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Abstract. Let L be a linear operator on L2(Rn) generating an analytic semigroup {e−tL}t≥0

with kernels having pointwise upper bounds and p(·) : Rn → (0, 1] be a variable exponent function

satisfying the globally log-Hölder continuous condition. In this article, the authors introduce the

variable exponent Hardy space associated with the operator L, denoted by H
p(·)
L (Rn), and the

BMO-type space BMOp(·),L(R
n). By means of tent spaces with variable exponents, the authors

then establish the molecular characterization of Hp(·)
L (Rn) and a duality theorem between such a

Hardy space and a BMO-type space. As applications, the authors study the boundedness of the

fractional integral on these Hardy spaces and the coincidence between H
p(·)
L (Rn) and the variable

exponent Hardy spaces Hp(·)(Rn).

1. Introduction

In recent years, function spaces with variable exponents attract much attentions
(see, for example, [4, 14, 16, 18, 19, 20, 37, 44, 50, 51, 54, 55] and their references). The
variable exponent Lebesgue space Lp(·)(Rn), with an exponent function p(·) : Rn →
(0,∞), which consists of all measurable functions f such that

´

Rn |f(x)|
p(x) dx <∞,

is a generalization of the classical Lebesgue space. The study of variable exponent
Lebesgue spaces can be traced back to Birnbaum–Orlicz [6] and Orlicz [40] (see also
Luxemburg [34] and Nakano [38, 39]), but the modern development started with
the articles [31] of Kováčik and Rákosník as well as [13] of Cruz-Uribe and [17]
of Diening. The variable function spaces have been widely used in the study of
harmonic analysis; see, for example, [14, 18]. Apart from theoretical considerations,
such function spaces also have interesting applications in fluid dynamics [1, 42], image
processing [9], partial differential equations and variational calculus [2, 26, 43].

Particularly, Nakai and Sawano [37] introduced Hardy spaces with variable expo-
nents, Hp(·)(Rn), and established their atomic characterizations which were further
applied to consider dual spaces of such Hardy spaces. Later, in [44], Sawano extended
the atomic characterization of the space Hp(·)(Rn) in [37], which also improves the
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corresponding result in [37], and gave out more applications including the bounded-
ness of the fractional integral operator and the commutators generated by singular
integral operators and BMO functions, and an Olsen’s inequality. After that, Zhuo et
al. [55] established their equivalent characterizations via intrinsic square functions,
including the intrinsic Lusin area function, the intrinsic g-function and the intrinsic
g∗λ-function. Independently, Cruz-Uribe and Wang [16] also investigated the variable
exponent Hardy space with some slightly weaker conditions than those used in [37].
Recall that the theory of classical Hardy spaces Hp(Rn) with p ∈ (0, 1] and their
duals are well studied and certainly play an important role in harmonic analysis as
well as partial differential equations; see, for example, [11, 25, 36, 46].

On the other hand, in recent years, the study of function spaces, especially on
Hardy spaces associated with different operators, has also inspired great interests
(see, for example, [5, 22, 23, 24, 29, 30, 48, 33] and their references). Particularly, let
L be a linear operator on L2(Rn) and generate an analytic semigroup {e−tL}t≥0 with
kernel having pointwise upper bounds, whose decay is measured by θ(L) ∈ (0,∞].
Then, by using the Lusin area function, Auscher, Duong and McIntosh [5] initially
introduced the Hardy space H1

L(R
n) associated with the operator L and established

its molecular characterization. Based on this, Duong and Yan [23, 24] introduced the
BMO-type space BMOL(R

n) associated with L and proved that the dual space of
H1

L(R
n) is just BMOL∗(Rn), where L∗ denotes the adjoint operator of L in L2(Rn).

Later, Yan [48] further generalized these results to the Hardy spaces Hp
L(R

n) with
p ∈ (n/[n + θ(L)], 1] and their dual spaces. Moreover, Jiang et al. [30] investigated
the Orlicz-Hardy space and its dual space associated with such an operator L.

