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Abstract. Let L be a linear operator on L*(R™) generating an analytic semigroup {e~*};>0
with kernels having pointwise upper bounds and p(-): R™ — (0, 1] be a variable exponent function
satisfying the globally log-Holder continuous condition. In this article, the authors introduce the
variable exponent Hardy space associated with the operator L, denoted by HZ(')(R"), and the
BMO-type space BMO,,(.y (R"). By means of tent spaces with variable exponents, the authors
then establish the molecular characterization of H z(')(R") and a duality theorem between such a
Hardy space and a BMO-type space. As applications, the authors study the boundedness of the
fractional integral on these Hardy spaces and the coincidence between H f(')(R") and the variable
exponent Hardy spaces H p(')(R").

1. Introduction

In recent years, function spaces with variable exponents attract much attentions
(see, for example, [4, 14, 16, 18, 19, 20, 37, 44, 50, 51, 54, 55| and their references). The
variable exponent Lebesgue space LP()(R"), with an exponent function p(-): R* —
(0, 00), which consists of all measurable functions f such that [, |f(z)[®) dz < oo,
is a generalization of the classical Lebesgue space. The study of variable exponent
Lebesgue spaces can be traced back to Birnbaum-Orlicz [6] and Orlicz [40] (see also
Luxemburg [34] and Nakano [38, 39]), but the modern development started with
the articles [31] of Kovac¢ik and Rékosnik as well as [13] of Cruz-Uribe and [17]
of Diening. The variable function spaces have been widely used in the study of
harmonic analysis; see, for example, [14, 18|. Apart from theoretical considerations,
such function spaces also have interesting applications in fluid dynamics [1, 42|, image
processing [9], partial differential equations and variational calculus [2, 26, 43].

Particularly, Nakai and Sawano [37] introduced Hardy spaces with variable expo-
nents, H?()(R"), and established their atomic characterizations which were further
applied to consider dual spaces of such Hardy spaces. Later, in [44], Sawano extended
the atomic characterization of the space HP()(R™) in [37], which also improves the
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corresponding result in [37], and gave out more applications including the bounded-
ness of the fractional integral operator and the commutators generated by singular
integral operators and BMO functions, and an Olsen’s inequality. After that, Zhuo et
al. [55] established their equivalent characterizations via intrinsic square functions,
including the intrinsic Lusin area function, the intrinsic g-function and the intrinsic
gx-function. Independently, Cruz-Uribe and Wang [16] also investigated the variable
exponent Hardy space with some slightly weaker conditions than those used in [37].
Recall that the theory of classical Hardy spaces HP(R") with p € (0,1] and their
duals are well studied and certainly play an important role in harmonic analysis as
well as partial differential equations; see, for example, [11, 25, 36, 46].

On the other hand, in recent years, the study of function spaces, especially on
Hardy spaces associated with different operators, has also inspired great interests
(see, for example, [5, 22, 23, 24, 29, 30, 48, 33| and their references). Particularly, let
L be a linear operator on L?(R") and generate an analytic semigroup {e~*},5o with
kernel having pointwise upper bounds, whose decay is measured by 0(L) € (0, co].
Then, by using the Lusin area function, Auscher, Duong and McIntosh [5] initially
introduced the Hardy space H} (R") associated with the operator L and established
its molecular characterization. Based on this, Duong and Yan |23, 24] introduced the
BMO-type space BMO[(R™) associated with L and proved that the dual space of
H}(R") is just BMOz«(R™), where L* denotes the adjoint operator of L in L*(R").
Later, Yan [48] further generalized these results to the Hardy spaces HY(R™) with
p € (n/[n+6(L)],1] and their dual spaces. Moreover, Jiang et al. [30] investigated
the Orlicz-Hardy space and its dual space associated with such an operator L.

Let p(-): R™ — (0, 1] be a variable exponent function satisfying the globally log-
Holder continuous condition. Motivated by [37, 48], in this article, we introduce the

variable exponent Hardy space associated with the operator L, denoted by H f(')(R").
More precisely, for all f € L*(R") and z € R™, let

s ={ [ e o ‘jﬁj‘lf}% ,

where m is a positive constant appearing in the pointwise upper bound of the heat
kernel (see (2.2) below) and I'(z) := {(y,t) € R" x (0,00): |y — 2| < t}. The Hardy
spaces Hf(')(R”) is defined to be the completion of the set {f € L*(R"): S(f) €
LPO)(R™)} with respect to the quasi-norm

S p(x)
1700y = 1207 s = ink {A e Ooo)s [ [P 0 1}.

We then establish the molecular characterization of H f(')(R”) via variable exponent
tent spaces. Using this molecular characterization, we further prove that the dual
space of Hf(')(R") is the BMO-type space BMO,.) -(R"), which is also introduced
in this article. As more applications, we study the boundedness of the fractional
integral L™ (y € (0,7) with m as in Assumption (A) below) from Hf(')(R") to
HY(R") with ﬁ = TIO — ™ and the coincidence between H PO)(R") and variable
exponent Hardy spaces H?()(R™) introduced in [37].

A novel aspect of this article is to give a non-trivial combination of function
spaces with variable exponents and the theory of operators including their functional
calculi and semigroups, and these new function spaces prove necessary in the study
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of the boundedness of the associated operators (for example, fractional integrals L~
with vy € (0, 2)).

This article is organized as follows. In Section 2, we first recall some notation and
definitions about variable exponent Lebesgue spaces, holomorphic functional calculi
of operators and semigroups, also including some basic assumptions on the operator
L considered in this article and the domain of the semigroup {e¢=**};5¢. Via the Lusin
area function Sy (f), we then introduce the variable exponent Hardy space associated
with L, denoted by Hf(')(R”).

In Section 3, we mainly establish a molecular characterization of the space
H ]‘?(')(R”) (see Theorem 3.13 below). To this end, we first establish an atomic charac-
terization of the variable exponent tent space Ty (')(Rﬁ‘fl) (see Corollary 3.7 below).
Then the molecular characterization of H f(')(R”) is obtained by using a project op-
erator 77, corresponding to L, which is proved to be bounded from Ty (')(Rfrl) to

Hf(')(R”). We point out that [44, Lemma 4.1| of Sawano (a slight weaker variant
of this lemma was early obtained by Nakai and Sawano [37, Lemma 4.11]), which is
re-stated in Lemma 3.5 below, plays a key role in the proof of Theorem 3.13

Section 4 is devoted to proving a duality theorem. Indeed, in Theorem 4.3 below,
we show that the dual space of Hz(')(R") is just the BMO-type space BMO,.) - (R™),
which is also introduced in this section. To show Theorem 4.3, we rely on several
key estimates related to BMO-type spaces and p(-)-Carleson measures (see Propo-
sitions 4.5, 4.6 and 4.7, and Lemma 4.9 below), and the duality of the variable
exponent tent space (see Proposition 4.8 below). The main difficulty to establish
these estimates is that the quasi-norm || - | 1»()®») has no the translation invariance,
namely, for any cube Q(x,r) C R", with z € R™ and r € (0,00), and z € R",
||XQ(:B,T)||LP(.>(R”) may not equal to ||XQ(+z,) HL,,(.)(Rn). To overcome this difficulty, we
make full use of Lemma 3.14 below, which is just [55, Lemma 2.6] and presents a
relation between two quasi-norms || - || 1e()grn) corresponding to two cubes.

As applications of the molecular characterization of H f(') (R™) from Theorem 3.13,

in Section 5, we investigate the boundedness of fractional integrals on H f(')(R") (see

Theorem 5.9 below) and show that the spaces H f(')(R") and HP)(R™) coincide with
equivalent quasi-norms under some additional assumptions on L (see Theorem 5.3

below).

2. Preliminaries

In this section, we first recall some notation and notions on variable exponent
Lebesgue spaces and some knowledge about holomorphic functional calculi as well as
semigroups. Then we introduce the variable exponent Hardy spaces associated with
operators, denoted by H Z(')(R"), which generalize the Hardy spaces H7 (R") studied
in [23, 48|.

We begin with some notation which will be used in this article. Let N :=
{1,2,...} and Z, := N U{0}. We denote by C a positive constant which is in-
dependent of the main parameters, but may vary from line to line. We use C(,,..)
to denote a positive constant depending on the indicated parameters «, .... The
symbol A < B means A < CB. If A S Band B S A, then we write A ~ B. If E' is
a subset of R™, we denote by xg its characteristic function and by EC the set R"\E.
For a € R, |a| denotes the largest integer m such that m < a. For all z € R™ and
r € (0,00), denote by Q(z,r) the cube centered at = with side length r, whose sides
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are parallel to the axes of coordinates. For each cube @ C R™ and a € (0,00), we
use ¢ to denote the center of @ and ¢(Q) to denote the side length of ), and denote
by a@ the cube concentric with ) having the side length a/(Q).

2.1. Variable exponent Lebesgue spaces. In what follows, a measurable
function p(-): R™ — (0, 00) is called a variable exponent. For any variable exponent

p(), let
(2.1) p_ :=essinf p(x) and p, :=esssupp(x).
Denote by P(R"™) the collection of variable exponents p(-): R™ — (0,00) satisfying
0<p_ <py <oo.

For a measurable function f on R™ and a variable exponent p(-) € P(R"),
the modular g,.)(f) of f is defined by setting 0,()(f) := [gn |f(2)|P™ dz and the
Luzemburg quasi-norm

1l o) ey 1= inf {X € (0,00): gp)(f/A) < 1}

Then the variable exponent Lebesgue space LPC)(R™) is defined to be the set of all mea-
surable functions f such that g,)(f) < oo equipped with the quasi-norm [ f[| 1o() g
For more properties on the variable exponent Lebesgue spaces, we refer the reader
to [14, 18].

Remark 2.1. Let p(-) € P(R™).

(i) If p_ € [1,00), then LPO)(R") is a Banach space (see [18, Theorem 3.2.7]). In
particular, for all A € C and f € LPO(R?), ANl oo @ny = (Al Lo gy and, for
all f,g € L"O)(R™),

Hf +g||LP(')(R”) < ||fHLP<-)(Rn) + ||9HLP<->(Rn)-
(ii) For any non-trivial function f € LPO)(R™), it holds true that
o) (/1 f oy mey) = 15

see, for example, |14, Proposition 2.21].

(iii) If [ [|f(2)|/6]P® dz < c for some § € (0,00) and some positive constant ¢
independent of 4, then it is easy to see that || f|| sy rn) < €0, where C'is a positive
constant independent of 4, but depending on p_ (or p,) and c.

Recall that a measurable function ¢ € P(R") is said to be locally log-Hélder

continuous, denoted by g € C\°5(R™), if there exists a positive constant Cleg(g) such
that, for all x, y € R",

~ log(e+1/|z —y|)’

and ¢ is said to satisfy the globally log-Holder continuous condition, denoted by
g€ C:(R"), ifg € C’log(Rn) and there exist a positive constant C, and a constant

loc

Jso € R such that, for all x € R",

lg(x) —g(y)

log(e + |z|)
Remark 2.2. Let n =1 and, for all z € R,

p(x) :=max {1 — eIl min (6/5, max {1/2,3/2 — 2*})} .

|9(7) = gool <
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Then p(-) € C'8(R); see [37, Example 1.3]. With a slight modification, another
example was obtained in [49, Example 2.20| as follows. For all z € R, let

p(z) := max {1 — e*~12l min (6/5, max(1/2, k|z| + 1/2 — k)},

where k := 7/[10(/3/10 — 1)]. Then p(-) € C°(R).
For all r € (0, 00), denote by L . (R™) the set of all locally r-integrable functions

on R” and, for any measurable set £ C R", by L"(FE) the set of all measurable
functions f such that

1l {/\f \dx} < oo.

Recall that the Hardy-Littlewood mazimal operator M is defined by setting, for all
fell (R") and z € R",

Mf)(w) = sz [ 170,

B>z
where the supremum is taken over all balls B of R" containing z.

Remark 2.3. Let p(-) € C'(R") and 1 < p_ < p, < co. Then there exists a
positive constant C' such that, for all f € LFO(R™), | M)l ooy mny < Clf oo @y
see, for example, [18, Theorem 4.3.8|.

