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Abstract. We show that a prediction in [8] is inaccurate by constructing quasiconformal

mappings onto s-John domains so that the mappings fail to be uniformly continuous between

natural distances. These examples also exhibit the sharpeness of the assumptions in [5].

1. Introduction

Recall that a conformal mapping of the unit disk onto a bounded domain Ω is
uniformly α-Hölder continuous, 0 < α ≤ 1, if and only if the hyperbolic metric ρΩ in
Ω satisfies the logarithmic growth condition

(1.1) ρΩ(z0, z) ≤
1

α
log

dist(z0, ∂Ω)

dist(z, ∂Ω)
+ C0,

where z0 = f(0) and C0 <∞. Here dist refers to the Euclidean distance. This result
is due to Becker and Pommerenke [2].

Gehring and Martio [3] gave a quasiconformal analogue of the result be Becker
and Pommerenke by replacing the hyperbolic metric in (1.1) with the quasihyperbolic
metric. Recall that the quasihyperbolic distance between x and x0 in Ω 6= R

n is

kΩ(x, x0) = inf
γx

ˆ

γx

ds

dist(z, ∂Ω)
,

where the infimum is taken over all rectifiable curves γx in Ω which join x to x0. For
x, y ∈ Ω, there is a (quasihyperbolic) geodesic [x, y] in Ω with

kΩ(x, y) =

ˆ

[x,y]

ds

dist(z, ∂Ω)
,

see [4]. In particular, they showed that the condition

(1.2) kΩ(z0, z) ≤
1

α
log

dist(z0, ∂Ω)

dist(z, ∂Ω)
+ C0,

guarantees that, given Ω′ and aK-quasiconformal mapping f : Ω′ → Ω, the restriction
of f to any ball B ⊂ Ω′ is uniformly Hölder continuous with an exponent β and a
constant M that both are independent of B. Under suitable geometric conditions on
Ω′ they then concluded uniform Hölder continuity in the entire Ω′.
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In [10], Koskela, Onninen and Tyson showed that (1.2) actually implies that a
quasiconformal mapping f : Ω′ → Ω is always uniformly Hölder continuous when
Ω′ is equipped with the internal distance dI(z, w) and Ω with the usual Euclidean
distance. Recall that dI(z, w), for a pair of points in a domain G, is the infimum of
the lengths of all paths that join z to w in G.

In [8], Hencl and Koskela relaxed (1.2) to

(1.3) kΩ(x, x0) ≤ φ

(

1

dist(x, ∂Ω)

)

,

under the assumption that

(1.4)

ˆ

∞

1

dt

φ−1(t)
<∞.

A uniform continuity estimate with respect to the internal metric in Ω′ and the
Euclidean metric in Ω was established under the additional assumption that t 7→
Φ(t)−a is concave for some a > n− 1, where

Φ(t) = ψ−1(t) and ψ(t) =

ˆ

∞

t

ds

φ−1(s)
.

This concavity assumption was speculated in [8] to be superfluous.
Let us recall a class of domains for which growth conditions of the above type

are easily verified. First of all, a bounded domain Ω ⊂ R
n is a John domain if there

is a constant C and a point x0 ∈ Ω so that, for each x ∈ Ω, one can find a rectifiable
curve γ : [0, 1] → Ω with γ(0) = x, γ(1) = x0 and with

(1.5) C dist(γ(t), ∂Ω) ≥ l(γ([0, t]))

for each 0 < t ≤ 1. John used this condition in his work on elasticity [9] and the
term was coined by Martio and Sarvas [11]. Smith and Stegenga [13] introduced the
more general concept of an s-John domain, s ≥ 1, by replacing (1.5) with

(1.6) Cd(γ(t), ∂Ω) ≥ l(γ([0, t]))s.

The recent studies [1, 6, 7] on mappings of finite distortion have generated new
interest in the class of s-John domains. Direct integration along a curve from the
definition of a John domain gives (1.2) with z0 replaced by x0 for the 1-John case and
(1.3) with φ(t) = Cts−1 in the case of an s-John domain, s > 1. It is easy to check
that the concavity assumption on the associated Φ holds if s < 1 + 1

n
and that the

convergence condition holds when s < 2. On the other hand, Guo has established
in [5] the above uniform continuity result for s-John domains with 1 ≤ s < 1 + 1

n−1
.

