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Abstract. We extend to n-dimensions a characterization of the Marcinkiewicz L(p,∞) spaces

first obtained by Garsia–Rodemich in the one dimensional case. This leads to a new proof of the

John–Nirenberg self-improving inequalities. We also show a related result that provides still a new

characterization of the L(p,∞) spaces in terms of distribution functions, reflects the self-improving

inequalities directly, and also characterizes L(∞,∞), the rearrangement invariant hull of BMO.

We show an application to the study of tensor products with L(∞,∞) spaces, which complements

the classical work of O’Neil [19] and the more recent work of Astashkin [2].

1. Introduction

In their seminal paper [11], John–Nirenberg introduced the space BMO and
proved the celebrated John–Nirenberg inequality for functions in BMO. It is also
well known, although perhaps somewhat less so, that in the same paper, John–
Nirenberg showed that the BMO self improvement inequality can be refined and
framed as a scale of inequalities. These inequalities (or embeddings) are associated
with what we nowadays call “John–Nirenberg spaces”. This result of John–Nirenberg,
which we now describe, is the starting point of our development in this paper.

Let Q0 ⊂ Rn, be a fixed cube1, 1 ≤ p < ∞. Let

P (Q0) = {{Qi}i∈N : countable families of subcubes Qi ⊂ Q0,

with pairwise disjoint interiors}.

The John–Nirenberg spaces are defined by

JNp(Q0) = {f ∈ L1(Q0) : JNp(f,Q0) < ∞},

where2

JNp(f,Q0) = sup
{Qi}i∈P (Q0)







{

∑

i

|Qi|

(

1

|Qi|

ˆ

Qi

|f − fQi
| dx

)p
}1/p







.

doi:10.5186/aasfm.2016.4129
2010 Mathematics Subject Classification: Primary 42B35, 46E30.
Key words: John–Nirenberg inequality, rearrangement, BMO.
The author was partially supported by a grant from the Simons Foundation (#207929 to

Mario Milman).
1A “cube” in this paper will always mean a cube with sides parallel to the coordinate axes.
2In what follows, as usual, fQ = 1

|Q|

´

Q
f dx.



492 Mario Milman

Let us also recall that, for a given measure space, the Marcinkiewicz L(p,∞) spaces,
1 ≤ p < ∞, are defined by demanding3 that ‖f‖∗L(p,∞) < ∞, where

(1.1) ‖f‖∗L(p,∞) = sup
t>0

{f ∗(t)t1/p} = sup
t>0

{t (λf(t))
1/p};

while for p = ∞, the space L(∞,∞) (cf. [3]) is defined4 by the condition ‖f‖L(∞,∞) <
∞, where

‖f‖L(∞,∞) = sup
t>0

{f ∗∗(t)− f ∗(t)},

and

f ∗∗(t) =
1

t

ˆ t

0

f ∗(s)ds.

Then (cf. [11, Lemma 3], and also [21, Theorem 4.1, p. 209] for a more detailed
proof).

Theorem 1. Let 1 < p < ∞. Suppose that f ∈ JNp(Q0), then f − fQ0 ∈
L(p,∞)(Q0), and there exists a constant A(p,Q0, n) such that

‖f − fQ0‖L(p,∞)(Q0)
≤ A(p,Q0, n)JNp(f,Q0).

In particular,

f − fQ0 ∈
⋂

r<p

Lr(Q0).

The limiting condition defining JNp(Q0) when p = ∞ corresponds5 to BMO, and
in this case Theorem 1 corresponds to a version of the well known John–Nirenberg
inequality [11].

In the one dimensional case, Garsia and Rodemich [10] improved on Theorem 1.
To formulate the Garsia and Rodemich result it will be convenient to introduce a
different scale of spaces which we shall term Garsia–Rodemich spaces. It will be
useful for later use to give the relevant definitions in the n-dimensional case.

Let Q0 ⊂ Rn be a fixed cube, let 1 ≤ p < ∞, and let p′ be defined by 1
p
+ 1

p′
= 1.