2.2. Holomorphic functional calculi. Here, we first recall some notions of
the bounded holomorphic functional calculus, which were introduced by McIntosh
[35], and then make two assumptions on L required in this article. For two normed
linear spaces X and ), let £(X,)) be the collection of continuous linear operators
from X to Y and, for any T' € L(X,)), ||T||x-y its operator norm.

Let v € (0, 7). Define the closed sector S, by S, := {z € C: |argz| < v} U {0}
and denote by S? the interior of S,. Let H(SY) be the set of all holomorphic functions
on SY,

H*(S,) = {b € H(Sy): [Ib]l := sup [b(2)] < OO}

and
U(SY) :={w € H(SY): 3 s, C € (0,00) such that
[Y(2)] < Cla*(1+ [2]*) 7, ¥ 2 € S}
Given v € (0,7), a closed operator L € L(L*(R"), L*(R"™)) is said to be of type

v if o(L) C S,, where o(L) denotes the spectra of L, and, for all v € (v, ), there
exists a positive constant C' such that, for all A ¢ 5.,

(L — )‘I)_1HL2(R”)—>L2(R”) < CIAI7N

Let 0 € (v,7) and ¥ be the contour {¢ = re**: r € [0,00)} parameterized clockwise
around S,. Then, for ¢ € ¥(SY) and L being of type v, the operator ¥(L) is defined
by

W(L) = o / (L — AI)"p(A) dA,

where the integral is absolutely convergent in £(L*(R"), L*(R™)) and, by the Cauchy
theorem, the above definition is independent of the choices of v and ~ satisfying
0 € (v,7). If L is a one-to-one linear operator having dense range and b € H*(SY9),
then define an operator b(L) by b(L) := [1)(L)] (b)) (L), where () := z(1+2)72 for
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all z € S9. It was proved in [35] that b(L) is well defined on L*(R"). The operator L
is said to have a bounded H™ functional calculus on L*(R") if, for all v € (v, ), there
exists a positive constant C' such that, for all b € H>(SY), b(L) € L(L*(R"), L*(R™))
and N
16(L) | 22mm)— L2 Ry < Clb]] oo

Let L be a linear operator of type v on L*(R") with v € (0,%). Then it generates
a bounded holomorphic semigroup {e=*L}.cp,, where D, := {z € C: 0 < |arg(z)| <
5 — v} and, for all z € C, arg(z) € (—m, 7] is the argument of z; see, for example,
[41, Theorem 1.45].

In this article, we make the following two assumptions on the operator L.

Assumption (A). Assume that, for each t € (0, 00), the distribution kernel p;
of e7*X belongs to L*(R" x R") and satisfies that, for all x, y € R",

(22) nte) < 075 (1),

where m is a positive constant and ¢ is a positive, bounded and decreasing function
satisfying that, for some ¢ € (0, 00),
(2.3) lim r"*g(r) = 0.

r—00

Assumption (B). Assume that the operator L is one-to-one, has dense range
in L?(R") and a bounded H* functional calculus on L*(R").

Remark 2.4. (i) If {e7"*};5¢ is a bounded analytic semigroup on L?(R™) whose
kernels {p;}+>0 satisfy (2.2) and (2.3), then, for any k& € N, there exists a positive
constant Cy, depending on &, such that, for all ¢ € (0,00) and almost every z, y €

tk akpt (SL’, y)

R",
Cowy (lz—yl
Here, it should be pointed out that, for all £ € N, the function g; may depend on k
but always satisfies (2.3); see [41, Theorem 6.17] and [12].
(ii) Let v € (0,7). Then L has a bounded H* functional calculus on L*(R")
if and only if, for any v € (v,7) and nonzero function ¢ € W(SY9), L satisfies the

following square function estimate: there exists a positive constant C' such that, for
all f € L3(R"),

(2.4)

dt

00 1/2
sl < { [T WD § ] < Ol

where 1;(§) := ¢ (t€) for all t € (0,00) and & € R"; see [35].
2.3. An acting class of semigroups {e *'};>o. For all 8 € (0,00), let
M(R™) be the set of all functions f € L3 (R") satisfying

loc

_ @) "
Hf”Mg(R”) = {/R” de < Q.

We point out that the space Mg(R™) was introduced by Duong and Yan in [24] and
it is a Banach space under the norm [ - [ p,®n). For any given operator L satisfying
Assumptions (A) and (B), let

(2.5) 6(L) := sup{e € (0,00): (2.2) and (2.3) hold true}
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and
M(R") = Moy (R"), ) if (L) < oo,
UBE(O,OO) Mﬁ(R )a if Q(L) = .
Let s € Z+. For any f - M(R”) and (flf,t) c Ri‘f‘l = R™ x (0’ OO), let

(2.6)  Posf(a) = f(z) = (I —e ") f(z) and Quif(x) := (tL) e f(2),
and, particularly, let

(2.7)  Bif(x):=Pouf(z) =e " f(z) and Quf(x):= Qo.f(x) = tLe™" f(2).
Here, we point out that these operators in (2.6) were introduced by Blunck and
Kunstmann |7] and Holfmann and Martell [27].

Remark 2.5. (i) For all f € M(R"), the operators Ps,f and Qs.f are well
defined. Moreover, the kernels ps; of P,; and g, of (), satisfy that there exists a
positive constant C' such that, for all ¢ € (0,00) and z, y € R",

e (lz—y
(2.8) |mw@W”+MW@W”SCt9(L7J)’

where the function g satisfies the conditions as in Assumption (A); see, for example,
[48].
(ii) A typical example of L satisfying 0(L) = oo is that the kernels {p;}:>o of
{e7*'};>0 have the pointwise Gaussian upper bound, namely, there exists a positive
o _la=y?

constant C' such that, for all t € (0,00) and z, y € R", |pi(z,y)| < 5me” 7

Obviously, if A :=>"" | g—; is the Laplacian operator and L = —A, then the heat
kernels have the pointwise Gaussian upper bound. There are several other operators
whose heat kernels have the pointwise Gaussian upper bound; see, for example, [48,
p. 4390, Remarks].

(iii) Let s € Z4 and p € (1,00). Then, by (i) of this remark, we easily conclude

that there exists a positive constant C' such that, for all ¢ € (0,00) and f € LP(R"),
[ Psm ()l Lowny < CNflleome)-
2.4. Definition of Hardy spaces Hf(')(R”). For all functions f € L*(R"),
define the Lusin area function Sp(f) by setting, for all z € R™,

d d 1/2
s ={ [ temsr P}

here and hereafter, for all x € R", T'(z) := {(y,t) € RV |y — 2| < t} and Q; is
defined as in (2.7). In [5], Auscher et al. proved that, for any p € (1, 00), there exists
a positive constant C(,, depending on p, such that, for all f € LP(R"),

(2.9) Coylfllzr@ny < ISc(Pllr@ny < Cipll flliomn);

see also Duong and Mclntosh [21] and Yan [47].
We now introduce the variable exponent Hardy spaces associated with operators.

Definition 2.6. Let L be an operator satisfying Assumptions (A) and (B), and
p(-) € C8(R") satisfy p, € (0,1] . A function f € L*(R") is said to be in Hf(')(R")
if S;(f) € LPO)(R™); moreover, define

S p(z)
1120 ey = ISLA oty = inf{)\ € (0,00): / {w] dr < 1}.
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Then the variable Hardy space associated with operator L, denoted by Hf(')(R"), is

defined to be the completion of f]f(')(R”) in the quasi-norm || - ||Hp(.)(Rn).
L

Remark 2.7. (i) By the theorem of completion of Yosida [53, p. 65|, we find
that Hf(')(R”) is dense in Hz(')(R”), namely, for any f € Hf(')(R”), there exists

a Cauchy sequence {fi}ren in f]f(')(R”) such that limy_, || fx — f||Hp(.)(Rn) = 0.
L

Moreover, if { fx }ren is a Cauchy sequence in H f(')(R"), then there exists an unique
f € HY'(R?) such that limy. o || fi = £ o gy = 0- Moreover, L2(R") N H, (R")
L

is dense in H?")(R™).

(ii) We point out that smooth functions with compact supports do not necessarily
belong to H i(')(R"); see [48] and also Remark 4.4 below for more details.

(iii) Observe that, when p(-) = p € (0,00), LPO(R") = LP(R"). If p(-) = 1, then
H'Y(R") = HL(R"), which was introduced by Auscher et al. [5]; see also Duong

and Yan [23]. If p(-) =p € (#(L), 1), then the space Hf(')(R") is just the space
H7?(R™) introduced by Yan [48].

(iv) Different from the space H7(R™) which is just LP(R™) when p € (1,00)
(see, for example, [48, p. 4400]), since it is still unclear whether (2.9) holds true or
not with LP(R") replaced by LP)(R™) when p, € (1, 00), it is also unclear whether
Hf(')(R") and LPO(R™) (or HP)(R™)) coincide or not. We will not push this issue

in this article due to its length.

We end this section by comparing the variable exponent Hardy spaces associated
with operators in this article with the Musielak—Orlicz-Hardy spaces associated with
operators satisfying reinforced off-diagonal estimates in [8]. Indeed, in general, these
two scales of Hardy-type spaces do not cover each other.

Remark 2.8. Let ¢: R" x [0,00) — [0,00) be a growth function in [32] and
L an operator satisfying reinforced off-diagonal estimates in [8]. Then Bui et al.
[8] introduced the Musielak—Orlicz-Hardy space associated with operator L via the
Lusin area function, denoted by H, (R"). Recall that the Musielak-Orlicz space
L?(R") is defined to be the set of all measurable functions f on R"™ such that

[ £ llzee) = inf {A €0.0): [ plalf@lNd < 1} < oo,

Observe that, if
(2.10) o(x,t) :=t'@ forall z € R" and t € [0,00),

then L#(R") = LP)(R"). However, a general Musielak-Orlicz function ¢ satisfying
all the assumptions in [32] (and hence [8]) may not have the form as in (2.10) (see
[32]). On the other hand, it was proved in [49, Remark 2.23(iii)] that there exists a
variable exponent function p(-) € C'°¢(R™), but #*0) is not a uniformly Muckenhoupt
weight, which was required in [32] (and hence [8]). Thus, Musielak—-Orlicz-Hardy
spaces associated with operators in [8] and variable exponent Hardy spaces associated
with operators in this article do not cover each other.

Moreover, in Theorem 5.3 below, we show that, under some additional assump-
tions on L, the spaces H f(')(R”) coincide with the variable exponent Hardy spaces
HP)(R™) which can not cover and also can not be covered by Musielak-Orlicz Hardy
spaces in [32] based on the same reason as above.
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3. Molecular characterizations of H g(')(R“)

In this section, we aim to obtain the molecular characterizations of H f(')(R"). To
this end, we first give out some properties of the tent spaces with variable exponents
including their atomic characterizations, which are then applied to establish the

molecular characterizations of H f(') (R™) by using a project operator 7, corresponding
to L.

3.1. Atomic characterizations of tent spaces sz(')(RTrl). We begin with
the definition of the tent space with variable exponent. Let p(-) € P(R™). For all
measurable functions g on R and z € R, define

To)@) = { / st w ff}”?

Cyer (9)() = sup " {/ o |2dydt} ,

Q3z ||XQ||LP()(R”

and

where the supremum is taken over all cubes () of R™ containing x and @ denotes the
tent over @, namely, Q := {(y,t) € R}"": B(y,t) C Q}.

Definition 3.1. Let p() € P(R").
(i) Let ¢ € (0,00). Then the tent space Ty (R"™) is defined to be the set of all

measurable functions g on R such that || Illrgmrrry = 1T (@)l Lagn) < o0
(i) The tent space with variable exponent TY) (R™+1) is defined to be the set of all
measurable functions g on R such that ||g|| »c) R T 1T () ooy mny <
2 +
0.
(iii) The space Ty g(RCLfl) is defined to be the set of all measurable functions g
on R/ such that ||g]|Tp(.) (R T 1Co(y (9)]| oo mmy < 00.