Our first result shows that the concavity assumption is not superfluous and that the
requirement that 1 ≤ s < 1 + 1

n−1
cannot be relaxed in the planar case.

Theorem 1.1. There exist a bounded 2-John domain Ω ⊂ R
2, a constant C <

∞ and a point x0 ∈ Ω with

(1.7) kΩ(x, x0) ≤ C dist(x, ∂Ω)−
1
2

for all x ∈ Ω so that a quasiconformal mapping f : Ω′ → Ω fails to be uniformly

continuous with respect to the Euclidean metric in Ω and dI in Ω′ for a bounded

domain Ω′ ⊂ R
2.

The above example is somewhat surprising since the modulus of continuity from
[8] does not degenerate when the exponent −a in kΩ(x, x0) ≤ C dist(x, ∂Ω)−a tends
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−1/n nor does the modulus of continuity in [5] when s tends to 1+ 1
n−1

in the s-John
condition.

Our second result shows that the concavity condition is necessary in all dimen-
sions and that the value 1 + 1

n−1
is critical in the s-John condition.

Theorem 1.2. For each n ≥ 3, there exist a bounded domain Ω′ ⊂ R
n and a

domain Ω ⊂ R
n that is s-John for all s > 1 + 1

n−1
with

(1.8) kΩ(x, x0) ≤ C dist(x, ∂Ω)−
1
n log

C

dist(x, ∂Ω)

for some constant C < ∞, all x ∈ Ω and a quasiconformal mapping f : Ω′ → Ω so

that f is not uniformly continuous with respect to the Euclidean metric in Ω and dI
in Ω′.

The domain Ω in Theorem 1.1 cannot be required to be simply connected. More
generally, neither the domain in Theorem 1.1 nor in Theorem 1.2 can be required to
be quasiconformally equivalent to a uniform domain. For this see [5].

It would be interesting to know whether one could take s = 1+ 1
n−1

and dispose
with the logarithmic term in Theorem 1.2.

2. Proofs of the main results

Proof of Theorem 1.1. Our 2-John domain Ω will be constructed inductively as
indicated in Figure 1.

b 0

a 0

c0

b 1 c1

a 1

Q1

Q1 Q2

Ω

Ω 0

Ω 1

b 0

x0

b 1

Figure 1. The 2-John domain Ω.

Set aj = 2−2(j+1), bj = 2−j and cj = 2−2(j+1). For j = 0, we let the Ω0-part consist
of a rectangle of length 1 and width a0 centered at the origin, and two rectangular
“legs” of width c0 and length b0. The two rectangular “legs” are obtained in the
following manner: first remove the central square Q1 of side-length b0; then set the
distance between Q1 and the vertical boundary of Ω0 to be c0. Next, for j = 1, we let
the Ω1-part consist of a rectangle of length 1 and width a1 and four rectangular “legs”
of width c1 and length b1. The four rectangular “legs” are obtained in a similar fashion
as before: first remove 3 squares of side-length b1; then make them equi-distributed,
i.e. the gap between two consecutive squares is c1; finally set the distance between Q2

and the vertical boundary of Ω1 to be c1. We continue the process. Let the Ωj-part
consist of a rectangle of length 1 and width aj and 2j rectangular “legs” of width cj and
length bj . The rectangular “legs” are obtained by removing 2j+1 − 1 equi-distributed
squares of side-length bj in a similar way as before. Among these removed squares,
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we label from middle to the right-most as Q1, Q2, . . . , Q2j respectively. According
to our construction, the distance between two consecutive removed squares is cj and
the distance between Q2j and the vertical boundary of Ωj is also cj . Finally, our
domain Ω is the union of all Ωj ’s. It is clear from the construction that Ω is 2-John
and symmetric with respect to the y-axis.

Let x0 = (0, 0) be the point marked in Figure 1. It is easy to check that the
assumption (1.7) is satisfied.