Let p(·) : Rn → (0, 1] be a variable exponent function satisfying the globally log-
Hölder continuous condition. Motivated by [37, 48], in this article, we introduce the

variable exponent Hardy space associated with the operator L, denoted by H
p(·)
L (Rn).

More precisely, for all f ∈ L2(Rn) and x ∈ Rn, let

SL(f)(x) :=

{
ˆ

Γ(x)

∣∣tmLe−tmL(f)(y)
∣∣2 dy dt

tn+1

} 1
2

,

where m is a positive constant appearing in the pointwise upper bound of the heat
kernel (see (2.2) below) and Γ(x) := {(y, t) ∈ Rn × (0,∞) : |y − x| < t}. The Hardy

spaces H
p(·)
L (Rn) is defined to be the completion of the set {f ∈ L2(Rn) : SL(f) ∈

Lp(·)(Rn)} with respect to the quasi-norm

‖f‖
H

p(·)
L (Rn)

:= ‖SL(f)‖Lp(·)(Rn) := inf

{
λ ∈ (0,∞) :

ˆ

Rn

[
SL(f)(x)

λ

]p(x)
dx ≤ 1

}
.

We then establish the molecular characterization of H
p(·)
L (Rn) via variable exponent

tent spaces. Using this molecular characterization, we further prove that the dual

space of H
p(·)
L (Rn) is the BMO-type space BMOp(·),L∗(Rn), which is also introduced

in this article. As more applications, we study the boundedness of the fractional

integral L−γ (γ ∈ (0, n
m
) with m as in Assumption (A) below) from H

p(·)
L (Rn) to

H
q(·)
L (Rn) with 1

q(·)
:= 1

p(·)
− mγ

n
and the coincidence between H

p(·)
L (Rn) and variable

exponent Hardy spaces Hp(·)(Rn) introduced in [37].
A novel aspect of this article is to give a non-trivial combination of function

spaces with variable exponents and the theory of operators including their functional
calculi and semigroups, and these new function spaces prove necessary in the study
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of the boundedness of the associated operators (for example, fractional integrals L−γ

with γ ∈ (0, n
m
)).

This article is organized as follows. In Section 2, we first recall some notation and
definitions about variable exponent Lebesgue spaces, holomorphic functional calculi
of operators and semigroups, also including some basic assumptions on the operator
L considered in this article and the domain of the semigroup {e−tL}t≥0. Via the Lusin
area function SL(f), we then introduce the variable exponent Hardy space associated

with L, denoted by H
p(·)
L (Rn).

In Section 3, we mainly establish a molecular characterization of the space

H
p(·)
L (Rn) (see Theorem 3.13 below). To this end, we first establish an atomic charac-

terization of the variable exponent tent space T
p(·)
2 (Rn+1

+ ) (see Corollary 3.7 below).

Then the molecular characterization of H
p(·)
L (Rn) is obtained by using a project op-

erator πL corresponding to L, which is proved to be bounded from T
p(·)
2 (Rn+1

+ ) to

H
p(·)
L (Rn). We point out that [44, Lemma 4.1] of Sawano (a slight weaker variant

of this lemma was early obtained by Nakai and Sawano [37, Lemma 4.11]), which is
re-stated in Lemma 3.5 below, plays a key role in the proof of Theorem 3.13

Section 4 is devoted to proving a duality theorem. Indeed, in Theorem 4.3 below,

we show that the dual space of H
p(·)
L (Rn) is just the BMO-type space BMOp(·),L∗(Rn),

which is also introduced in this section. To show Theorem 4.3, we rely on several
key estimates related to BMO-type spaces and p(·)-Carleson measures (see Propo-
sitions 4.5, 4.6 and 4.7, and Lemma 4.9 below), and the duality of the variable
exponent tent space (see Proposition 4.8 below). The main difficulty to establish
these estimates is that the quasi-norm ‖ · ‖Lp(·)(Rn) has no the translation invariance,
namely, for any cube Q(x, r) ⊂ Rn, with x ∈ Rn and r ∈ (0,∞), and z ∈ Rn,
‖χQ(x,r)‖Lp(·)(Rn) may not equal to ‖χQ(x+z,r)‖Lp(·)(Rn). To overcome this difficulty, we
make full use of Lemma 3.14 below, which is just [55, Lemma 2.6] and presents a
relation between two quasi-norms ‖ · ‖Lp(·)(Rn) corresponding to two cubes.