The Garsia–Rodemich spaces GaRop(Q0) are defined as follows. We shall say that
f ∈ GaRop(Q0), if and only if f ∈ L1(Q0), and ∃C > 0 such that for all {Qi}i∈N
∈ P (Q0) we have

(1.2)
∑

i

1

|Qi|

ˆ

Qi

ˆ

Qi

|f(x)− f(y)| dx dy ≤ C

(

∑

i

|Qi|

)1/p′

.

We let

GaRop(f,Q0) = inf{C > 0: such that (1.2) holds}.

Then we have (cf. [10])

3Here f∗ denotes the non-increasing rearrangement of f and λf its distribution function (cf. [4]).
4Some authors (including sometimes the author of this paper) use a different notation and let W

denote what we call L(∞,∞). at the same time that they use the notation L(∞,∞) = L∞.
5The JN∞(Q0) condition would read

sup
{Qi}i∈P (Q0)

1

|Qi|

ˆ

Qi

|f − fQi
| dx < ∞.
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Theorem 2. 6Let 1 < p < ∞, and let Q0 = I = [0, 1]. Then, as sets

GaRop(I) = L(p,∞)(I).

Remark 1. The elementary proof of the embedding L(p,∞) ⊂ GaRop outlined
in [10] works in n-dimensions and actually shows that (cf. Theorem 5 part (ii), below)

(1.3) GaRop(f, I) ≤
p

p− 1
2 ‖f‖∗L(p,∞)(I) .

By Theorem7 1 we have

JNp(I) ( L(p,∞)(I),

therefore by Theorem 2 (cf. Section 2 below for a direct proof of the n dimensional
case) it follows that

(1.4) JNp(I) ( GaRop(I).

In conclusion, Theorem 2 not only improves on Theorem 1 in the one dimensional
case, but also gives us an interesting characterization of the Marcinkiewicz L(p,∞)(I)
spaces, 1 < p < ∞. Unfortunately, one part of the proof of Theorem 2 uses a non-
trivial rearrangement inequality, also due to Garsia–Rodemich [10], which is only
proved there in the one dimensional8 case.

In [10], the authors briefly suggest a possible different method to prove Theorem 2
in n-dimensions, and without dimensional constants, but no details are provided9. In
this note we give a new proof Theorem 2 that is valid in n dimensions (cf. Theorem 5
below) . Our approach is different from the one given in [10], and does not use mar-
tingale techniques. Instead, our method is ultimately based on Calderón–Zygmund
type decompositions, following classical ideas10 in [3].

As we shall see (cf. Section 2) the verification that the John–Nirenberg conditions
are stronger than the Garsia–Rodemich conditions (e.g. (1.4)) is immediate. There-
fore, the crucial aspect of this approach to the John–Nirenberg theorem is the fact
that the Garsia–Rodemich spaces are the same as the Marcinkiewicz L(p,∞) spaces!
This clarifies the self improvement results of John–Nirenberg. Moreover, these ideas
could potentially be useful in the investigation of related issues, e.g. the dimensional
constants involved in the John–Nirenberg embeddings (cf. [7]).

Now the classical definitions of the L(p,∞) spaces are given in terms of growth
conditions on rearrangements or distribution functions (cf. [4], [5], [18], [6], [20],
etc.). The case p = ∞, which corresponds to L(∞,∞) (“the rearrangement invariant
hull of BMO”, cf. [3]), also admits a similar characterization through the use of the
oscillation operator f ∗∗ − f ∗, and indeed one can find a characterization of all the

6Here it seems appropriate to bring up the following. In his paper [8], Dyson writes “Professor
Littlewood, when he makes use of an algebraic identity always saves himself the trouble of proving
it; he maintains that an identity, if true, can be verified in a few lines by anybody obtuse enough
to feel the need of verification. My object in the following pages is to confute this assertion”. It is
left to reader to decide if the author of the present paper is demonstrating his own obtuseness.

7The fact that the containment is strict was shown in [1].
8See also [12] for related inequalities.
9From [10, p. 115]: “We wish to point out also that using the Martingale techniques of [9] a proof

of Theorem 2 can be obtained quite directly and without dimensional constants.” We hope to follow
up this suggestion elsewhere.