We next construct our source domain Ω′ and a quasiconformal mapping g : Ω′ →
Ω, which is not uniformly continuous with respect to the metrics d(x, y) = |x− y| in
Ω and dI in Ω′. Actually, we construct a quasiconformal mapping f : Ω → Ω′ whose
(quasiconformal) inverse has the desired properties.

The idea is demonstrated in Figure 2: we scale the upper part of each Ωj by 1
j

and replace the associated 2j+1 rectangular “legs” by the same number of new “legs”.
The vertical distance between the scaled upper parts of Ωj and Ωj+1 is set to be
2j−2. We also make the domain Ω′ symmetric with respect to y-axis. Since the
distance between two consecutive legs in Ωj is 2−j, the distance between the tops of

two consecutive “legs” in Ω′

j is 2−j

j
. For the bottoms, the distance is approximately

2−j−1

j+1
.

f j

Figure 2. Ω and Ω
′ in the step j.

Recall the labelled squares Qi, i = 1, . . . , 2j introduced in Ωj . We denote by Q̃i

the “leg” next to Qi, on the right. We will construct a quasiconformal mapping fj
from the (translated) rectangle Q̃i to the (translated) new “leg” Q′

i as in Figure 3.
Q′

i consists of two parts A′ and B′. The distance between the bottom line segment
0a and the top line segment in the x-direction is

mj
i =

[2−j−1 + 2−2(j+1)] · i

j
−

[2−j−1 + 2−2(j+1)] · i

j + 1
.

It is clear that mj
i ≈ i·2−j

j2
when j is large. The distance of the top and the

bottom in y-direction is 2
j2

. In Figure 3, a =
(

2−2(j+1)

j+1
, 0
)

, p =
(

i·2−j

2j2
, 1
j2

)

and q =
(

i·2−j

2j2
+ 2−(j+1)

j
, 1
j2

)

. We will write down below a quasiconformal mapping fj : A→ A′

such that fj maps the bottom line segment of A linearly to 0a and the top line
segment of A affinely to pq, respectively. The line 0p is of the form y = k1x, where

k1 =
1/j2

i · 2−j/(2j2)
=

2j+1

i
≥ 1.

Similarly, the line aq is of the form y = k2(x−
2−2(j+1)

j+1
), where

k2 =
1/j2

i·2−j

2j2
+ 2−(j+1)

j
− 2−2(j+1)

j+1

≈
2j

i+ j
.
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Figure 3. The quasiconformal mapping from Q̃i to Q′

i
.

We are looking for a quasiconformal mapping of the form f i
j(x, y) = (g̃j(y)x +

gj(y), k1gj(y)), where g̃j(y) = k1g
′

j(y) for all y ∈ [0, 2−(j+1)] and gj is a smooth
increasing function. Clearly, such a mapping fj maps horizontal line segments to
horizontal line segments. We further require that it maps the left side of A to 0p
and the right side of A to aq, gj(0) = 0, gj(2

−j) = 1
j2

and g̃j(0) =
1

j+1
. By definition,

f i
j(2

−2(j+1), y) = (g̃j(y) · 2
−2(j+1) + gj(y), k1gj(y)).

The further requirements are satisfied if g̃j = k1g
′

j,

gj(y) = k2 · k
−1
1 g̃j(y) · 2

−2(j+1) +
k2
k1
gj(y)−

k2
j

· 2−2(j+1),(2.1)

gj(0) = 0, gj(2
−j) =

1

j2
and g̃j(0) =

1

j + 1
.(2.2)

One can easily solve the above system of equations by setting gj(y) = a · ea
i
jy+c − b,

where

aji = 22(j+1)k1 − k2
k1k2

, b =
1

k1(j + 1)aij

and the constants b and c are chosen such that

a · ec = b and a · ea
i
j
2−j+c − b =

1

j2
.

We next show that f i
j is a quasiconformal mapping. A direct computation gives us

Df i
j(x, y) =

[

g̃j(y) g̃′j(y)x+ g′j(y)
0 k1g

′

j(y)

]

.

