Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 42, 2017, 339-356
Università degli Studi di Bologna,
Dipartimento di Matematica
Piazza di P.ta S.Donato, 5, 40126 Bologna, Italy;
nicola.arcozzi 'at' unibo.it
Università degli Studi di Bologna,
Dipartimento di Matematica
Piazza di P.ta S.Donato, 5, 40126 Bologna, Italy; fausto.ferrari 'at' unibo.it
Università di Padova, Dipartimento di Matematica Pura e Applicata
Via Trieste, 63, 35121 Padova, Italy;
montefal 'at' math.unipd.it
Abstract. We study geometric properties of the Carnot–Carathéodory signed distance δs to a smooth hypersurface S in some 2-step Carnot groups. In particular, a sub-Riemannian version of Gauss' Lemma is proved.
2010 Mathematics Subject Classification: Primary 49Q15, 46E35, 22E60.
Key words: Carnot groups, sub-Riemannian geometry, CC-metrics, distance from hypersurfaces, metric normal, normal geodesics.
Reference to this article: N. Arcozzi, F. Ferrari and F. Montefalcone: Regularity of the distance function to smooth hypersurfaces in some two-step Carnot groups. Ann. Acad. Sci. Fenn. Math. 42 (2017), 339-356.
https://doi.org/10.5186/aasfm.2017.4222
Copyright © 2017 by Academia Scientiarum Fennica