Remark 3.2. (i) We point out that the spaces T¢(R"™") and 77" (R"*!) were
introduced in [10] and [55], respectively. Moreover, if p(-) = ¢ € (0,00), then

Ty (R = THRE). 1
(ii) If g € TZ(R'I*Y), then we easily see that ||g||T22(Ri“) = {fRiH |g(, t)|? £t} z,
Let ¢ € (1,00) and p(-) € P(R"). Recall that a measurable function a on R’
is called a (p(+), ¢)-atom if a satisfies
(i) supp a C @ for some cube Q C R™;
() llallrgas) < 1@l o g
Furthermore, if a is a (p(-), ¢)-atom for all ¢ € (1,00), then a is call a (p(-), 00)-

atom. We point out that the (p(:), c0)-atom was introduced in [55].
For any p(-) € P(R"), {\;}jexn C C and cubes {Q;};en of R, let

(3.1) A bjen: {Qj}jen) 1= {Z [M}_} |

JeN 1@l ey Lr()(Rn)

IS =

here and hereafter, we let
(3.2) p = min{l,p_}
with p_ as in (2.1).
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The following atomic decomposition of T3 (')(Rfrl) was proved in [55, Theo-
rem 2.16].

Lemma 3.3. Let p(-) € C°(R"™). Then, for all f € Tf(')(RC‘fl), there exist
{\;}jen C C and a sequence {a;}jen of (p(-),00)-atoms such that, for almost every
(z,t) € R,

(3.3) flz,t) = Z Ajaj(x,t);

moreover, the series in (3.3) converges absolutely for almost all (z,t) € R and
there exists a positive constant C' such that, for all f € TYO (R,

(3.4) B({Aja;}jen) = Al{A jen: {Qj}jen) < Cllfllzpo gue),

where, for each j € N, (); denotes the cube such that supp a; C @j.

By Lemma 3.3, we have the following conclusion.

Corollary 3.4. Let p(-) € C'5(R"). Assume that f € Tf(')(RTI), then the
decomposition (3.3) also holds true in Tf(')(RCLfl).

To prove Corollary 3.4, we need the following useful lemma, which is just [44,
Lemma 4.1].

Lemma 3.5. Let p(-) € C°(R") and q € [1,00) N (py,00) with py as in (2.1).
Then there exists a positive constant C' such that, for all sequences {Q);};en of cubes
of R", numbers {\;};en C C and functions {a;};en satisfying that, for each j € N,

supp a; C Q; and ||a;|| Lomny < |Q4]M,

(Z |>\jaj|£> <C (Z [Aixe; |’—)> ;
=1 =1

LrC) (RN)
where p is as in (3.2).

IS 1=
IS =

Lr() (R™)

Proof of Corollary 3.4. Let [ € TQP(')(RC‘FH). Then, by Lemma 3.3, we may
assume that f = 3, Aja; almost everywhere on R where {\;}jen € C and

{a;};en is a sequence of (p(-),00)-atoms such that, for each j € N, supp a; C @j
with some cube ); C R", and

(3.5) A} jen AQstien) S Ifllgp0 gty

Let ¢ € [1,00) N (p4,00). Then, by the definition of (p(-), 0o)-atoms, we see that, for
all j € N,

HT(aj)HLq(Rn) = ||ajHTq(Rn+1) S M
e ||XQ]‘HLP(‘)(R7L)

From this, Lemma 3.5 and the fact that, for all 8 € (0,1] and {{;}jexn C C,

(3.6) (Z |§j|> <> gl

JjEN JjEN
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we deduce that, for all N € N,

T (f - Z%’%‘) <Y MIT(ay)

Lp(-)(Rn)

< > [e ]
h j=N+1 HXQjHLP(')(Rn)

This, combined with (3.5) and the dominated convergence theorem (see [14, Theo-

rem 2.62|), implies that
- Ailxo. P
SRS {w] .

N
T (f - Z )‘jaj>
=1 LrC)(R7)

Therefore, (3.3) holds true in 77" (R”*!), which completes the proof of Corollary
3.4. U

(3.7)

[ =

() (R")

IS =

lim
N—o0

() (R")

Remark 3.6. It was proved in [29, Proposition 3.1] that, if f € T¢(R:") with
q € (0,00), then the decomposition (3.3) also holds true in Ty (R*1).

Using Corollary 3.4 and an argument similar to that used in the proof of (3.7), we
obtain the following atomic characterization of Ty © (R, the details being omitted.

Corollary 3.7. Let p(-) € C°8(R") satisfy p, € (0,1]. Then f € sz(')(RiH) if
and only if there exist {\;}jexn C C and a sequence {a;}jenx of (p(), 00)-atoms such
that, for almost every (z,t) € R, f(x,t) = > jen Ajaj(x,t) and

p(z)

Avo, 12 E
/ Z {ﬁ} dx < 00,
S Lixes o @

where, for each j, (); denotes the cube appearing in the support of a;; moreover, for
all f € Tf(')(RCLfl), ||fHT2p(.)(Ri+1) ~ A({\;}jen, {Q;}jen) with the implicit positive
constants independent of f.

The following remark plays an important role in the proof of Theorem 4.3.

Remark 3.8. Let p(:) € P(R") satisfy p, € (0,1]. Then, by [37, Remark 4.4],
we know that, for any {);},exn C C and cubes {Q;};en of R,

DI < AN en {Qsen).
jEN
In what follows, let Tg(c')(RTl) and T3 (R}H) with ¢ € (0,00) be the sets of all
functions, respectively, in T3 (')(err“) and Ty (R’™) with compact supports.
Proposition 3.9. Let p(-) € C'°¢(R"). Then Tzlj(c')(Rﬁ+1) C T3 (R as sets.
Proof. By [29, Lemma 3.3(i)], we know that, for any ¢ € (0,00), T3 (R}*") C
TQ%C(R’}FH). Thus, to prove this proposition, it suffices to show that Téf” (c')(Rfrl) C

T3 (R for some gy € (0,00). To this end, suppose that f € ng)(Rﬁ+1) and
supp f C K, where K is a compact set in RTI- Let @ be a cube in R™ such that
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K C Q. Then supp T(f) C Q. From this and the fact that p_ < p(x) for all z € R",
we deduce that

T )P~ de < T 2P~ dx C
/n[ )] _/{er:T(f><x><1}[ )] +/{x6Q:T(f)(x)>1}
<10+ [ [TE@P do < oc,

which implies that 77 ORrY cT 5 (R1F1) as sets and hence completes the proof
of Proposition 3.9. O

3.2. Molecular characterizations of H g(')(R"). In this subsection, we es-

tablish the molecular characterizations of H z(')(R"). We begin with some notions. In
what follows, for any ¢ € (0, 00), let LY(R':™") be the set of all g-integrable functions

on R and LI _(RT™) the set of all locally q-integrable functions on R’ For

any p( ) € P(R"), let
(3-8) so = [(n/m)(1/p- = 1)],

namely, sy denotes the largest integer smaller than or equal to ™ ( p% —1).
Let m be as in (2.2) and s € [sg,00). Let C, 5 be a positive constant, depending
on m and s, such that

(39) C(m7s) / tm(s+2)6_2t (1 - e—t )80+1 7 = 1.
0

Let ¢ € (0,00). Recall that the operator mp is defined by setting, for all f €
Ty (R and = € R,
dt

7)) = oo [ Quanl = Payer) £ )(0) §-

Moreover, , is well defined and 7,(f) € L*(R") for all f € T§ (R}™) (see [48,
p. 4395]).

Remark 3.10. Let f € L?(R"™). Then, by [48, (3.10)], we know that
o dt
f - C(m,s) Qs,tm (I - Pso,tm)th.f 7)

where the integral converges in L2(R") see also [3, 35].

Definition 3.11. Let p(-) € C'°8(R") and s € [sg,00) with s as in (3.8). A
measurable function ov on R is called a (p(-), s, L)-molecule if there exists a (p(-), 00)-
atom a supported on () for some cube ) C R" such that, for all z € R", a(z) :=

(@) ().

When it is necessary to specify the cube @, then a is called a (p(+), s, L)-molecule
associated with Q).

Remark 3.12. Let p(-) € C'8(R") with p_ € (770> °°), where p_ and 6(L)
are asin (2.1) and (2.5), respectively. Then, by Proposition 3.17(ii) below, we see that
the (p(+), s, L)-molecule is well defined. Indeed, if a is a (p(-), 00)-atom, by Corol-

lary 3.7, we then know a € Tp (R”“), which, together with Proposition 3.17(ii)
below, implies that 7 (a) € Hf( (R™). Thus, the (p(-), s, L)-molecule is well defined.

The molecular characterization of H f(')(R") is stated as follows.
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Theorem 3.13. Let p(-) € C'°5(R") satisfy p, € (0,1] and p_ € (—2—+ P TGAL
s € [sg,00) with py, p—, O(L) and sg, respectively, as in (2.1), (2.5) and (3.8).

(i) If f e Hf(')(R"), then there exist {\;};en C C and a sequence {a;}jen of
(p(+), s, L)-molecules associated with cubes {Q;}jen such that f =, .\ Ajoy

in H*")(R") and
B({Aja;}jen) = A({A en: {Qs}ien) < Ol oo oy

with C' being a positive constant independent of f.
(ii) Suppose that {\;}ren C C and {oy }bren is a family of (p(-), s, L)-molecules
satisfying B({\rou fren) < 00. Then ), - Apay converges in Hf(')(R") and

Z )\kak

with C' being a positive constant independent of { g }ren-

, 1], and

< OB({ A\eouk fren)
HZ(')(R”)

The proof of Theorem 4.3 strongly depends on several auxiliary estimates and
will be presented later. The following Lemma 3.14 is just [55, Lemma 2.6] (For the
case when p_ > 1, see also [28, Corollary 3.4]).

Lemma 3.14. Let p(-) € C'°5(R"™). Then there exists a positive constant C' such
that, for all cubes (01 and )y satisfying ()1 C Qs

CAC@QW?<MmmMm@<CC@DW”
@l T Ixelwomy = \IQ]

where p_ and p, are as in (2.1).

The following Fefferman—Stein vector-valued inequality of the Hardy—Littlewood
maximal operator M on the space LP*)(R") was obtained in [15, Corollary 2.1].

Lemma 3.15. Let r € (1,00) and p(-) € C™8(R"). If p_ € (1,00) with p_ as in
(2.1), then there exists a positive constant C' such that, for all sequences { f;}32, of

measurable functions,
00 1/r
<C (Z \fj\’)

00 1/r
S|
j=1 LpC) (Rm) j=1 LrC) (Rn)
Remark 3.16. Let k € N and p(-) € C'°¢(R"). Then, by Lemma 3.15 and the
fact that, for all cubes @ C R", r € (0,p_), xa2tq < 28"/"[M(x0)]"/", we conclude

that there exists a positive constant C' such that, for any {);},exn C C and cubes
{Qj}jen of R,

AN Hen, {25Qs}en) < €270 "7 A({Aj}jen, {@;}jen),
where p_ and p, are as in (2.1).

Proposition 3.17. Let p(-) € C'°8(R") with p_ € (o> °
where p_ and 6(L) are as in (2.1) and (2.5), respectively. Then
(i) the operator m;, is a bounded linear operator from T§(R"™) to L1(R™);

(ii) the operator 7y, well defined on the space Tﬁg)(Rﬁ+l), extends to a bounded
linear operator from Tf(')(RTrl) to Hf(')(R”).

5) and g € (1,0),
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Proof. To prove this proposition, it suffices to show (ii), since (i) is just [48,
Lemma 3.4(a)|. Noticing that, due to Corollary 3.7, Ty (')(R"H) is a dense subset of
TPt (R"+1) to prove (ii), we only need to show that 77, maps sz J(R*) continuously
into H?©/(R™).

To this end, let f € Ty (C')(R"H). Then, by Proposition 3.9, we know that
f € T3 (R'™") and hence 7, is well defined on T: 2” (R”“) by (i). This, combined
with Lemma 3.3, Corollary 3.4 and Remark 3.6, 1mphes that there exist sequences
{A\;}jen € Cand {a;}jen of (p(-), 00)-atoms such that, for each j € N, supp a; C @j
with some cube Q; C R", f = >, Aja; in both Tp (R”“) and TZ(R}™), and

AN en: {Qj}jen) S ||fHTp(> R Thus, it follows from (i) that, for all N € N,

L (f — Z )\jaj> Z )\jaj — 0
g=t 2mr) =N T3RYT
as N — oo; furthermore,
N
) = Jim 3 mu)
(3.10)
:Z)\Cms/ QstmI Psotm) CL] Z)\Oé]
JEN JEN

in L?(R™), where s is as in (3.8) and s € [sg, 00).
Next, we prove ||Sz(mr(f))|l o0 mn) S ||f||T2p(.)(R1+1). Observe that, for almost

every r € R",

S(mr(f))(x) = St <Z )\j%) (x) <Y SL(hay)(x)

jEN jeN
due to (3.10), the Fatou lemma and the fact that Sy, is bounded on L*(R™) (see (2.9)).