We only need to show that g̃′j(y)x + g′j(y) ≤ Mk1g
′

j(y), for some constant M inde-
pendent of i and j, and for all x, y ∈ A. Since k1 ≥ 1, it suffices to bound g̃′j(y)x. By
definition,

g̃j(y) = k1g
′

j(y) = k1aa
i
je

aijy+c
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and

g̃′j(y) = k1a
i
jg

′

j(y).

Hence we only need to find a uniform bound on x · aij . For this, we first note that k2
is bounded from below by 1

2
and k1−k2

k1
≤ 1. Since x ∈ [0, 2−2(j+1)], we have

aijx ≤
k1 − k2
k1k2

· 22(j+1)x ≤ 2.

This implies that g̃′j(y)x+ g′j(y) ≤ 3k1g
′

j(y) and so f i
j is quasiconformal. Notice

that f i
j(x, 0) = ( x

j+1
, 0), so that, after suitable translations, f i

j matches with our
scaling on the top of Ωj+1. In a similar manner, one can write down a quasiconformal
mapping from B to B′ such that it coincides with f i

j on pq and is linear on each line
segment. In fact, the quasiconformal mapping just slightly differs from the reflection
of fj with respect to the line segment pq (since the length of 0a is approximately the
same as the length of the top line segment when j → ∞ and the picture is exactly a
reflection with respect to pq). When a suitable coordinate system is fixed, it is clear
that the mappings f i1

j and f i2
j only differ by a translation in x-direction and hence

the desired global quasiconformal mapping fj from Ωj to Ω′

j follows by gluing all f i
j ’s

and the scaling maps.
In this manner, the domain Ω′ is well-defined. We can define the quasiconformal

mapping g : Ω′ → Ω by setting g|Ω′

j
= f−1

j . Moreover, g cannot be uniformly contin-

uous since for each j ∈ N, it maps a rectangle of length 1
j

linearly to a rectangle of
length 1. �

Proof of Theorem 1.2. We will give the detailed constructions of our domains and
quasiconformal mapping for n = 3 and indicate how to pass them to all dimensions
at the end of the proof. The idea of the 3-dimensional construction is similar to the
one above and we simply fatten the “Ω0” part of the planar domain in Figure 1 along
the third direction; see Figure 4 below.

Figure 4. The first part of our domain Ω.
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The top part of Figure 4 consists of a rectangle of length 1, width 1
22

and height
1
23

. In the bottom, the rectangle has length 1, width 1
24

and height 1
26

. We attach
four cylindrical “legs” of height 2 · 2−2 between these rectangles. The radius of the
cylinder is about 2−3 and the distance between them is about 2−2.

We can proceed our construction in the following manner. At step j, the top
part consists of a rectangle of length 1, width 2−2j and height 2−3j. In the bottom,
the rectangle has length 1, width 2−2(j+1) and height 2−3(j+1). We attach 22j equi-
distributed cylindrical “legs” of height 2−2j between them. The radius of the cylinder
is about 2−3j and the distance between two consecutive cylinders is about hj = j ·2−2j.
It is clear from our construction that Ω is an s-John domain for any s ∈ (1 + 1

2
,∞).

Let x0 be the central point in the first rectangle of Ω. It is easy to check that the
assumption (1.8) is satisfied.

Our source domain Ω′ is obtained by a similar scaling procedure as in the proof
of Theorem 1.1. To be more precise, at step j, we scale the top rectangle by 1

j2
and

replace the associated 2j cylindrical “legs” by the same number of new “legs”. The
vertical distance between the scaled top rectangle and the bottom rectangle is set to
be h′j =

2
j2

.

2
j

2
jj+1

2
j j+1

2

Figure 5. The new “legs” at step j.

We next explain how to select the new “legs”, see Figure 5 for a top view. In
Figure 5, the top rectangle has length 1

j2
and width 2−2j

j2
. It consists of 22j squares

of side-length 2−2j

j2
. The bottom rectangle has length 1

(j+1)2
and width 2−2(j+1)

(j+1)2
. The

vertical distance between these rectangles is h′j . We insert a square Sj of side-length
1
j2

in the middle of the two rectangles, i.e. the (vertical) distance between Sj and

either of the rectangles is 1
j2

. We divide Sj into 22j subsquares of side-length 2−j

j2
.

