Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 905-920

RIGIDITY THEOREMS FOR MINIMAL SUBMANIFOLDS IN A HYPERBOLIC SPACE

Adriano C. Bezerra and Qiaoling Wang

Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília - DF, Brazil
and Instituto Federal de Educão, Ciência e Tecnologia de Goiás
72811-580, Luziânia - GO, Brazil; adriano.bezerra 'at' ifg.edu.br

Universidade de Brasília, Departamento de Matemática
70910-900, Brasília - DF, Brazil; wang 'at' mat.unb.br

Abstract. Let M be a complete immersed minimal hypersurface in a hyperbolic space. In this paper we establish conditions on the first eigenvalue of the stability and super stability operators and the Ld norm of the length of the second fundamental form of M to imply that M is totally geodesic. Similar results for minimal submanifolds in a hyperbolic space are also proven.

2010 Mathematics Subject Classification: Primary 53C20, 53C42.

Key words: Minimal submanifolds, hyperbolic space, super stability operator.

Reference to this article: A. C. Bezerra and Q. Wang: Rigidity theorems for minimal submanifolds in a hyperbolic space. Ann. Acad. Sci. Fenn. Math. 42 (2017), 905-920.

Full document as PDF file

https://doi.org/10.5186/aasfm.2017.4253

Copyright © 2017 by Academia Scientiarum Fennica