Then, by Remark 2.1(i) and the Fatou lemma of LP®)(R") (see [14, Theorem 2.61]),
we see that

IS =
hS]
I3 1=

(3.11) IS @ < S D (Z [SL(AJ%)XUZ-(QJ-)]I)> ;

i=0 || \jeN L) (R

where pis asin (3.2) and, for any j € N, Up(Q;) := 4Q; and U;(Q;) = 272Q;\ (271 Q;)
for all © € N.
By (2.9), (i) and Lemma 3.14, we find that, for all ¢ € (1, 00),

1 —
1S (i)l aaqy) S Nellzomny ~ Imrlap)lzame S llaglmgmey S 1@ I, oo ey

From this, Lemma 3.5 and Remark 3.16, we deduce that

<Z U)‘j|SL(O‘j)X4Qj]£>

JEN

IS =

(3.12) LR

S AN }en 14Q5}en) S A A jen: {Qjtjen) S I ll 70 @y
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Since p— € (57777, 00), we choose € € (0,0(L)) such that p_ € (

i € N, by [30, (4.12)], we know that, for all z € (4Q;)t,

=, 00). For

Sila)(@) 5 (rq,)"" % |z = wq, 7" el g y):

Then, by this, the Holder inequality and Lemma 3.14, we further find that, for any
q € (py,00) N[2,00) with p; as in (2.1),

3 Q_n_ 1_1 i ﬂ—n—
1Sz ()|l Lo, S 2 G 6)|Qj|‘1 2 ||aj||T2(Rn+1) <2 G E)HajHTzq(R’}r“)
S 2" inte) |2ZQ]| ||XQJ||LP() R")"

Observe that, for all r € (m,p_), X2iQ; < Qi [M(XQ]»)] )
and Lemmas 3.5 and 3.15, we deduce that

<Z [|/\j|5L(aj)XUi(Qj)F)

JjEN

(3.13)

Sle

Thus, from this, (3.13)

IS =

Lp(-)(Rn)

(3.14) { A e p)
< 9—i(nte) [ JIX2:Q; ]
Z )

JEN Il L) (RM)

S 2—i(n+a—n/r)A({)\j}jeN’ {Qj}jeN) 5 2—i(n+a—n/7’)||f||Tp(_)(Rn+1).

Combining (3.11), (3.12) and (3.14), together with » > -, we conclude that

0 1/2
152N oo gemy S {Z 2—“"“"”’JHfHTg»(RiH)} S I llzgo gy

which implies that 7 is a bounded linear operator from TV (R"*1) to HP")(R™)
and hence completes the proof of Proposition 3.17. 0

We now turn to the proof of Theorem 3.13.

Proof of Theorem 3.13.  We first prove (i). Let C(,, ) be the constant as in (3.9)
and f € Hi(')(R”) N L*(R"). Then, by Remark 3.10, we see that

o d
(315) f - CY(m,s)/o Qs,tm (I - Pso,tm)thth = WL(thf)

in L*>(R™), where sg is as in (3.8) and s € [sq, 00). Since f € Hf(')(R”), it follows that
Qmf € Tp (R"H). Thus, by Lemma 3.3 and Corollary 3.4, we find that Qum f =
> jenAja; in the sense of both pointwise and in Tf(')(RTfrJ’l), where {\;};en C C
and {a;};en are (p(-), co)-atoms satisfying that, for each j € N, supp a; C Q); with
some cube @); C R", and

A tien: AQs}ien) S Qe Fllygo sty ~ 1l gy oy

For any j € N, let a; := m(a;). Then «; is a (p(-), s, L)-molecule and, by (3.15)
and Proposition 3.17, we conclude that

f=m(Qm f) Z)\ mr(a;) =: Z)\jaj

JEN JEN

in both L2(R") and H*"(R").
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Now, for any f € Hz(')(R”), since Hf(')(R") N L*(R") is dense in Hf(')(R"), it
follows that there exists a sequence {fi}ren C [Hi(')(R") N L*(R™)] such that, for
all k € N,

Hf - kaHz(‘)(Rn) < 2_k||fHH€(')(Rn)'

Let fo := 0. Then

(3.16) F=> (fi— furr) in HYY(R).

keEN

From the above argument, we deduce that, for each k € N, there exist {)\?}keN cC
and a sequence {a¥};en of (p(+), s, L)-molecules such that

(3.17) fr— i =Y Mok in HYO(R?)
JEN
and

AN} e, {@ }en) S Ifx — Feallgpo oy S Q_kaHHg(-)(Rn),

where, for any k, j € N, Qf denotes the cube appearing in the definition of the
(p(-), s, L)-molecule o¥. By this, the Minkowski inequality, (ii) and (iii) of Remark 2.1
and (3.6), we see that

p(x)

A\F : By 2
[Iry | s
R™ (keN jeN Hf||H§<‘)(Rn)HXQ§||Lp(->(Rn)
1
()Y 2
INF[xon nprer) e
<[ 3ITIx i iz
R™ | keN LjenN HfHHZ(‘)(Rn)HXQé?HLP(-)(Rn)
1
p(z) P\ »
|)‘k|XQk e -
< /Q—kp(m) ( JIAQS i
I; " %:\T 27 o oy @i Nl o ey
1/p
N 22_@2> < 00,
kEN

which implies that B ({\af};ren) S ||fHH,£(.>(Rn). Moreover, by (3.16) and (3.17),

we conclude that
f=2.2 %

keEN jeN

in H f(')(R”) and hence the proof of (i) is completed.
Next, we show (ii). Without loss of generality, we may assume that, for each

k € N, oy, := mp(ag), where a; is a (p(-), oo)-atom supported on @y for some cube
Qr C R™. Then, from Proposition 3.17(ii) and Corollary 3.7, we deduce that, for all
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Nl, Ny € N with Ny < NQ,

N» N2 No
Z AR, ~ ||TL (Z )\kak> 5 Z ARy
k=N1 Hg(')(R”) k=N1 Hz(')(R”) k=N, TQIJ(-)(R1+1)
1
N 1
< {Zz { Ak X Qs ]B}p
~ )

which tends to zero as Ny, N, — oo due to the dominated convergence theorem.
Thus, ), N Ak converges in Hf(')(R") and, by the Fatou lemma of LPC)(R™),
Proposition 3.17(ii) and Corollary 3.7, we further know that

00 N N
Z ALQu < hNHLiorcl;f Z ALOu = liNHLiorcl)f T (Z )\kak>
k=1 HIZ(')(Rn) k=1 Hz(')(Rn) k=1 HZ(')(R")
1
N N »
A El*
< liminf Z Ak < lim inf { {M] }
N=ee 13 720 (R Moo | i Lxeulleeo e o) (R)
S B{Avarfren),
which completes the proof of Theorem 3.13. O

In what follows, for all s € [sg,00) with sy as in (3.8) and p(-) € P(R"), denote
by Hffﬁ)n(R") the set of finite linear combinations of (p(+), s, L)-molecules. For any

fe Hffﬁ)n(R"), the quasi-norm is given by

N
||f||H§ggn(Rn) = inf {B({/\j%’}j—v:l)i NeN, f= ZAJ%} ,

j=1
where the infimum is taken over all finite molecular decompositions of f.

Corollary 3.18. Let p(-) € C'8(R") satisty p, € (0,1] and p_ € (#(L),l],
where p_, p; and 0(L) are, respectively, as in (2.1) and (2.5). Then Hzfﬁ)n(R”) is
dense in Hf(')(R”).

Proof. Let f € HP(R") N L*(R"). Then Quf € TP")(R™") and hence, by
Lemma 3.3, we have Quf = 32, Aear in TP (R, where {M}ren € C and
{ar}ren are (p(-), 00)-atoms. For every k € N, let oy := mp(ax). Then {ay}ren are
(p(+), s, L)-molecules. Thus, by Proposition 3.17(ii), we conclude that, for all N € N,

N N
’ f— Z Ak = ||7L (thf - Z )\kak>
k=1 k=1

as N — oo, which implies that H Z%)H(R") is dense in H?")(R™) N L*(R™) and hence
in Hz(')(R”). This finishes the proof of Corollary 3.18. O

O R) Y (R

— 0,

N
5 thf - Z)\kak
k=1
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4. BMO-type spaces and the duality of Hg(')(R”)

In this section, we mainly consider the duality of Hf(')(R"). To this end, moti-
vated by [30], we introduce the space BMO,,, ; (R") associated with the operator L
and the variable exponent p(+).

Definition 4.1. Let L satisfy Assumptions (A) and (B), p(:) € C'8(R") with
p+ € (0,1] and s € [sg,00), where p; and sy are, respectively, as in (2.1) and (3.8).
Then the BMO-type space BMO;,,, ;(R") is defined to be the set of all functions

f € M(R") such that ||f||BMo5()L( r») < 00, Where
17 et AR TCIY }é
s ny i= Sup Py x)|"dx
MO0 B 5o Ixello@n)

and the supremum is taken over all cubes () of R".

Remark 4.2. (i) The space (BMOj) (R"), ]| - [|smos )L(Rn)> is a vector space
with the semi-norm vanishing on the space K 4 (R") Wthh is defined by

KioR") ={f € M(R"): P;;f(x) = f(x) for almost every x € R"
and all ¢ € (0,00)}.

In this article, the space BMO,, ; (R") is understood to be modulo Kz 5 (R"); see
23, Section 6] for a discussion of K¢z )(R™) when L is a second order elliptic operator
of divergence form or a Schrodinger operator.

(ii) If p(-) = 1 and s = 0, then BMO,, ,(R") is just BMOz(R") introduced by
Duong and Yan [23]. If p(-) € P(R") is defined by ﬁ := a+ 3 for some constant
a € (0, G(L ), then BMO,, ;(R") becomes the space £1(«, 2, s) studied in [48].

Now we state the main result of this section as follows.

Theorem 4.3. Let p(-) € C'8(R") satisfy p, € (0,1] and p_ € (—2—~ oy 1 with
py+, p— and O(L), respectively, as in (2.1) and (2.5). Let sy be as in (3.8) and L*
denote the adjoint operator of L. Then (Hf(')(R"))* coincides with BMOY ;. (R")
in the following sense:

(i) If g € BMO;‘E%L*(R"), then the linear mapping ¢, which is initially defined

on Hi')(R") by

(4.1) ly(f) = [ [flx)g(x)dx

R”

extends to a bounded linear functional on HY (')(R") and

14 H(HPU(Rn < Clgllgmore L(R™)s

p().L*
where C' is a positive constant independent of g.

(ii) Conversely, let £ be a bounded linear functional on H Z(')(R"). Then ¢ has the
form as in (4.1) with a unique g € BMO, ;. (R") for all f € Hﬁfﬁ)n(R") and

HgHBMOSO

0w < Ol o

(Rn))*’

where C is a positive constant independent of (.
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Remark 4.4. Let p(+), so, L, L* and 6(L) be as in Theorem 4.3.

i) Iffe Hf(')(R”), then, from Theorem 4.3, we deduce that f satisfies the cance-
lation condition [, f(x)g(x)dx =0 for all g € K- 4, (R™), since, if g € Kr- 5, (R™),
then [|g[lgmos ., @mny) = 0. Observe that, if g € Kp-5,(R"), then g is not necessary

p(:),L*
to be zero almost everywhere and hence, if f is a smooth function with compact

support, then fR” )g(x) dx may not equal zero. Therefore, smooth functions with

compact supports are not necessary to be in H p( (R") see also |23, p.962].
(ii) Observe that, by the proof of Corollary 3.18, we see that

HY (R € [HYY(R™) N LA(R")]

and H ffﬁ)n(R") is dense in H?)(R™)NL*(R™). From this, it follows that, if we require
that (4.1) holds true for all f € HYV(R") N L*(R") instead of all f € HY') (R™),

then all conclusions of Theorem 4.3 also hold true.

To prove Theorem 4.3, we need some preparations.