10It has the drawback of containing constants that depend on the dimension.
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L(p,∞) spaces, p ∈ (1,∞], in the same fashion, namely

‖f‖#L(p,∞) = sup
s
{(f ∗∗(s)− f ∗(s))s1/p} < ∞.

This characterization, while extremely useful in many problems (cf. [4], [17]) is not
always easy to implement, and does not reflect immediately the self improvement11

of the Garsia–Rodemich construction. In this direction, we found a different char-
acterization of L(∞,∞), which gives an implicit differential inequality reflecting the
exponential decay of the distribution function of elements of L(∞,∞), via the use
of distribution functions (cf. Section 3 below)

Theorem 3. Let (Ω, µ) be a measure space12. Then, f ∈L(∞,∞) :=L(∞,∞)(Ω)
if and only if there exists C > 0 such that for all t > 0,

(1.5)

ˆ ∞

t

λf(s) ds ≤ Cλf(t),

and

‖f‖##
L(∞,∞) := inf{C : such that (1.5) holds} = ‖f‖L(∞,∞) .

This characterization gives immediately the exponential integrability of functions
in L(∞,∞), via the implicit differential inequality (1.5). In fact, it is also welcome
that there is a similar characterization for all L(p,∞) spaces, 1 < p < ∞.

Theorem 4. Let 1 < p < ∞. Let (Ω, µ) be a measure space. Then,

L(p,∞) := L(p,∞) (Ω) = {f ∈ L1
loc

(Ω) : ‖f‖∗L(p,∞) = sup
s
{f ∗(s)s1/p} < ∞}

= {f ∈ L1
loc

(Ω) : ‖f‖L(p,∞) = sup
s
{f ∗∗(s)s1/p} < ∞},

(1.6)

coincides with the set of all f such that f ∗∗(∞) = 0, and

‖f‖#L(p,∞) = sup
s>0

{(f ∗∗(s)− f ∗(s))s1/p} < ∞,

which in turn coincides with the set of all f such that f ∗∗(∞) = 0, and

(1.7) ‖f‖##
L(p,∞) = sup

t>0
{

1

(λf(t))
1−1/p

ˆ ∞

t

λf(s) ds} < ∞.

If one combines (1.7) with the usual definition of the spaces L(p,∞) (cf. (1.6)),
one readily obtains a known characterization of the L(p,∞) spaces which was appar-
ently first given by O’Neil [19].

Corollary 1. Let 1 < p < ∞, then

(1.8) ‖f‖∗L(p,∞) ∼ inf{C1/p :

ˆ ∞

t

λf(s)ds ≤ Ct1−p}.

Remark 2. One difference between (1.7) and (1.8) is given by the fact that the
former also works in the case p = ∞. Both formulations can be extended to more
general Marcinkiewicz spaces, Mφ, where φ is a concave function. In particular, we
refer to [19] for the corresponding theory of generalized Marcinkiewicz spaces Mφ

defined via (1.8).

11Note however that (f∗∗(t)− f∗(t)) = t d
dt
(−f∗∗(t)).

12When dealing with infinite measure spaces we shall always assume that all functions f consid-
ered are such that their distribution functions λf (t) are not equal to ∞, for all t > 0.
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In his expansive work [19], O’Neil used the formulae (1.8 ) to study tensor prod-
ucts of L(p, q) spaces (cf. also [2] and [13]). The space L(∞,∞) was introduced later
(cf. [3]), and consequently was not considered in [19]. In the last section of this paper
we give an application of (1.5) to show that (cf. Theorem 6 in Section 4 below)

(1.9) L(∞,∞)(Ω1)⊗ L∞(Ω2) ⊂ L(∞,∞)(Ω1 × Ω2).

While we think that (1.9) could be useful in establishing other embeddings of tensor
products involving L(∞,∞), such an undertaking falls outside the scope of this note.

In conclusion, we should mention that this paper is part of series of papers by
the author on BMO, self improvement and interpolation, that go back at least to
[14], [15], [16], with the most recent opus being [17], to which we refer for background
information and further references.