As applications of the molecular characterization ofH
p(·)
L (Rn) from Theorem 3.13,

in Section 5, we investigate the boundedness of fractional integrals on H
p(·)
L (Rn) (see

Theorem 5.9 below) and show that the spaces H
p(·)
L (Rn) and Hp(·)(Rn) coincide with

equivalent quasi-norms under some additional assumptions on L (see Theorem 5.3
below).

2. Preliminaries

In this section, we first recall some notation and notions on variable exponent
Lebesgue spaces and some knowledge about holomorphic functional calculi as well as
semigroups. Then we introduce the variable exponent Hardy spaces associated with

operators, denoted by H
p(·)
L (Rn), which generalize the Hardy spaces Hp

L(R
n) studied

in [23, 48].
We begin with some notation which will be used in this article. Let N :=

{1, 2, . . . } and Z+ := N ∪ {0}. We denote by C a positive constant which is in-
dependent of the main parameters, but may vary from line to line. We use C(α,... )

to denote a positive constant depending on the indicated parameters α, . . . . The
symbol A . B means A ≤ CB. If A . B and B . A, then we write A ∼ B. If E is
a subset of Rn, we denote by χE its characteristic function and by E∁ the set Rn\E.
For a ∈ R, ⌊a⌋ denotes the largest integer m such that m ≤ a. For all x ∈ Rn and
r ∈ (0,∞), denote by Q(x, r) the cube centered at x with side length r, whose sides
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are parallel to the axes of coordinates. For each cube Q ⊂ Rn and a ∈ (0,∞), we
use xQ to denote the center of Q and ℓ(Q) to denote the side length of Q, and denote
by aQ the cube concentric with Q having the side length aℓ(Q).

2.1. Variable exponent Lebesgue spaces. In what follows, a measurable
function p(·) : Rn → (0,∞) is called a variable exponent. For any variable exponent
p(·), let

(2.1) p− := ess inf
x∈Rn

p(x) and p+ := ess sup
x∈Rn

p(x).

Denote by P(Rn) the collection of variable exponents p(·) : Rn → (0,∞) satisfying

0 < p− ≤ p+ <∞.
For a measurable function f on Rn and a variable exponent p(·) ∈ P(Rn),

the modular ̺p(·)(f) of f is defined by setting ̺p(·)(f) :=
´

Rn |f(x)|
p(x) dx and the

Luxemburg quasi-norm

‖f‖Lp(·)(Rn) := inf
{
λ ∈ (0,∞) : ̺p(·)(f/λ) ≤ 1

}
.

Then the variable exponent Lebesgue space Lp(·)(Rn) is defined to be the set of all mea-
surable functions f such that ̺p(·)(f) <∞ equipped with the quasi-norm ‖f‖Lp(·)(Rn).
For more properties on the variable exponent Lebesgue spaces, we refer the reader
to [14, 18].

Remark 2.1. Let p(·) ∈ P(Rn).
(i) If p− ∈ [1,∞), then Lp(·)(Rn) is a Banach space (see [18, Theorem 3.2.7]). In

particular, for all λ ∈ C and f ∈ Lp(·)(Rn), ‖λf‖Lp(·)(Rn) = |λ|‖f‖Lp(·)(Rn) and, for

all f, g ∈ Lp(·)(Rn),

‖f + g‖Lp(·)(Rn) ≤ ‖f‖Lp(·)(Rn) + ‖g‖Lp(·)(Rn).