Proposition 4.5. Let p(-) € C°(R") satisfy p, € (0,1] and p_ € (o 1
and s € [sg,00), where p,, p_, O(L) and sy are, respectively, as in (2. 1), (2.5)
and (3.8). Then there exists a positive constant C such that, for all t € (0, 00),
K € (1,00), f € BMO,, (R") and z € R", when p; = 1,

| Pof (@) = P reef(2)]

< C(1+logy K)

(4.2)

HXQ(Iv(Kt)%) LPO)(RM) |Q( (Kt)m)| ||f||BMO ()L( )

and, when p, € (0,1),
|Psif (x) — Py e f ()]

(4.3) <c HXQ

QC, (K1) fllsmos, , , me)-

Proof. Without loss of generality, we may assume that || f||smos
claim that, for all ¢, v € (0,00) with £ <v < 2t, and = € R",

(1.4) Pu () = Poad ()] S |Xgoioh Qa, )|

Lp(-)(Rn)
If this claim holds true, then, by Lemma 3.14, we see that

(5 6)m0) || Lo (R

()L(Rn) =1. We

|Ps,tf(x> - sth ‘ < Z ‘Ps 21tf - 821+1tf ‘ + ‘Ps 2ltf ) - Ps,th(x>‘

< - HXQ(S&(Q% %)HLP()(R") HXQ J(Kt) % HLP() (R")

TS QM 2it)w)) Q(a, (Kt)))]

SR o) 7| o lo@
< Leh =2l 1
~ gb@(x,(m) >|] T T 0 (k)]

where [ := |log, K'|. By this, we further conclude that, when p, =1,

_ < w1
P (@) = Poef @) £ (108 ) X || gy Q0 (V)

3| 3=

Y
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and, when p, € (0,1),

1Q(a, (Kt)m)| ™,

— <
|Porf () = Poxcef(2)] S HXQ(%(Kt)%) LPO) (R™)

which implies that (4.2) and (4.3) hold true.
Therefore, to complete the proof of this proposition, it remains to prove the above
claim. By the commutative properties of semigroups, we have

(45) Ps,tf - Ps,v.f = Ps,t(.f - Ps,vf) - Ps,v(f - Ps,t.f)'

Since O(L) € (n[-= — 1], 00) and py. € (0,1], it follows that there exists ¢ € (0,0(L))
such that

(4.6) 5>n<pi_—1)>n(p—1_—pi+).

From (2.8), Assumption (A), the Hélder inequality, Lemma 3.14 and the fact that
% < v < 2t, we deduce that, for all z € R",

Patt = Pap@l £ 05 [ o (B2 1500 - sl

1/2
< { / 1 |f<y>—PS7vf<y>|2dy}
Q(z,om)

o0

n T —
(4.7) coE Y [ (| -y
i=1 Si tm

1=
Q. )7 fllmmos, , , @

) () = Ponf ()] dy

<
~ HXQ(W?%) LPO) (RM)

_7L+Ei _n
+ 2 m ") m / o |f(y) - Ps,vf(y)| dy’
Zizl Qa,(20) )

1

where, for each i € N, S; := Q(z, (2'v)m)\Q(x, (2~*v)w). Notice that, for any i € N,
there exists a collection {Q”};V:Z1 of cubes with N; ~ 27/™ such that ¢(Q; ;) = v'/™
and Q(z, (2'v)V/™) C U;V;I Qi,j- Thus, by the Holder inequality and Lemma 3.14, we
find that

- P, dy < - P, d
/Q(x,@iv)%)'ﬂw ofWldy < /Q 1) = Pt W)l dy

< {/ If(y)—Ps,vf(y)de} Qi 512
Qi,;

j=1
N;

S I llsvor e D e llzro @
j=1

)XQ(@HU%) LrO)(Rn)
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which, together with Lemma 3.14 again and (4.6), implies that

ZQ e ’"/ W) = Pauf(y)ldy
Q(a,(2i0) ™)

S o~ Bt 9T
S Z; 2 ¥ Xo@a) || oo ey ™ 11X @03 | ot e 1Q(z, t)| 7.
By this and (4.7), we further conclude that, for all x € R",
_ < )L
(48) Potll = Pooh) @ 2 [Xgpuin ||y 12197

By an argument similar to that used in the proof of (4.8), we also see that, for
all x € R",

1Q(, tm)| 7,

_ <
Plf = Pl @) 2 [t | e

which, combined with (4.5) and (4.8), implies that (4.4) holds true. This finishes the
proof of Proposition 4.5. O

Proposition 4.6. Let p(-) and s be as in Proposition 4.5. Then, for any 0 €
(n[p%—l], 00), there exists a positive constant C' such that, for all f € BMO; ) 1 (R"),

€ (0,00) and x € R,

/ |f(y) _ Ps,tf(y)‘ d Ot_nJré
R

E eyl
Proof. For all t € (0,00) and x € R™, we write

|f(y) = Pssf(y)l |f(y) = Posf(y)l
= + =T + L.
/R” (tm + |z — yl)m+e W= /Q(:ctm) (tm + |z —y|)n+d w /[Q(xvt’%)]c

Obviously, by the Hélder inequality, we easily see that

XQ(;Etm) Lp(')(R” ||f||BMO ()L( )

n+d

_n+06 _
Lst /Q( l)lf(y)—Ps,tf( y)ldy St
T,tm

||f||BMO;(‘)7L(R")‘

XQ(I tm) LPO) (RM)

To estimate I, we first notice that

bsip%”ﬁ/( 1F (W) — Pouf () dy

k=1 Q(z,(2kt)m)

SY @0 [ 1) - Pl dy

(4.9) 1 Q(z,(2kt)m )
e ) s 1
FIENTE s |Puf() - P 0)1Q( 2]
k=1 yEQ(w,(28t) 71
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By the Holder inequality, Lemma 3.14 and the fact that § > n(p% — 1), we find that

12 L < < Z 2k n;rlé

LR [ fllByo;,

XQa,@2r)m) (R™)

(4.10) < = . o k(-2
~ t XQ(x,t%) e (R ||f||BMOp(_)’L(Rn) ; 2 P
< R .
St XQ(HCJ%) o0 (R HfHBMOp( ).p(R™):

For Iy, by Proposition 4.5 and Lemma 3.14, we know that

< k)= 25 .
]:272 ~ Z k(2 t) Su HXQ 2kt)%) LP(')(R'!L) HfHBMOP(),L(Rn)
k=1 yeQ(w, (2’%)
< k)=t ‘ .
SPILCE @0 | g 17193003, )
< _n’”té ’ . .
St XQ(:v,t%) Lo0) (RR) ||f||BMOp(.)7L(R )-

This, together with (4.9) and (4.10), implies that

+6
L <t

XQ(m tm) LP(-)(Rn) ||f||BMO;(‘)7L(Rn),
which completes the proof of Proposition 4.6. =

Let p(-) € P(R™). Recall that a measure du on R’ is called a p(-)-Carleson

measure if
‘Q|1/2 1/2
ldpulloy = sup —{ / dw} <00,
acre [[Xell oy mny 1/

where the supremum is taken over all cubes () of R™ and @ denotes the tent over Q;
see [55].
Proposition 4.7. Let p(-), sg and s be as in Proposition 4.5. If f € BMO;%-),L(RTL):

then the measure

dpy(,t) = |Qupn(I — Py pm) f ()]

dz dt
L ¥ (xt) e R

is a p(+)-Carleson measure on R”Jrl and there exists a positive constant C, indepen-

dent of f, such that |[dpug]|y. <0||f||BMo“z>L< ")’

Proof. Since s > sy = L%(p% —1)] and (L) € (n[p% — 1], 00) with 6(L) as in

(2.5), it follows that there exists € € (n[p% —1],0(L)) such that m(s+1) > e. To prove

this proposition, by definition, it suffices to show that, for any cube R := R(zg,7r)
with some 2z € R™ and rg € (0, 00),

R|'/? drdt\
w1y It P 50 EE LS Ul
R

IXRl Lo (m7) p), (R

Observe that
_[ — P307t77L = (_[ - P307t7rl> [[ — PSO,(TR)m} + PS(),(T’R)m(I - PS(),t'”L)‘
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Then the estimate (4.11) is a direct consequence of

|R‘1/2 / o dx dt 1/2
T F QeI = Pagge) [ = Pay ey
w12 Taloom Us @ = Paed [T = Pagar] f)] =
<11 £ oo

p(),L (R

R|'/? dadt )"
‘ | {/ |Qstm s0,(rrR)™ ([_Pso,tm)f(x)|2 }

and

(4.13) xRl Lo @y t
< .
||f||BMo ?) LR

Next we prove (4.12) and (4.13), respectively. To show (4.12), let

bl = [[ - Pso (rr)™ i| fXQR and 62 - [[ PS() (rr)™ i| fXR”\ (2R)-
By [30, (4.25)], we know that

dx dt

1/2
(4.14) J::{ [ 1Quen (T = Pryg i) } < bz,
R

which, combined with Proposition 4.5 and Lemma 3.14, implies that

J S {/ H:[ - PSQ,(2’!‘R)7”] f(z)‘z dl’} _I_ |R|1/2 Sup |PSO mf(l’) - PSQ,(QT‘R)mf(I”
2R

r€2R
S IRl o @ [ lsmore )
For by, we write

(4.15) Qs t’m( - SO t77l>b2 Qs7t77lb2 - Qs’thso’tmbz.
Let (z,t) € R. Then, by (2.3), (2.8) and Proposition 4.6, we have

tE
|Qs,mba ()] S/Rn\ oh) WH:[_PSO (rr)™ } }dy

te
S I_PS rR)™ d
~ /Rn (rg+ |z —y|)nte H 0,("R) } f(y)‘ Y

S @/re)* | R Ixall oo g | f oz @),

which implies that

drdt) .
410 { [ 1QumtaloP L S B o

On the other hand, for all k € {1,...,s0+1}, ¢, v € (0,00), f € M(R") and x € R",
d8+1P77

let
d778+1 ky™mtm ( )

Then, by Assumption (A) and (2.4), we conclude that 1), the kernel of ¥,
that, for all ¢, v € (0,00) and z, y € R",

(4.18) (2, y)]

f”BMOZ(()_),L(R”)'

(4.17) U f(x) = [ko™ + " <

satisfies

UE

(v+t+ |z —y|)nte
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From this, Proposition 4.6 and the fact that

so+1

(4-19) Pvamf: Z(_ k+1C§o+1 _kmefa
where C§o+1 = %, we deduce that, for all (z,t) € ﬁ,

sotl o gm(s+1) i

Qs ,om Psg 1mba ()| = ];(_1) cso+1—[ SV 0P, by ()
te
< I—-P, d

(4.20) ~ /R"\(2R) (t + |[K _ y|)n—|—5 H 0,(TR) } } Yy

t\° rp)¢
$(72) foTrie e 1= Pl sl

S (t/mr)" Ixell Lo ro)

fllsnmoso 0 LR

which further implies that
dx dt

Rn) .

1/2
420 { [ Qe Pamta(@P L S IRkl v

Combining (4.14), (4.15), (4.16) and (4.21), we conclude that (4.12) holds true.
Similarly, by (4.17), (4.18), (4.19) and Proposition 4.6, we also see that, for all
(z,t) € R,

‘Qs,tmpso (rr) 7”(1 - PSO tm)(f)(.ﬁl])‘

so+1 m (s+1)

R = Peo.m)(f) ()

;( Ve “’*1[k<m> +tm]s+1\1’

tm(s—i—l
S T e e T4 = Paen) (0] dy

< (i)mw | el = P10

rR n (t+ |z —y|)nte

t m(s+1)—¢e

f“BMO;(,)yL(R”)a

which, together with Lemma 3.14, implies that, for all (x,t) € R,

m(s+1)
[t
‘stth507(rR)m (I - PS()vtm)(f)(x)} 5 t <_) ||XR||LP(')(R”)||f||BMO;(.)7L(Rn)'

TR
By this and the fact that m(s + 1) > ¢, we further conclude that (4.13) holds true.
This finishes the proof of Proposition 4.7. U
Proposition 4.8. (i) Let ¢ € (1,00) and ¢* = qi. Then, for all f €
IR and g € T (R2H),
dy dt
| w090l 5 < [ T(h@T (o)) do
+

RTL
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(ii) Let p(-) € C°8(R") satisfy p, € (0,1]. Then the dual space of Tp (R"H)
T3 g(RTFl) in the following sense: for any h € T2p (R"H) the mapping

(422 bi)i= [ e B2

t
is a bounded linear functional on Tf(')(RﬁH); conversely, if ¢ is a bounded
linear functional on Tf(')(Riﬂ), then ( has the form as in (4.22) with a unique
h e T;ig(RTl). Moreover, ’|hHT§gg(R¢+1> ~ ||en

positive constants independent of h.