2. John–Nirenberg spaces and Garsia–Rodemich spaces

It is easy to see the connection of the John–Nirenberg spaces with BMO. Fix a
cube Q0 ⊂ Rn and let

‖f‖BMO(Q0)
= sup

{

1

|Q|

ˆ

Q

|f − fQ| dx : Q subcube of Q0

}

.

Then, for 1 ≤ p < ∞,

JNp(f,Q0) ≤ ‖f‖BMO(Q0)
|Q0|

1/p .

Indeed, if {Qi}i∈N ∈ P (Q0), then we clearly have

{

∑

i

|Qi|

(

1

|Qi|

ˆ

Qi

|f − fQi
| dx

)p
}1/p

≤

{

∑

i

|Qi|
(

‖f‖BMO(Q0)

)p
}1/p

≤ ‖f‖BMO(Q0)
|Q0|

1/p .

The purpose of this section is to prove the following

Theorem 5. Let 1 < p < ∞, and let Q0 ⊂ Rn be a fixed cube. Then

(i) JNp(Q0) ⊂ GaRop(Q0), in fact

(2.1) GaRop(f,Q0) ≤ 2JNp(f,Q0).

(ii) GaRop(Q0) = L(p,∞)(Q0), in fact we have

GaRop(f,Q0) ≤
2p

p− 1
‖f‖∗L(p,∞) and

sup
t

t1/p (f ∗∗(t)− f ∗(t)) ≤ 2n/p
′+1GaRop(f,Q0) +

(

4

|Q0|

)1/p′

‖f‖L1 .

Proof. (i) Suppose that {Qi}i∈N ∈ P (Q0). Then for all Qi , i ∈ N , we have,
ˆ

Qi

ˆ

Qi

|f(x)− f(y)| dx dy ≤

ˆ

Qi

ˆ

Qi

|f(x)− fQi
| dx dy +

ˆ

Qi

ˆ

Qi

|fQi
− f(y)| dx dy

= 2 |Qi|

ˆ

Qi

|f − fQi
| dx.
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Therefore,

∑

i

1

|Qi|

ˆ

Qi

ˆ

Qi

|f(x)− f(y)| dx dy ≤ 2
∑

i

ˆ

Qi

|f − fQi
| dx

= 2
∑

i

|Qi|
1/p′ |Qi|

1/p 1

|Qi|

ˆ

Qi

|f − fQi
| dx

≤ 2

(

∑

i

|Qi|

)1/p′ {
∑

i

|Qi|

(

1

|Qi|

ˆ

Qi

|f − fQi
| dx

)p
}1/p

,

and (2.1) follows.
(ii) We show first that L(p,∞)(Q0) ⊂ GaRop(Q0). Let {Qi}i∈N ∈ P (Q0), then

∑

i

1

|Qi|

ˆ

Qi

ˆ

Qi

|f(x)− f(y)| dx dy ≤
∑

i

1

|Qi|

ˆ

Qi

ˆ

Qi

(|f(x)|+ |f(y)|) dx dy

≤ 2

ˆ

∪Qi

|f(x)| dx ≤ 2

ˆ

∑
i|Qi|

0

f ∗(t)dt

≤ 2 ‖f‖∗L(p,∞)

ˆ

∑
i|Qi|

0

t−1/pdt

=
2p

p− 1
‖f‖∗L(p,∞)

(

∑

i

|Qi|

)1/p′

.

Consequently,

GaRop(f,Q0) ≤
2p

p− 1
‖f‖∗L(p,∞) .

To show the remaining inclusion, GaRop(Q0) ⊂ L(p,∞)(Q0), we argue as in [4,
Chapter 5]. We provide all the details for the sake of completeness.