(ii) For any non-trivial function f ∈ Lp(·)(Rn), it holds true that

̺p(·)(f/‖f‖Lp(·)(Rn)) = 1;

see, for example, [14, Proposition 2.21].
(iii) If

´

Rn [|f(x)|/δ]
p(x) dx ≤ c for some δ ∈ (0,∞) and some positive constant c

independent of δ, then it is easy to see that ‖f‖Lp(·)(Rn) ≤ Cδ, where C is a positive
constant independent of δ, but depending on p− (or p+) and c.

Recall that a measurable function g ∈ P(Rn) is said to be locally log-Hölder

continuous, denoted by g ∈ C log
loc (R

n), if there exists a positive constant Clog(g) such
that, for all x, y ∈ Rn,

|g(x)− g(y)| ≤
Clog(g)

log(e+ 1/|x− y|)
,

and g is said to satisfy the globally log-Hölder continuous condition, denoted by
g ∈ C log(Rn), if g ∈ C log

loc (R
n) and there exist a positive constant C∞ and a constant

g∞ ∈ R such that, for all x ∈ Rn,

|g(x)− g∞| ≤
C∞

log(e + |x|)
.

Remark 2.2. Let n = 1 and, for all x ∈ R,

p(x) := max
{
1− e3−|x|,min

(
6/5,max

{
1/2, 3/2− x2

})}
.
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Then p(·) ∈ C log(R); see [37, Example 1.3]. With a slight modification, another
example was obtained in [49, Example 2.20] as follows. For all x ∈ R, let

p(x) := max
{
1− e3−|x|, min (6/5,max(1/2, k|x|+ 1/2− k))

}
,

where k := 7/[10(
√
3/10− 1)]. Then p(·) ∈ C log(R).

For all r ∈ (0,∞), denote by Lr
loc (R

n) the set of all locally r-integrable functions

on Rn and, for any measurable set E ⊂ Rn, by Lr(E) the set of all measurable

functions f such that

‖f‖Lr(E) :=

{
ˆ

E

|f(x)|r dx

}1/r

<∞.

Recall that the Hardy–Littlewood maximal operator M is defined by setting, for all
f ∈ L1

loc (R
n) and x ∈ Rn,

M(f)(x) := sup
B∋x

1

|B|

ˆ

B

|f(y)| dy,

where the supremum is taken over all balls B of Rn containing x.

Remark 2.3. Let p(·) ∈ C log(Rn) and 1 < p− ≤ p+ < ∞. Then there exists a
positive constant C such that, for all f ∈ Lp(·)(Rn), ‖M(f)‖Lp(·)(Rn) ≤ C‖f‖Lp(·)(Rn);
see, for example, [18, Theorem 4.3.8].

2.2. Holomorphic functional calculi. Here, we first recall some notions of
the bounded holomorphic functional calculus, which were introduced by McIntosh
[35], and then make two assumptions on L required in this article. For two normed
linear spaces X and Y , let L(X ,Y) be the collection of continuous linear operators

from X to Y and, for any T ∈ L(X ,Y), ‖T‖X→Y its operator norm.
Let v ∈ (0, π). Define the closed sector Sv by Sv := {z ∈ C : | arg z| ≤ v} ∪ {0}

and denote by S0
v the interior of Sv. Let H(S0

v) be the set of all holomorphic functions
on S0

v ,

H∞(S0
v) :=

{
b ∈ H(S0

v) : ‖b‖∞ := sup
z∈S0

v

|b(z)| <∞

}

and

Ψ(S0
v) := {ψ ∈ H(S0

v) : ∃ s, C ∈ (0,∞) such that

|ψ(z)| ≤ C|z|s(1 + |z|2s)−1, ∀ z ∈ S0
v}.

Given v ∈ (0, π), a closed operator L ∈ L(L2(Rn), L2(Rn)) is said to be of type

v if σ(L) ⊂ Sv, where σ(L) denotes the spectra of L, and, for all γ ∈ (v, π), there
exists a positive constant C such that, for all λ /∈ Sγ ,

‖(L− λI)−1‖L2(Rn)→L2(Rn) ≤ C|λ|−1.