H(Tg’(')(Ri“))* with the implicit

Proof. To prove this proposition, it suffices to show (ii), since (i) Was already
proved in [10 p. 316, Theorem 2|. We first show that Tﬁg(Rﬁ+l) (Tp (R"H))
Let h € sz (R"H). Then, by the Hoélder inequality and Remark 3.2(ii), we find
that, for any (p(+), c0)-atom a supported on @ with some cube Q C R",

dz dt 1/2 dz dt
[ et < A e )
(4.23) R+ t Ix@ll oo mn)

< HCP(')(h)HL‘X’(R”) = HhHsz(;(RTl)'

For any f € T'V(R™*"), by Lemma 3.3, we know that, for almost every (z,t) € R,
f(@,t) =32 en Ajaj(,t), where {A;}jen and {a;}jen are as in Lemma 3.3 satisfying
(3.4). From this, (4.23) and Remark 3.8, we deduce that

dx dt
CGIED MY SIS

JEN

< Z |AJ‘H|h||T5gg(R¢+1) 5 HhHng(RTl)||fHT2p(->(R7+L+1)7
jEN ' '

which implies that ¢, is a bounded linear functional on Tp (R"H) and
HehH(TZP(‘)(RiJrl))* ~ ||h||TP(‘)(Rn+1)-

Next, we prove that (Tf(')(Riﬂ)) C T2p (R”“). Let ¢ € (TY (R”+1)) . For
all k € N, let Oy := {(z,t) € R™"': |z] < k,1/k <t < k}. Then {O4}ren is a
family of compact sets of R’}fl and RTrl = Uren 6k Observe that, for each k € N,
if f e L2(R"") with supp f C Oy, then supp T(f) C O} := {z € R": |z| < 2k}.
It follows, from the Hélder inequality, that

1/2
dyd
T(f)(x)dz < O} { / * /F( 0P tfﬂtdx}

) dydt\'?
108 { [ 1oL ~ 021,
k

By this and the fact that p, € (0, 1], we further find that

/[ [ () r“’ e |
re | 0372 fll 125, ~Joy

k

O;12T (f)(x

) p(x)
1+ ] dzx <05,

||f||L2(6k)
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which implies that ||fHT2p(.>(R7+L+1) < CwllfllL2(5,)» where Cy) is a positive constant

depending on k. Thus, ¢ also induces a bounded linear functional on L2(6k). By the
Riesz theorem, there exists a unique hy, € L?(Oy,) such that, for all f € L*(Oy),

dx dt

(= [ | fam

Obviously, hyxt1xg, = hi for all k € N. Let

h = h1X61 + Z hkxak\ék—l.
k=2

Then h € L2 (R™') and, for any f € L?(R"™") having compact support,

(=  1wommn e
R
Now, for any f € TP“)(R"*'), by Lemma 3.3, we have f(z,t) = > jen Ajai(,t)
for almost every (z,t) € R, where {\;};en and {a;}jen are as in Lemma 3.3
satisfying (3.4). For all N € N, let fy := Zjvzl Ajaj. Then fy — fin Tf(')(RTrl) as
N — oo due to Corollary 3.4. Moreover, it is easy to see that fy € L*(R") having
compact support and hence

() = [ it ont.n 2L

n+
Ry

Observer that, for all N € N,

vl < E:IA llal <> llayl

JEN
and, by (4.23) and Remark 3.8, we find that

dx dt
Syl / G, Ollag e, D] 5 S Il gy 31
JEN ’

JEN
< Il g gy BUA 5} sew)

’S ||h||T§(CX)>(R1+1) ||f||T21’(')(Ri+1)-

Therefore, from the dominated convergence theorem, we deduce that

()= Jim (i) = [ om0 2

RIH t
To complete the proof of this proposition, it remains to show that h € T§ g(RC‘fl).
Indeed, for any cube @ C R" and j € N, let Rg ; := Qn{(zt) e Rt > 1/5)
and
|Q|1/2EXRQJ
Ixq HLP(‘)(R”) ||hXRQ,j ||L2(R1+1) .

nj =
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Then, by the Minkowski inequality, we find that

1
dy dt 2
2
Inligaen ~{ [ [ 1m0 Gt e

dy dt
5 {/ |77](y,t)|2T} < |Q|1/2||XQ||LP() (R")
R,

namely, 7; is a (p(-), 2)-atom up to a positive constant multiple. From this, the Fatou
lemma and Corollary 3.7, we further deduce that

Q"2 thW
W 5 |h’(y7 t)‘2 T
XQllLr)(Rn)

IQI :h(y, H)h ( t)XRro,; (Y1) dydt
= liminf ¢(n,)
Ry ||XQHLP<->(Rn)||hXRQ,j||L2(R1+1) t J=ro0

< lim inf
Jj—00

< Tim s
~ h]rglogf ||€||(T§(')(R1+1

Do I llgo ety S W g ey

which, together with the arbitrariness of cubes @), implies that h € ng(Rﬁ+1) and
||h||T§g(Ri+l) IS ||€||(T2P(')(Ri+l))*.

This finishes the proof of Proposition 4.8. O
To prove Theorem 4.3, we also need the following estimate.

Lemma 4.9. Let p(-) and sg be as in Proposition 4.5. Then there exists a positive
constant C such that, for all f € L*(R") satisfying supp f C Q := Q(xg,rqg) with
some xg € R" and r¢g € (0, 00),

|7 = Prasig) ]| gy < IO o 1 2000
Proof. Obviously, we have
|21 = Paorglf) -
(424) < H — m H — m n ’
S ISL([I PSO,rQ]f>X4Q Lp(')(Rn)—i— Sr([I PSO,TQ]f)XR \(4Q) PO R
=. J1 + Jg.

By the boundedness of Sy in L2(R") (see (2.9)) and Remark 2.5(iii), we see that
IS = Paorp) Nllcz@mey S 1 lz2@n),

which, together with Lemmas 3.5 and 3.14, implies that

(4.25) J1 S 10172 lIxall oo @y 1 f 1l 22wy

To deal with the term Jo, since p_ € ( 1] with p_ and (L) as in (2.1) and
1]. Notice that, for

n—l—Z(L)’
(2.5), respectively, we choose € € (0,0(L)) such that p_ € (-

all z ¢ 4Q),

n+te’

(rq)2*e

WHf”LZ(Rn);

SL([ - Pso,rg”)(.f)(x) S
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see [30, (4.20)]. Then, by this, Lemma 3.14 and the fact that e € (n(p—{ —1),6(L)),
we further know that, for any r € (0,p_),

2 Sl = Purg) Dxananisa)

Jo ~
Lr() (Rn)
1
OO 2—1—5 r r
{Z [ g X rNEta) } /122y
k LrC)(R7)
1
(426) - —k(n+e)r i _1
S Z ||X4kQ||LP<)Rn Q™2 fll 2
k=0

A

1
_1
{24 e } Xl e | QI 1 Fll 22

~ QI Xl oo g LIl 2.

Combining the estimates (4.24), (4.25) and (4.26), we conclude the desired result
and then complete the proof of Lemma 4.9. O

For all s € [sg, 00) with sg as in (3.8), t € (0,00), f € M(R") and = € R", let
Pl f(x) = fla) = (I — e ) f(2) and  QF,f(z) = (tL")*"e™ f(a),
where L* denotes the adjoint operator of L in L*(R"). Suppose that aisa (p(+), s, L)-

molecule. Then, by Theorem 3.13(ii), we see that a € Hp (R™) and hence G :=
Qma € Tf(')(Riﬂ), Let f € M(R™) be such that

. . dx dt

,U/f(l', t) = ‘Qs,tm(l - Pso,tm)f('r)‘2 )

is a p(-)-Carleson measure on R\ and, for all (z,¢) € R}t let
F(x,t) := QF (I — Py m) f ().

Then ||F]|Tp(.>(Rn+1) < sy < oo. From this and Proposition 4.8(ii), we deduce
2,00 +
that the integral

V (z,t) € R

J(F,G) = / Fla, )G, 1) 224
Rn+1
converges absolutely and hence
N dx dt
[ @ea@Qnlr = P i)] 5 < o

+

Indeed, by an argument similar to that used in the proof of [23, Proposition 5.1|, we
have the following technical lemma, the details being omitted.

Lemma 4.10. Let p(-) € C'8(R"), s and s be as in Proposition 4.5. Suppose
that v is a (p(-), s, L)-molecule and f € M(R") satisfies that

¥ . dx dt
,uf(.ilf,t) = |Qs,t7”(] - Pso,tm)f(x)‘2 t
for all (z,t) € R is a p(+)-Carleson measure on R7*'. Then

F@)a(@)dr = Cny [ Quual@)Qnll = P ) ()

dx dt
t )

R”
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where C,, ) is as in (3.9).

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3.  We first prove (i). Let g € BMO;%LL*(R”) and f €
Hffl;i)n(R"). Then f has an expression f = Z;VZI Ajaj, where N € N, {\;}0, € C
and {o; };VZI are (p(+), s, L)-molecules associated with cubes {Rj}é»v:l of R satisfying

- Al 2
{Z [ )XR]‘:| } 5 ||f“H€€ﬁ)n(Rn)

)
= ||XR e (R» LO®)

IS =

For cach j € N, since a; € HY'(R"), it follows that Qma; € TP(RZY). By
this and Corollary 3.7, we know that, for any j € N, there exist {A\}ren C C
and a sequence {a’}ren of (p(-),00)-atoms such that Qma; = >, ¢ Aa¥ almost

everywhere on R’}r“, supp af C ﬁf with some cube Rf C R"™ for all £ € N, and
B({Njajbhen) S 1Qumaiill o gy ~ lill oo -

Thus, from Lemma 4.10, the Holder inequality, Proposition 4.7, Remarks 3.2(ii) and
3.8, we deduce that

. . dy dt
| ast@@rde| ~| [ Qmas)@n (1 = Pimlatn)| L
+
. dy dt
ST [ P02 = )l 25
keEN
dy dt
<SS { / -<y,t>|27} B el o lallssiors e
keEN
< k El S
< WHlgllosiorn, ey S BN e lloniore, . e
keEN
S ll9llsaose (R™) |a]||HP() R") S ll9llsaos (Rn)

()L* ()L*

By this and Remark 3.8, we further obtain
N

S LY ’
S {Z [—)XR]} } [P[—

=t i oo L0 (R

x)dx

N
Z RY |Hg||BMOS(())L*(R )
;

< ||f||Hp<>(Rn 91l Baoso 20 (R

Therefore, by Corollary 3.18 and a density argument we conclude that ¢, is a bounded

linear functional on Hf(')(R") and ||€,]| PO R > < |l9llgmoso

(),nx (R
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Next we show (ii). For any 7 € Tf(')(RC‘fl), by Proposition 3.17(ii), we know
that 7.(n) € Hi(')(R”) and hence, for any ¢ € (Hf(')(R”))*, we have

(Come)m| = [Emm)] < 1] 20 gy
< Jell,

7TL(77) ||H§(')(Rn)

. e . e . n . .

In other words, £ o 7, is a bounded lincar functional on T/“)(R"*'). Thus, by
Proposition 4.8(ii), we find that there exists a function h € T EX))(R") such that, for
all n € TR,

(4.27) (Com)(n) = / 0z, Oh(z,t)

n+1
R+

dxdt

On the other hand, by Remark 3.10, we see that, for all f € Hi(')(R") N L*(R"),
f=m(Quf) in L*(R"). From this and (4.27), we deduce that

(D) = (Com)Quuf) = [ bl )@ (o) 5

1+1 t
R

-/ { | @mia %} fayde=: [ o)

To complete the proof of Theorem 4.3, it remains to prove that g € BMO;(Z.) (R").