To show that a function f belongs to L(p,∞)(Q0) it is equivalent to show that
|f | ∈ L(p,∞)(Q0), therefore, since

GaRop(|f | , Q0) ≤ GaRop(f,Q0),

to show that f ∈ GaRop(Q0) belongs to L(p,∞)(Q0), we can assume without loss
that f ≥ 0. Let f ∈ GaRop(Q0), f ≥ 0. Fix t > 0, such that t < |Q0| /4, and let
E = {x ∈ Q0 : f(x) > f ∗(t)}. By definition, |E| ≤ t < |Q0| /4, consequently, we can
find a relatively open subset of Q0, Ω, say, such that E ⊂ Ω and |Ω| ≤ 2t ≤ |Q0| /2.
By [4, Lemma 7.2, p. 377] we can find a sequence of cubes {Qi}i∈N , with pairwise
disjoint interiors, such that

(i) |Ω ∩Qi| ≤
1

2
|Qi| ≤ |Ωc ∩Qi|, i = 1, 2 . . .,

(ii) Ω ⊂
⋃

i∈N

Qi ⊂ Q0,

(iii) |Ω| ≤
∑

i∈N

|Qi| ≤ 2n+1 |Ω|.
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Now, to estimate t1/p (f ∗∗(t)− f ∗(t)), it will be more convenient, by homogeneity, to
consider t (f ∗∗(t)− f ∗(t)) first. Then, we have

t (f ∗∗(t)− f ∗(t)) =

ˆ

E

{f(x)− f ∗(t)} dx ≤
∑

i∈N

ˆ

E∩Qi

{f(x)− f ∗(t)} dx

=
∑

i∈N

(
ˆ

E∩Qi

{f(x)− fQi
} dx+ |E ∩Qi| {fQi

− f ∗(t)}

)

≤
∑

i∈N

(
ˆ

Qi

{f(x)− fQi
} dx+ |E ∩Qi| {fQi

− f ∗(t)}

)

= (I) + (II).

Let J = {i : fQi
> f ∗(t)}, then

(II) =
∑

i∈N

|E ∩Qi| {fQi
− f ∗(t)} ≤

∑

i∈J

|E ∩Qi| {fQi
− f ∗(t)}

≤
∑

i∈J

|Ω ∩Qi| {fQi
− f ∗(t)} ≤

∑

i∈J

|Ωc ∩Qi| {fQi
− f ∗(t)}

=
∑

i∈J

ˆ

Ωc∩Qi

{fQi
− f ∗(t)} dx ≤

∑

i∈J

ˆ

Ωc∩Qi

{fQi
− f(x)} dx (since Ωc ⊂ Ec)

≤
∑

i∈J

ˆ

Qi

|fQi
− f(x)| dx ≤

∑

i∈J

1

|Qi|

ˆ

Qi

ˆ

Qi

|f(y)− f(x)| dx dy

≤ GaRop(f,Q0)

(

∑

i∈N

|Qi|

)1/p′

.

Likewise,

(I) =
∑

i∈N

ˆ

Qi

{f(x)− fQi
} dx =

∑

i∈N

1

|Qi|

ˆ

Qi

ˆ

Qi

(f(x)− f(y)) dx dy

≤
∑

i∈N

1

|Qi|

ˆ

Qi

ˆ

Qi

|f(x)− f(y)| dx dy ≤ GaRop(f,Q0)

(

∑

i∈N

|Qi|

)1/p′

.

Combining the inequalities we have obtained,

t (f ∗∗(t)− f ∗(t)) ≤ 2GaRop(f,Q0)

(

∑

i∈N

|Qi|

)1/p′

≤ 2GaRop(f,Q0)(2
n+1)1/p

′

2−1/p′t1/p
′

.

Therefore,

sup
t≤|Q0|/4

t1/p (f ∗∗(t)− f ∗(t)) ≤ 2n/p
′+1GaRop(f,Q0).

To deal with t > |Q0| /4, we note that

t (f ∗∗(t)− f ∗(t)) =

ˆ ∞

f∗(t)

λf(s) ds ≤

ˆ ∞

0

λf (s) ds = ‖f‖L1 ;
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therefore,

t1/p (f ∗∗(t)− f ∗(t)) ≤ t−1/p′ ‖f‖L1 ≤

(

4

|Q0|

)1/p′

‖f‖L1 .

