows from the assumption about concavity (respectively convexity) of v
on those intervals. �

Finally, we have the following analog and generalization of Proposition 2.9.
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Proposition 3.7. If 1 < p < ∞, p 6= 2, m > −2(p−1)/p, and λ > 0, then there
exists a positive constant Dp,m,λ, such that the inequality

|x− λy|p − Cp
p,m,λ|x|

p ≤ −Dp,m,λ|y|
p−2y(x− gp,my)

holds for all x, y ∈ R.

Proof. We shall consider two cases. As will be clear from the proof (and the fol-
lowing results) they correspond to the situation when the supremum in the definition
of Cp,m,λ is equal to |λg−1

p,m − 1|, and the situation when the supremum in definition
of Cp,m,λ is attained in the interior of the set Ωp,m (cf. Lemma 3.3).

For the first case, we assume that λ > 2gp,m and the inequality

(3.4) |x− λ|p − (λg−1
p,m − 1)p|x|p ≤ −p(λ− gp,m)

p−1λg−1
p,m(x− gp,m)

holds for all x ∈ R. Define

V (x, y) = |x− λy|p − (λg−1
p,m − 1)p|x|p,

U(x, y) = −p(λ− gp,m)
p−1λg−1

p,m|y|
p−2y(x− gp,my).

The inequality V (x, y) ≤ U(x, y) holds for y = 0 (since λg−1
p,m − 1 > 1) and for y = 1

(due to (3.4)), and hence by homogeneity for all x, y ∈ R. Hence the assertion is
satisfied with Dp,m,λ = p(λ − gp,m)

p−1λg−1
p,m > 0 (and with λg−1

p,m − 1, which is not
greater than Cp,m,λ, in the place of Cp,m,λ). This finishes the proof in the first case.

Let us now consider the second case: we have either λ ∈ (0, 2gp,m], or we have
λ > 2gp,m, but the inequality (3.4) does not hold for all x ∈ R. We claim that the
supremum in the definition of the constant Cp,m,λ is attained at some point of the set
Ωp,m. Indeed, if λ ∈ (0, 2gp,m], then max{|1− λg−1

p,m|, 1} = 1 and Lemma 3.3 implies
the claim. If on the other hand λ > 2gp,m and the inequality (3.4) does not hold for
every x ∈ R, then there exists some x0 ∈ R, such that

(3.5) |x0 − λ|p − (λg−1
p,m − 1)p|x0|

p > −p(λ− gp,m)
p−1λg−1

p,m(x0 − gp,m).

Of course we cannot have x0 = gp,m. Suppose first, that x0 > gp,m. Since

lim
x→gp,m

|x− λ|p − (λg−1
p,m − 1)p|x|p

x− gp,m
= −p(λ− gp,m)

p−1λg−1
p,m,

we conclude from (3.5), that for some (α, β) ∈ Ωp,m we have

|β − λ|p − (λg−1
p,m − 1)p|β|p >

|α− λ|p − (λg−1
p,m − 1)p|α|p

α− gp,m
(β − gp,m)

(it suffices to take β = x0 and α smaller than, but close to gp,m) or equivalently

(β − gp,m)|α− λ|p + (gp,m − α)|β − λ|p

(β − gp,m)|α|p + (gp,m − α)|β|p
> (λg−1

p,m − 1)p.

We arrive at the same conclusion, if x0 < gp,m (it suffices to take α = x0 and β
greater than, but close to gp,m). This finishes the proof of the claim: in the second
case we always have

Cp
p,m,λ = cpp,m,λ(α0, β0),

for some point (α0, β0) ∈ Ωp,m (of course α0, β0 may depend of p, m, and λ; uniqueness
is not important to us).



The L
p-norms of the Beurling–Ahlfors transform on radial functions 89

After denoting

K(α, β) = (β − gp,m)|α− λ|p + (gp,m − α)|β − λ|p,

L(α, β) = (β − gp,m)|α|
p + (gp,m − α)|β|p,

we can rewrite the condition ∂
∂α
cpp,m,λ(α0, β0) = 0 as

(

p(β0 − gp,m)|α0 − λ|p−2(α0 − λ)− |β0 − λ|p
)

· L(α0, β0)

−K(α0, β0) ·
(

p(β0 − gp,m)|α0|
p−2α0 − |β0|

p
)

= 0.
(3.6)

The condition ∂
∂β
cpp,m,λ(α0, β0) = 0 implies a similar equation.

Define now

V (x, y) = |x− λy|p − Cp
p,m,λ|x|

p,

U(x, y) =
V (β0, 1)− V (α0, 1)

β0 − α0
|y|p−2y(x− gp,my).

Using the fact that Cp
p,m,λ = K(α0, β0)/L(α0, β0), we see that

V (α0, 1) =
(gp,m − α0)

(

|α0 − λ|p|β0|
p − |α0|

p|β0 − λ|p
)

L(α0, β0)
,

V (β0, 1) =
(β0 − gp,m)

(

|α0|
p|β0 − λ|p − |α0 − λ|p|β0|

p
)

L(α0, β0)
,

and consequently

(3.7)
V (β0, 1)− V (α0, 1)

β0 − α0

=
|α0|

p|β0 − λ|p − |α0 − λ|p|β0|
p

L(α0, β0)
.