For any @ := Q(z¢g,r¢) C R™ with some zg € R™ and rg € (0, 00), by Lemma 4.9,
we conclude that

{/Q'g(x)‘Pﬁowngdx};= | [ [ote) = Pogo(@)] ute) o

”“”L2(Q)S1

~ ap / 9() [(1 = Pogute)] do

||u||L2(Q)§1

= swp U1 = Puy )|
||u||L2(Q)§1

(L - Psom’gj)u‘

5 HeH(Hz()(R”))* sup

lull 2y <1 YO (R
5 H£||(Hf(')(R”))* Q‘_l/zHXQHLP(')(Rn)'
From this, we deduce that g € BMO, ;. (R") and ||g||BMO;(()‘) LR S ||€||(H€(.)(Rn))*,
which complete the proof of Theorem 4.3. O

From Proposition 4.7, Theorem 4.3 and an argument similar to that used in the
proof of [30, Theorem 4.5|, we easily deduce the following characterization of the
BMO-type spaces, the details being omitted.

Corollary 4.11. Let p(-) € C'8(R"), so and s be as in Proposition 4.5. Then
g € BMOY, | .(R") if and only if g € M(R") and |Q (I — P}, yu)g(x)[> 2 for all

t

(z,t) € R is a p(+)-Carleson measure. Moreover,

||9HBMOZ‘3,)7L*

(R™) ~ HQ:’tm (I o P;ko,tm)gHTzl”(;(Ri+l)

with the implicit positive constants independent of g.
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5. Applications

In this section, we give out two applications of the molecular characterizations
of the spaces Hf(')(R") established in Theorem 3.13. One is to investigate the co-
incidence between the spaces Hf(')(R") and H?®)(R"™), where H?()(R") denotes the
Hardy space with variable exponent introduced by Nakai and Sawano in [37]|. An-
other is to study the boundedness of the fractional integral L= on H z(')(R").

5.1. The coincidence between Hg(')(R”) and HPO)(R™). We begin with
recalling the definition of the Hardy space with variable exponent introduced in [37].
Let S(R") be the space of all Schwartz functions and S'(R™) its topological dual
space. For any N € N let

Fn(RY) =S¢ eSRY): Y sup (1+|z)N[D(x)| <17,
gezn, |8l<N TER”
where, for all 8 := (B1,...,8,) € Z%, |B] := B+ - +B, and DP := (8%1)51 e (%)ﬁ”.
Then, for all f € S'(R"), the grand mazimal function f3 is defined by setting, for
all 2 € R",

fa(x) = sup{|f = u(x)]: t € (0,00) and Y € Fy(R")},
where, for all t € (0,00) and & € R, ¢(&) := t " (&/1).

Definition 5.1. Let p(-) € C'°5(R") and N € (5= +n+ 1,00). Then the
Hardy space with variable exponent p(-), denoted by HP®)(R™), is defined to be the
set of all f € S'(R™) such that f§ € LPO(R"), equipped with the quasi-norm
||fHHP(')(R”) = HfXIHLp(-)(Rn)-

Remark 5.2. In [37, Theorem 3.3|, it was proved that the space HP()(R™) is
independent of N as long as N is sufficiently large. Although the range of N is not

presented explicitly in [37, Theorem 3.3], it was pointed out in [55, Remark 1.3(ii)]
that N € (2 +n+ 1,00) does the work.

p7
In what follows, suppose that L is a linear operator of type v on L*(R™) with
v € (0,%). Then it generates an analytic semigroup {e7*L},, where z € C satisfies
0 < |arg(z)] < T — v. Following [48], we assume that the kernels of {e=*},.,

2
{pt}+=0, satisfy the following conditions: there exist positive constants C, m and

T € (n(p% — 1), 1] such that, for all t € (0,00) and z, y, h € R",
tl/m

@+ o — gl
tl/m

(5.1) pe(e,y)| < C©

|A[”

(52) |pt(x + h> y) _pt(zay)|+|pt(x>y+ h) _pt(x>y)| S C(tl/m+|$ - y|)n+1+7 h

when 2|h| < tV/™ 4 |z — y|, and

(5.3) /npt(z,y) dz =1 = /npt(x, 2)dz.

Theorem 5.3. Let L be a linear operator of type v on L*(R") with v € (0, %)
and its heat kernel satisfy (5.1), (5.2) and (5.3). Assume that p(-) € C'°¢(R") satisfies
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py € (0,1], p— € (35, 1] andl% -

o L < "T“, where p_ and p, are as in (2.1). Then

P+
HPO(R™) and Hf(')(R”) coincide with equivalent quasi-norms.

Remark 5.4. Obviously, if L = —A, then its heat kernel satisfies (5.1), (5.2)
and (5.3). It was also pointed out by Yan [48, p. 4405, Remark| that the assumptions
(5.1), (5.2) and (5.3) are satisfied by the divergence form operator L := —div (AV)
when A has real entries, or when the dimension n = 1 or 2 in the case of complex
entries; see also |23, 24, 30| for some other examples.

To prove Theorem 5.3, we need the atomic characterization of HP)(R™). Let
p(:) € P(R"), q € [1,00] N (p4,00] and d := max{0, [n(1/p— — 1)|}. Recall that a
function a on R™ is called a (p(+), ¢, d)-atom if a satisfies

(i) supp a C R for some cube R C R";

, S
(i) lallramn) < [FZISay.

(iii) [gn a(x)z”® dz =0 for all § € Z7 with |S] < d.
Definition 5.5. Let p(-) € C'%8(R"), ¢ € [1,00] N (p,, 0] and
d :=max{0, [n(1/p- —1)]}

with p_ and p, as in (2.1). Then the atomic Hardy space H"(R") is defined

to be the set of all f € S'(R") such that f can be written as f = > . Aja; in

S'(R™), where {)\;}jexn C C and {a;}jen are (p(:),q,d)-atoms satistying that, for

each j € N, supp a; C R; for some cube R; C R™ and A({)\;} en, {R;}jen) < 00,

where A({\;}jen, {R;}jen) is as in (3.1) with {Q,},;en replaced by {R;}en.
Moreover, for any f € HZ(R™), its quasi-norm is defined by

11l o0y = MELA{A Fjens {R)}jen) s

where the infimum is taken over all admissible decompositions of f as above.

The following lemma was originally established by Nakai and Sawano in [37,
Theorem 4.6] and further improved by Sawano in [44, Theorem 1.1].

Lemma 5.6. Let p(-) € C'8(R") and q € [1,00] N (py, 00| with py as in (2.1).
Then the spaces HP")(R") and Hft(')’q(R") coincide with equivalent quasi-norms.

Proof of Theorem 5.3.  To prove this theorem, by Lemma 5.6, it suffices to
show that Hft('m(R”) and Hf(')(R”) coincide with equivalent quasi-norms. Since

p- € (35, 1], it follows that d = max{0, [n(1/p- — 1)|} = 0 in this case.

We first show that H”"*(R") ¢ H?")(R"). To this end, let g be the kernel of
the operator @;. Then, by [23, Lemma 6.10| (see also [48, p.4404]), we find that, for
any vy € (n[p% —1],7) and 0 € (0, 1), there exists a positive constant C' such that, for

all t € (0,00) and z, y, h € R™,
t6/m
G+ [ =y
té/m
A
tl/m—l—‘l’ _ y|)n+5+~/

(5.4) |@u(z,y)| < C

(5.5) |@(z+h,y) — @z, y)|+|a(z,y +h) — qz,y)| < C(
when 2|h| < tV/™ 4 |z — y|, and

(5.6) / Ca(zy)dz=1= / il 2) d=
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Let f € Hft(')’2(R”). Then, by Definition 5.5, we see that f has an atomic
decomposition f = 3. Aja;, where {\;};en C C and {a;}jen are (p(-), 2, 0)-atoms
such that, for each j € N, supp a; C R; with some cube R; C R", and

(5.7) B({Aja;}jen) S 11l gocr2 gy

Thus, we have

ISL() N zro gy < || 1AL (a;)

JEN LPC) (R™)
<> INISL(as) xar, D INISL(@) X a0
JeEN LPO) (R7) JEN LPO) (R™)
=: 14 1II.
. ' ' ‘R,|1/2 .
For I, since, due to (2.9), |S(a;)||r2rn) S llajllL2mny S 7”XRJ'”ZP(-)(R7L)’ it follows,

from Lemma 3.5, that I S B({);a;}jen) S If1l goor2 gy
Next, we estimate the term II. For all z € (4R;)¢, we have

A )

=: )+H2( ).

Observe that, when z € (4R;)%, |z —y| < t and z € R; := Q(zR,,Tr,;) for some
rr, € R" and 7g, € (0,00), we see that

1
t+|y—2z| >z — 2| 2§|x—sz|.

By this, (5.4) and the Holder inequality, we find that, for all z € (4Rj)c,

CE VAV 1%

J

(rr,)° (rr,)° 1R

a:llrz R )
|n+5|| il | Rl < \:c TR " |Ixr; || e (m7)

dydt
t+ |y |>n+5|a]( )|dZ tn+1

(5.8)

<

Y

|z — g

Choose § € (n [— —1],1) and r € (0, p_) such that n+¢ > . Then, from (5.7), (5.8),

Lemma 3.15 and the fact that, for all k € N, xup, < 257 [M(xg,)]"/", we deduce
that

Z |)\j|Hl(‘)X(4Rj)C

JEN

() (R")

ZZ \)\||R| (TR )6
I - ‘n+5X(4kRJ)\(4k R;)

keN jeN AR HL”()(R" -

LrC)(RN)
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1
p
< 4= k(n+o—2) |)‘]| M 1 L
~ Z Z xR, || Lot [ (XRj)]T p()
KEN jEN By 1LrO) (R™) L7 (mo)
(5.9) p/r 7‘/2 r
A" )
{5 [ ()
jeN XB Wl Loty (R b
R™)

IS =

S

< S M R <

~ XR ~ ||f“ P(-):2 Rny*
{ = [||XRj||LP(')(R”) ’ HEO? (Rr)

LrC) (R™)
On the other hand, by (5.5), (5.6) and the vanishing moment condition of a;, we
obtain

2
dy dt
Iy (x / / / qem (y, 2) — qm (y, R, )||a;(2)] dz -~
ly—z|<t |/ R; ;
_ ) )
/oo/ / |Z—$Rj|“/t a:(2)] d dy dt
a;(z)|dz
TR; ly—z|<t L R; (t + |y - Z|)n+6+7 J tn+1

1/2
< (TR]‘ )Py /OO
ST an o | L

2
/ \aj<z>|dz] et
R, t

where v, € (0,7) such that v — v, € (n [— — 1], 1), which, together with the Holder
inequality, implies that, for all z € (4RJ) ,

(TR )’Y—“fl ‘R ‘

o = wg " xR | ey ey

1
2

N[

AN

My(z) <

By this and an argument similar to that used in the proof of (5.9), we conclude that

Z |)\j‘112(')X(4Rj)E

< .
~ ||fHH§t( )’2(Rn)'

jEN L0 (R
This, combined with (5.9), shows that II < ||f||H:t() 2Ry Therefore, f € Hp( (R™)
and
||f||Hp<>(Rn = [1SL(Dlleer @y S W1 por2 gy
which further implies that H? (R ) C H? ¢ (R”)
Conversely, we prove that Hp (R™) C Hp 2(R"). Let a be aA(p(-),s,L)-
molecule and o = 7p(a), where a is a (p(+), 00)-atom supported on R for some

cube R C R™. Let R := Q(zg,rr) with zg € R™ and rg € (0,00), Do(R) := 2R
and, when k& € N, Di(R) := (2*'1R) \ (2¥R). Moreover, for any k € Z,, we let
ly = ka(R) a(z) dxr and

XDy (R)
|De(R)| J ()

hi :== axp,(r) — a(z) dz.
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Then, for all x € R", we have

a(r) =Y he(x)+ ) |Dk Dr ()] P ) (2)

keZ keZy
=) (@) + D Nega [Xna (@) = Xe(@)] = J1+ o,
kEZ 1 =
where, for any k € Zy, Ny := > 72 [; and X = |XDD:((}%)\'

We first deal with J;. Obviously, for all k € Z.,, supp hiy C 2¥*' R and Jan () do =
0. Moreover, by the Holder inequality and Proposition 3.17(i), we see that

lhollzzmny S ladllzz@ey S lallrzgety S IRl oo oy

Since supp a C ﬁ, it follows that, for all z € R",
< 'R dt
a(z)] S i |@s,em (I = Pogem ) (al, 1)) ()]

"R dt "R dt

S [ 1Qun (el @I T+ [ 1Quin Prgen) -, ))] -

where sp is as in (3.8) and s € [sg,00). By (5.4), (2.4) and the Hélder inequality, we
find that, for all £ € N and = € Dy(R),

[Tty S s [ /tﬂxywﬁu%»@“

(TR) 9—k(n+9d)
——||a +1) < -
~ ‘ZL’ _ xR‘n—l—& H ||T22 (RY ~ HXRHLP(')(R”)

(5.10)

By an argument similar to that used in the proof of (4.20), we also have

TR dt 2—k(n+6)
[ 1Qun Py ale )@ S
0 t HXRHLP(‘)(R”)
which, combined with (5.10), implies that, for all k£ € N and = € Dy(R),

2—k(n+5)
(5.11) la(x)] S

ST
HXRHLP(')(R”)
From this, together with Lemma 3.14, it follows that
k(2 — 1
[ArllL2mey S ol 2o, (r)) S 2 k(2+6)||XR||L§<->(Rn)|R\2

(512) < 2—k(n+5—p%) |2k+1R‘%
~ ||2k+1R||LP(')(R") .