Thus,

sup
t

t1/p (f ∗∗(t)− f ∗(t)) ≤ 2n/p
′+1GaRop(f,Q0) +

(

4

|Q0|

)1/p′

‖f‖L1 ,

and the desired result follows by Theorem 4. �

3. Another characterization of the L(p,∞) spaces, 1 < p ≤ ∞

The purpose of this section is to give a proof of Theorem 3 and Theorem 4. We
start with the former.

Proof. Let f be such that there exists C > 0 such that (1.5) holds for all t > 0.
Then, we have

(f ∗∗(t)− f ∗(t)) t =

ˆ ∞

f∗(t)

λf(s) ds ≤ Cλf(f
∗(t)) ≤ Ct.

Thus,

‖f‖L(∞,∞) ≤ inf{C : (1.5) holds} = ‖f‖##
L(∞,∞) .

Conversely, suppose that f ∈ L(∞,∞). Then, for all t > 0, we have,
ˆ ∞

f∗(t)

λf(s) ds = (f ∗∗(t)− f ∗(t)) t ≤ t ‖f‖L(∞,∞) .

Therefore,
ˆ ∞

f∗(λf (t))

λf(s) ds ≤ λf (t) ‖f‖L(∞,∞) .

Now, since f ∗(λf(t)) ≤ t, we have
ˆ ∞

t

λf(s)ds ≤ λf(t) ‖f‖L(∞,∞) .

Consequently,
‖f‖##

L(∞,∞) ≤ ‖f‖L(∞,∞) ,

concluding the proof. �

We proceed with the proof of Theorem 4.

Proof. We trivially have ‖f‖#L(p,∞) ≤ ‖f‖L(p,∞). Moreover, if f ∗∗(∞) = 0, then

f ∗∗(t)t1/p = t1/p
ˆ ∞

t

(f ∗∗(s)− f ∗(s))
ds

s
= t1/p

ˆ ∞

t

(f ∗∗(s)− f ∗(s)) s1/ps−1/pds

s

≤ t1/p ‖f‖#L(p,∞)

ˆ ∞

t

s−1/pds

s
= p ‖f‖#L(p,∞) .

Consequently,
‖f‖L(p,∞) ≤ p ‖f‖#L(p,∞) .

The last part of the result follows exactly as the proof of Theorem 3 (the case p = ∞).
For example, from

ˆ ∞

t

λf(s) ds ≤ ‖f‖##
L(p,∞) (λf(t))

1−1/p
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we get

(f ∗∗(t)− f ∗(t)) t =

ˆ ∞

f∗(t)

λf(s) ds ≤ ‖f‖##
L(p,∞) t

1−1/p

and therefore
‖f‖#L(p,∞) ≤ ‖f‖##

L(p,∞) .

Conversely, for all t > 0,

t ‖f‖#L(p,∞) ≥ tt1/p (f ∗∗(t)− f ∗(t)) ≥ t1/p
ˆ ∞

f∗(t)

λf(s) ds.

Thus,

λf(t) ‖f‖
#
L(p,∞) ≥ (λf(t))

1/p

ˆ ∞

f∗(λf (t))

λf (s) ds ≥ (λf (t))
1/p

ˆ ∞

t

λf (s) ds,

and the desired result follows. �

Remark 3. Observe that when p = 1, the previous considerations provide a
characterization of L1, not of L(1,∞). Indeed, the corresponding result for p = 1 is

sup
t

f ∗∗(t)t = sup
t

ˆ t

0

f ∗(s) ds = ‖f‖L1 = sup
t

ˆ ∞

t

λf(s) ds.

In other words, L1 is characterized by the condition

sup
t>0

ˆ ∞

t

λf(s) ds ≤ C.

Note that in this case (λf(t))
1−1/1 = 1.

To conclude this section we prove Corollary 1.

Lemma 1. Let 1 < p < ∞. Then

‖f‖##
L(p,∞) ≈ inf{C1/p :

ˆ ∞

t

λf(s) ds ≤ Ct1−p}.

Proof. Note that

(3.1) (λf(t))
1/p ≤ ‖f‖L(p,∞) t

−1 ⇔ λf(t) ≤ ‖f‖pL(p,∞) t
−p.