Hence V (α0, 1) = U(α0, 1) and V (β0, 1) = U(β0, 1).
On the other hand (we use (3.6) in the second equality, and the definitions of K

and L in the third),

Vx(α0, 1) =
p|α0 − λ|p−2(α0 − λ)L(α0, β0)−K(α0, β0)p|α0|

p−2α0

L(α0, β0)

=
L(α0, β0)|β0 − λ|p −K(α0, β0)|β0|

p

L(α0, β0)(β0 − gp,m)
=

|α0|
p|β0 − λ|p − |α0 − λ|p|β0|

p

L(α0, β0)
.

By (3.7), we conclude that Vx(α0, 1) = Ux(α0, 1). Similarly, Vx(β0, 1) = Ux(β0, 1)
follows from ∂

∂β
cpp,m,λ(α0, β0) = 0.

Therefore, U(·, 1) : x 7→ U(x, 1) is tangent to V (·, 1) : x 7→ V (x, 1) at x = α0 and
x = β0. Hence Lemma 3.6 implies that V (x, 1) ≤ U(x, 1) for any x ∈ R, and by
homogeneity also V (x, y) ≤ U(x, y) for any x, y ∈ R (for y = 0 the inequality holds,
since Cp,m,λ > 1).

Finally, let us notice that

Vx(β0, 1) = p(|β0 − λ|p−2(β0 − λ)− Cp
p,m,λβ

p−1
0 ) ≤ pβp−1

0 (1− Cp
p,m,λ) < 0

(we used the fact that β0 > 0, λ > 0, and Cp,m,λ > 1) and hence the assertion is
satisfied with

Dp,m,λ := −Ux(β0, 1) = −Vx(β0, 1) > 0. �
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Remark 3.8. The above proof together with the results of Section 3.3 can be
used to see that if m is a positive integer then we have Cp,m,λ > λg−1

p,m − 1 for
1 < p < 2 and λ = 1 +m. This follows from the fact that for such m, p, and λ the
inequality (3.4) does not hold. Indeed, if m ≥ 2, then

sup
x∈R

−(λg−1
p,m − 1)p|x|p + p(λ− gp,m)

p−1λg−1
p,m(x− gp,m) > 0,

since the supremum is attained at x = gp,m
(

λ/(λ − gp,m)
)1/(p−1)

and we need to

check that p(λ − gp,m)
1/(p−1) < (p − 1)λ1/(p−1) or equivalently pp−1(m/2 + 1/p) <

(p− 1)p−1(1 +m). It is enough to verify this inequality for m = 2 and in order to do
this one can proceed like in the proof of Lemma 2.8. In the case m = 1 (and λ = 2)
we claim that

|x− λ|p − (λg−1
p,m − 1)p|x|p + p(λ− gp,m)

p−1λg−1
p,m(x− gp,m) > 0

for x = gp,m + 2pgp,m(λ− gp,m) (note that x > λ). For such a choice of x the above
inequality is equivalent to

(3p− 3)p − (p+ 3)p + 4p2 > 0,

which is true since we have equality for p ∈ {1, 2}, and one can numerically check
that the second derivative of the function on the left-hand side is negative on the
interval (1, 2). Thus we are done.

3.3. Proof of the main result. We start with the following observation
(cf. [17]).

Lemma 3.9. Let T : Lp([0,∞)) → Lp([0,∞)) be a linear operator which maps
real-valued functions to real-valued functions. If the inequality ‖Tf‖p ≤ C‖f‖p
holds for any real-valued function f ∈ Lp([0,∞)), then it also holds (with the same
constant) for any complex-valued function f ∈ Lp([0,∞)).

Proof. Suppose that f = u + iv ∈ Lp([0,∞)), where u, v are real-valued. Let
G1, G2 be independent Gaussian random variables with mean zero and variance one.
Using the fact that for a1, a2 ∈ R the random variable a1G1 + a2G2 has the same
distribution as

√

a21 + a22G1, we arrive at

‖Tf‖ppE |G1|
p =

ˆ ∞

0

|T (u)2 + T (v)2|p/2E |G1|
p dt =

ˆ ∞

0

E |T (u)G1 + T (v)G2|
p dt

= E

ˆ ∞

0

|T (uG1 + vG2)|
p dt ≤ Cp

E

ˆ ∞

0

|uG1 + vG2|
p dt

= Cp‖f‖ppE |G1|
p

(we have suppressed the dependence of the functions on the argument t ∈ [0,∞) in
the notation). This finishes the proof of the lemma. �

Henceforth we assume without loss of generality that all functions are real-valued.
The proof of Theorem 1.1 is divided into three parts.