Next, we set up a one-to-one correspondence between the 22j squares in the top
rectangle and the subsquares in Sj . To be more precise, we first construct 22j affine
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“rectangles” between each square in the top rectangle and each subsquare in Sj and
then we insert a “cylindrical leg” inside each affine “rectangle”, see Figure 5 for the
order of the affine “rectangles”. The radius of the top circle of the “cylindrical leg”
is set to be 2−3j

j2
and the radius of the bottom circle is 2−j

j2
. Since the 22j affine

“rectangles” have disjoint interiors, the 22j “cylindrical legs” are pairwise disjoint. As
in the proof of Theorem 1.1, we use a similar construction between Sj and the bottom
rectangle.

Reasoning as in the proof of Theorem 1.1, we only need to write down quasicon-
formal mappings between these “legs”. Note that our construction implies that all
the 22j “cylindrical legs” are bi-Lipschitz equivalent, with a constant independent of
j. So finally we reduce the problem to the existence of a quasiconformal mapping g
as in Figure 6.

x

y

z

x

y

z

g

A

B

A’

B’

Figure 6. The quasiconformal mapping from a “cylinder” to a “double cone”.

We will use the coordinate system marked in Figure 6 and write down a quasi-
conformal mapping g from A onto A′ such that g is a scaling between the bottom
and top disks. Set

g(x, y, z) = (g1(z)x, g1(z)y, g2(z)).

We require that g1(0) =
1
j2

, g1(hj) =
22j

j2
, g2(0) = 0, g2(hj) = h′j and g′2(z) = g1(z)

for all z ∈ [0, hj ]. It is easy to check that with these requirements, g will be a
quasiconformal mapping that maps A to A′ such that g is the desired scaling between
the bottom and top disks. One can use a map g2 of the form g2(z) = aj(e

bjz − 1),

where aj ≈
2−2j

j2
and bj ≈ 22j .

As in the planar case, the global quasiconformal mapping f : Ω′ → Ω is obtained
by gluing all these g′s and the corresponding scaling mappings. Moreover, reasoning
as in the planar case, we can easily conclude that f cannot be uniformly continuous
with respect to the metrics d(x, y) = |x− y| in Ω and dI in Ω′.

The construction of the general n-dimensional case can be proceeded in a similar
manner. At step j, Ωj consists of a n-dimensional rectangle of length a1 = 1 and
(other) edge-lengths a2 = · · · = an−1 = 2−(n−1)j , an = 2−nj and 2j “cylindrical legs”
of length hj = j · 2−(n−1)j . The radius of the cylinder is 2−nj. So Ω is an s-John
domain for any s ∈ (1 + 1

n−1
,∞).
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The source domain Ω′ is obtained by a similar scaling procedure as before. To be
more precise, at step j, we scale the top rectangle by 1

j2
and replace the associated

2j cylindrical “legs” by the same number of new “legs”. The vertical distance between
the scaled top rectangle and the bottom rectangle is set to be h′j =

2
j2

.
We use a similar idea as before to obtain new “legs” between the top rectangle

and bottom rectangle as in Figure 5. Namely, we insert a (n− 1)-dimensional cube

of edge-length 1
j2

and then divide it into 2(n−1)j subcubes of edge-length 2−j

j2
. Then

attach 2(n−1)j affine “rectangles” in a similar manner as before. Inside each affine
“rectangle”, we insert a “cylindrical leg”. The radius of the top of the “cylindrical leg”
is 2−nj

j2
and the radius of the bottom is 2−j

j2
. Reasoning as before, one essentially only

needs to write down a quasiconformal mapping g between these “legs”.
The global quasiconformal mapping f : Ω′ → Ω is obtained by gluing all these g′s

and the corresponding scaling mappings. Moreover, reasoning as in the planar case,
we can easily conclude that f cannot be uniformly continuous with with respect to
the metrics d(x, y) = |x− y| in Ω and dI in Ω′. �
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