Suppose that f ∈ L(p,∞). By the previous Theorem,
ˆ ∞

t

λf(s) ds ≤ ‖f‖##
L(p,∞) (λf(t))

1−1/p

≤ ‖f‖##
L(p,∞) ‖f‖

p(1−1/p)
L(p,∞) t−p(1−1/p) (by (3.1))

≤ C ‖f‖pL(p,∞) t
1−p.

Conversely, suppose that
ˆ ∞

t

λf(s) ds ≤ Ct1−p.

Then, since λf decreases,

λf(t)
1/p t

2
≤

ˆ t

t/2

λf (s)
1/p ds =

ˆ t

t/2

λf (s)λf(s)
1/p−1 ds ≤ λf(t/2)

1/p−1

ˆ t

t/2

λf(s) ds

≤ λf (t/2)
1/p−1

ˆ ∞

t/2

λf(s) ds ≤ λf (t/2)
1/p−1C2p−1t1−p.



500 Mario Milman

Therefore,
λf(t/2)

−1/p+1λf(t)
1/p ≤ C̃t−p

and, consequently,
λf(t)

−1/p+1λf(t)
1/p ≤ C̃t−p.

The desired result follows. �

4. Final remarks

4.1. Tensor products with L(∞,∞). The new formula we presented for the
computation of the “norm” ‖ ‖L(∞,∞) has several applications. Here, following O’Neil

[19] (cf. also [2], [13]), we shall briefly consider tensor products with L(∞,∞). It is
not our purpose to develop the most general results, but to give a flavor of the ideas
involved.

Theorem 6. Let (Ω1, µ1), (Ω2, µ2), be measure spaces. Then,

(4.1) L(∞,∞)(Ω1)⊗ L∞(Ω2) ⊂ L(∞,∞)(Ω1 × Ω2),

with
‖f ⊗ g‖L(∞,∞)(Ω1×Ω2)

≤ ‖f‖L(∞,∞)(Ω1)
‖g‖L∞(Ω2)

.

Proof. Let f ∈ L(∞,∞)(Ω1), g ∈ L∞(Ω2). The distribution function of f ⊗ g is
computed in [19, Lemma 7.1 (2), p. 97]

(4.2) λf⊗g(z) =

ˆ ∞

0

λf

(z

u

)

d(−λg(u)), z > 0.

Therefore, on account that g ∈ L∞, we have

(4.3) λf⊗g(z) =

ˆ ‖g‖L∞(Ω2)

0

λf

(z

u

)

d(−λg(u)).

Then, by Tonnelli’s theorem, for all t > 0,
ˆ ∞

t

λf⊗g(z) dz =

ˆ ∞

t

ˆ ‖g‖L∞(Ω2)

0

λf

(z

u

)

d(−λg(u)) dz

=

ˆ ‖g‖L∞(Ω2)

0

ˆ ∞

t

λf

(z

u

)

dz d(−λg(u))

=

ˆ ‖g‖L∞(Ω2)

0

ˆ ∞

t
u

λf(r)u dr d(−λg(u))

≤ ‖g‖L∞(Ω2)
‖f‖##

L(∞,∞)(Ω1)

ˆ ‖g‖L∞(Ω2)

0

λf

(

t

u

)

d(−λg(u))

= ‖g‖L∞(Ω2)
‖f‖##

L(∞,∞)(Ω1)
λf⊗g(t) (by (4.3)).

Hence, by Theorem 3,

‖f ⊗ g‖##
L(∞,∞)(Ω1×Ω2)

≤ ‖f‖##
L(∞,∞)(Ω1)

‖g‖L∞(Ω2)
. �

4.2. More problems. 1. It seems to us that our approach to prove the second
part of Theorem 5 can be modified to study the rearrangement inequality of Garsia–
Rodemich [10, Theorem 7.3] in the n-dimensional case.

2. It would be of interest to follow up on the suggestion of Garsia–Rodemich and
prove a version of Theorem 5 using the methods of [9].

3. It would be of interest to complete the study of tensor products with L(∞,∞).
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