Proof of inequality (1.1) for λ > 0 and p 6= 2. Fix 1 < p < ∞, p 6= 2,
m > 2(p− 1)/p, λ ∈ R, and denote

V (x, y) = |x− λy|p − Cp
p,m,λ|x|

p,

U(x, y) = −Dp,m,λ|y|
p−2y(x− gp,my),

where Dp,m,λ is the positive number from Proposition 3.7.
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Let f : [0, 1] → R be a continuous function. By Proposition 3.7, for every t ∈ [0, 1]
we have V (f(t), Hmf(t)) ≤ U(f(t), Hmf(t)). After integrating over the interval [0, 1]
and applying Lemma 3.5, we arrive at

ˆ 1

0

|f(t)− λHmf(t)|
p dt− Cp

p,m,λ

ˆ 1

0

|f(t)|p dt

≤ −Dp,m,λ

ˆ 1

0

|Hmf(t)|
p−2Hmf(t)

(

f(t)− gp,mHmf(t)
)

dt ≤ 0.

A standard approximation argument gives ‖f −λHmf‖Lp([0,1]) ≤ Cp,m,λ‖f‖Lp([0,1]) for
f ∈ Lp([0, 1]). If f ∈ Lp([0,∞)), then

ˆ n

0

|f(t)− λHmf(t)|
p dt = n

ˆ 1

0

|f(nt)− λHm(f(n·))(t)|
p dt

≤ nCp
p,m,λ

ˆ 1

0

|f(nt)|p dt = Cp
p,m,λ

ˆ n

0

|f(t)|p dt,

and it suffices to take n → ∞ to arrive at ‖f − λHmf‖Lp([0,∞)) ≤ Cp,m,λ‖f‖Lp([0,∞)).
This ends the proof of inequality (1.1). �

Proof of inequality (1.1) for λ > 0 and p = 2. By an argument similar to that for
p 6= 2, we show that ‖I−λHm‖L2([0,∞))→L2([0,∞)) ≤ λg−1

p=2,m−1 for λ > 2gp=2,m = 1+m.
Indeed, we only need to use the functions

V (x, y) = (x− λy)2 − (λg−1
p=2,m − 1)2x2,

U(x, y) = −2(λ− gp=2,m)λg
−1
p=2,my(x− gp=2,my),

for which checking the majorization is straightforward (x 7→ U(x, 1) is the tan-
gent to the concave function x 7→ V (x, 1) at x = gp=2,m). We conclude that
‖I − λHm‖L2([0,∞))→L2([0,∞)) = λg−1

p=2,m − 1 = Cp=2,m,λ for λ > 1 +m.

Moreover, the L2-norm of the operator I − λHm is clearly a convex function of
the variable λ:

‖I − (sλ1 + (1− s)λ2)Hm‖L2([0,∞))→L2([0,∞))

= ‖s(I − λ1Hm) + (1− s)(I − λ2Hm)‖L2([0,∞))→L2([0,∞))

≤ s‖I − λ1Hm‖L2([0,∞))→L2([0,∞)) + (1− s)‖I − λ2Hm‖L2([0,∞))→L2([0,∞)).

Since this norm is equal to 1 for λ = 0, tends to 1 as λ → (1 + m)+, and is
always at least 1 (by Lemmas 3.2 and 3.3, or Remark 3.4), we conclude that ‖I −
λHm‖L2([0,∞))→L2([0,∞)) = 1 for λ ∈ [0, 1 +m]. �

Remark 3.10. The operator I − (1+m)Hm is an isometry on L2([0,∞)) (since
the Beurling–Ahlfors transform is an L2-isometry; see [3, Theorem 1.1]).

Proof of inequality (1.1) for λ ≤ 0. The triangle inequality and Lemma 3.3 yield

‖I − λHm‖Lp([0,∞))→Lp([0,∞)) ≤ |λ|g−1
p,m + 1 ≤ Cp,m,λ.

Moreover, the opposite inequality is also true by Lemma 3.2, so we in fact have
equalities above. �



92 Michał Strzelecki

Sharpness of inequality (1.1) follows from Lemma 3.2. In order to complete the
proof of Theorem 1.1, we have to explain why Cp

p,m=0,λ=1 is equal to

Cp
p = sup{cp,m=0,λ=1(α, 1) : α < (p− 1)/p} =

{

1
(p−1)p

if 1 < p ≤ 2,
(1+|αp|)p−2

p−1
if p > 2

(see Section 2 for the definition of αp and details).
Rather than to check directly that the supremum in the definition of Cp,0,1 is

attained in the point (αp, 1) we refer to results obtained in Section 2. For m = 0
and λ = 1, the above proof of inequality (1.1), can be repeated with the functions
V , U being defined like in Subsection 2.5 (of course, instead of using Proposition 3.7,
we use Proposition 2.9). This gives us ‖f −H0f‖Lp([0,∞)) ≤ Cp‖f‖Lp([0,∞)), but since
clearly Cp ≤ Cp,0,1, and the constant Cp,0,1 is best possible in this inequality, we
conclude that Cp = Cp,0,1.
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