Thus, for each & € N, Fn 05> hk is a (p(+),2,0)-atom up to a positive constant

multiple. By (5.12) and the fact that 6 > n(p% — 1), we find that

S
k=0

_ 1
S Z ||hk||L2(Rn) S ||XR||L1}(-)(Rn)|R|2’
L2(R™) k=0
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which implies that ) ;- hx converges in S'(R™). Moreover, from Remark 2.1(i) and
the Fatou lemma of LP()(R") (see [14, Theorem 2.61]), we deduce that

1

{i |:2—k(n+6—n/p)X2k+1R P2
_ HX2k+1R||LP(->(Rn)
(5.13) o 1P (R)

1
_ { 0o |:2—k(n+6—n/p)xzk+1R:|p‘ } }P <1
~ Z ()
L2

k=0 HX2k+1R||Lp(->(Rn) ~

Therefore, J; = 0 i € Hgf')’z(R").
Next, we consider the term Jo. Obviously, for any k € Z.,
supp Ni1(Xe+1 — Xi) C 2°7'R

and

Nt [Ren(0) = Ta(a)) do = Nesa | [Reso) = (o)) do =0
Rn n
On the other hand, by (5.11) and Lemma 3.14, we know that, for each k € Z,,
< 1L
)~ |2kR| (2k+1R)G
|B|>
HXRHLP(')(R”)
1
< k(b= |2FF1R|3 .
~ ||2k+1R||LP(‘)(R”)

[ Ne1 (X1 — ik)||L2(R7L lo(z)| d

(5.14) < 27kEH)

~

Therefore, for each k € Z, 20 F0=/P- )N, (Xes1 — Xi) 18 a (p(+),2,0)-atom up to
a positive constant multiple. Moreover, from (5.14), we deduce that

~ ~ _ 1
Z Ni+1(Xk+1 — Xn) S ||XR||LI}(-)(Rn)|R|2
keZy L2(R")

and hence Jo = > 7 Niy1(Xe+1 — Xk) converges in S'(R"). By this and (5.13), we

conclude that J, € Hgt(')’2(R"). Therefore, for the molecule «, we have

1 ~ 1 ~ - -
(5.15) o= Z th + Z WNk—i-l (Xk+1 — X&)
k)EZ+ kJEZ+
in L2(R") and hence in 8'(R™), where, for every k € Z., hy and Njy1(Xps1 — X5) are
(p(+),2,0)-atoms up to a positive constant multiple and, moreover, a € H:t('m(R”).

Now, for all f € Hi(')(R") N L*(R™), by Theorem 3.13(i), we find that f has an
atomic decomposition f = ) jen Aj@j, where the summation converges in L*(R™)

and also in Hg(')(R"), {A\j}jen € C and {¢;}jen are (p(-), s, L)-molecules, as in
Definition 3.11, such that

B({Aja;}ien) S N[l pppe gy

Moreover, we may assume that, for each j € N, ¢; is a molecule associated with
some cube R; := Q(x;,7;) for some z; € R™ and r; € (0,00). Then, from what we
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have proved as in (5.15), we deduce that

N~ NG~
f= Z Z mhg‘,k + Z Z m%,hﬂ (Xjk+1 = Xjik)
JEN keZy JEN kezZy

in L?(R™) and hence also in 8'(R™), where, for each j € N and k € Zy, h;; and

N;r1(Xjre1 — Xix) are (p(+),2,0)-atoms, supported on 28*'R; up to a positive

constant multiple. On the other hand, by Lemma 3.14, we see that, for any j € N
and k € Z,

1

vt < (i)~
||X2kRj||Lp(->(Rn) |12V R;|

Then, by choosing ¢ € (0, 1) such that § € (n[p% —1- i], 1), Lemma 3.15 and the

fact that, for any j € N, k€ Z,, r € (0,p) and x € R",

Xar, (7) < 257 [M(xr,)(@)] "

Sie

we deduce that

2.2

JEN keZ,

IS =

—k(n+6—-2 p
[|)\]|2 ( p)X2k+le]

HX2k+1Rj HLP(')(R”)
Lr()(R™)

I3 =

n n l

Sy [|Aj|2"“<"”*ﬁ‘p—‘7>[M(xRJ.)]r]E

JEN kEZ X ||Lp<-)(Rn)

N

LrC) (RN)

S {Z ['AJ’”M(XRJ”T]_} S B }iew) S 1 e

jeN ||XRJ- HLP(')(R”)

I3 =

Lr() (R™)

Therefore, f € H??(R") and hence H?"/(R") c HP'*(R™). This finishes the
proof of Theorem 5.3. U

Remark 5.7. When p(-) is a constant exponent, Theorem 5.3 goes back to [48,
Theorem 6.1] (see also [30, Theorem 6.1]). We point out that the proof of Theorem 5.3
borrows some ideas from the proof of [30, Theorem 6.1].

5.2. Fractional integrals L~ on spaces Hﬁ(')(R”). Let L satisfy Assump-
tions (A) and (B) as in Section 2. In this subsection, we establish the boundedness of
the fractional integral on variable exponent Hardy spaces associated with the opera-
tor L. Recall that, for any v € (0, ) with m as in Assumption (A), the generalized
fractional integral L™ associated with L is defined by setting, for all f € L?*(R")
and x € R",

1 o
L@ = s | e D@
I'(v) Jo
where I'(y) is an appropriate positive constant; see [48, p.4400]. Notice that, if
L := —A with A being the Laplacian, then L™ becomes the classical fractional

integral; see, for example, [45, Chapter 5. We also point out that the Hardy—
Littlewood—Sobolev inequality related to the semigroup itself of an operator was
studied by Yoshikawa [52].
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Remark 5.8. Let L satisfy Assumptions (A) and (B). For v € (0, ) with m
as in Assumption (A), define the operator L~ by setting, for all f € L?*(R") and
r e R,

~ 1 o0
L) = i [ e @)l
I'(v) Jo
It was proved in [30, Lemma 5.1(ii)] that, if v € (0,2) and p;, po € (1, 00) satisfy
L — L _ ™ then L7 is bounded from LP'(R") into LP*(R™).
P2 p1 n

The main result of this subsection is stated as follows.

Theorem 5.9. Let L satisfy Assumptions (A) and (B), v € (0, %) with m as
in Assumption (A), p(-) € C°5(R") satisfy oo < P- < p+ < 1withp_, p. and
O(L), respectively, as in (2.1) and (2.5). Assume that q(-) is defined by setting, for
all x € R,

1 1 my
qz)  plx) n-
Then the fractional integral L™ maps H f(')(R") continuously into HZ(')(R”).
To prove Theorem 5.9, we need the following technical lemma, which is just [44,
Lemma 5.2| and plays a key role in the proof of Theorem 5.9.
Lemma 5.10. Let § € (0,n) and p(-) € C'5(R") satisfy p; € (0,%). Assume
that q(-) € P(R") is defined by setting, for all x € R", Tlm) := L. — 2 Then there

p(z)
exists a positive constant C' such that, for all sequences {R;};en of cubes of R™ and

{)‘j}jEN - C,

5
D IR xR, <C

JEN

Z [Ailxr,

JjEN

L) (R7) LrC) (R™)

Proof of Theorem 5.9. To prove this theorem, we only need to show that, for
all f € H'O(R™) N L2(R™),

(5.16) ISLLT () lzaor @y S HfHHg(‘)(Rn)’

since H')(R™) N L2(R™) is dense in H?")(R™).

Let f € H'Y(R™) N L2(R™). Then, by Theorem 3.13(ii), we see that there exist
{\;}jen C C and a sequence {a;}jen of (p(+), so, L)-molecules associated with cubes
{Rj}jen such that f =3 Aja; in Hf(')(R”) and also in L?*(R"), and

A iens AR 1jen) S I Fllpe gy

Observe that L™7 is bounded from L?*(R™) to L¢(R™) for some ¢ € (1, 00) such that
% =1 ™ (see |48, Theorem 5.1] and also Remark 5.8). It follows that, for almost
every r € R",

LA S DI /OOO 7 e (ag) (@) dt = LT (ay) ()

JjEN JEN
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and hence

|S2(L~ D INISLET (@) xan,

JEN

)) HLq(-)(Rn) 5

LaC) (Rn)

D INISLIE T (@) Xam, 0

JEN

(5.17)
= Il + 12.
LaC)(Rn)
To deal with Iy, let » € (1,2). Then, by the Holder inequality, (2.9), Proposi-
tion 3.17 and Remark 5.8, we find that

HSL(E—V(C!]'))MRJ- < IR 11

SL(L7(a5))xar,

L™ (R™) La(R™)

1_1
roq

S Rl

(O‘j)X4Rj

LI(R™)
11 m ‘R|%

S IR a2 mey S WUR))|™ 77— —.

||XRj HLP(‘)(R”)

This, combined with Lemmas 3.5 and 5.10, implies that

r A 1a
L |3 P ey,
= L lro @ | e
1 1
(5.18) _ Z |)\j‘X4Rj q { [ A ‘X4R }E}P
s Lxmslleo @) | —) s Lixesllro e Lr() (R

~ A{{Ajten {Rljen) S ||f||H§<-)(Rn),
where ¢ := min{1, ¢_} with ¢_ as in (2.1) via p(-) replaced by q(-).
Next, we estimate Iy. Since 57 < p—, it follows that there exists ¢ € (0,6(L))
such that 2= < p_. Moreover, we may choose 19 € (0, p_) such that

€ (n[l/ro —1],6(L)).

Assume that, for each j € N, R; := Q(x;,r;) for some z; € R" and r; € (0, 00).
Then, by an argument similar to that used in the proof of [48, (5.3)], we conclude
that, for all j € N and = € (4R;)",

(5.19) Su(L7 () (@) S .
’ |LL’ - xj|n+e HXR]‘ ||LP(')(Rn)

For any k, j € N, let Di(R;) := (2872R;)\ (2" R;). Then, by (5.19) and Lemma 5.10,
we see that

[

< A A
I, < Ig;N ||XRj||LP<-)(Rn) |- _:I;j|n+€XDk(Rj) -
] (25r;)™
o] P3N e
- Z RY1 X2k 2R,
e T sy 20500
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Thus, from Lemma 3.15, Remark 2.1(i) and the fact that, for any & € N,
X2k+2Rj S 2kn/r’o [M (XRj )]1/T0a

we deduce that

i 1
oknp/ro |)\| R 2
S| D Samrer || 2o {—][M(XR-)]TO}
~ (n+e+mn) i '
_kEN 2 E : 7 jEN ||XRj||LP(')(Rn) L%(Rn)
1
[Aj|XR, r L
S T N0
Z |:HXR]‘HLP(‘)(R7L) H7(R™)

jEN

Lp(-)(Rn)
This, together with (5.17) and (5.18), implies that (5.16) holds true, which shows

that L= is bounded from H f(')(R”) to HZ(')(R”) and hence completes the proof of
Theorem 5.9. U

Remark 5.11. In the case of constant exponents, Theorem 5.9 was obtained by
Yan [48, Theorem 5.1].

Acknowledgements. The authors would like to express their deep thanks to the
referee for his very careful reading and useful comments which do improve the pre-
sentation of this article.
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