Let θ ∈ (v, γ) and Σ be the contour {ξ = re±iθ : r ∈ [0,∞)} parameterized clockwise
around Sv. Then, for ψ ∈ Ψ(S0

v) and L being of type v, the operator ψ(L) is defined
by

ψ(L) :=
1

2πi

ˆ

Σ

(L− λI)−1ψ(λ) dλ,

where the integral is absolutely convergent in L(L2(Rn), L2(Rn)) and, by the Cauchy
theorem, the above definition is independent of the choices of v and γ satisfying
θ ∈ (v, γ). If L is a one-to-one linear operator having dense range and b ∈ H∞(S0

γ),

then define an operator b(L) by b(L) := [ψ(L)]−1(bψ)(L), where ψ(z) := z(1+z)−2 for
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all z ∈ S0
γ . It was proved in [35] that b(L) is well defined on L2(Rn). The operator L

is said to have a bounded H∞ functional calculus on L2(Rn) if, for all γ ∈ (v, π), there

exists a positive constant C̃ such that, for all b ∈ H∞(S0
γ), b(L) ∈ L(L2(Rn), L2(Rn))

and

‖b(L)‖L2(Rn)→L2(Rn) ≤ C̃‖b‖∞.

Let L be a linear operator of type v on L2(Rn) with v ∈ (0, π
2
). Then it generates

a bounded holomorphic semigroup {e−zL}z∈Dv , where Dv := {z ∈ C : 0 ≤ | arg(z)| <
π
2
− v} and, for all z ∈ C, arg(z) ∈ (−π, π] is the argument of z; see, for example,

[41, Theorem 1.45].
In this article, we make the following two assumptions on the operator L.

Assumption (A). Assume that, for each t ∈ (0,∞), the distribution kernel pt
of e−tL belongs to L∞(Rn ×Rn) and satisfies that, for all x, y ∈ Rn,

(2.2) |pt(x, y)| ≤ t−
n
m g

(
|x− y|

t
1
m

)
,

where m is a positive constant and g is a positive, bounded and decreasing function
satisfying that, for some ε ∈ (0,∞),

(2.3) lim
r→∞

rn+εg(r) = 0.

Assumption (B). Assume that the operator L is one-to-one, has dense range
in L2(Rn) and a bounded H∞ functional calculus on L2(Rn).

Remark 2.4. (i) If {e−tL}t≥0 is a bounded analytic semigroup on L2(Rn) whose
kernels {pt}t≥0 satisfy (2.2) and (2.3), then, for any k ∈ N, there exists a positive
constant C(k), depending on k, such that, for all t ∈ (0,∞) and almost every x, y ∈
Rn,

(2.4)

∣∣∣∣t
k ∂

kpt(x, y)

∂tk

∣∣∣∣ ≤
C(k)

tn/m
gk

(
|x− y|

t1/m

)
.

Here, it should be pointed out that, for all k ∈ N, the function gk may depend on k
but always satisfies (2.3); see [41, Theorem 6.17] and [12].

(ii) Let v ∈ (0, π). Then L has a bounded H∞ functional calculus on L2(Rn)
if and only if, for any γ ∈ (v, π) and nonzero function ψ ∈ Ψ(S0

γ), L satisfies the
following square function estimate: there exists a positive constant C such that, for
all f ∈ L2(Rn),

C−1‖f‖L2(Rn) ≤

{
ˆ ∞

0

‖ψt(L)f‖
2
L2(Rn)

dt

t

}1/2

≤ C‖f‖L2(Rn),

where ψt(ξ) := ψ(tξ) for all t ∈ (0,∞) and ξ ∈ Rn; see [35].

2.3. An acting class of semigroups {e−tL}t≥0. For all β ∈ (0,∞), let
Mβ(R

n) be the set of all functions f ∈ L2
loc (R

n) satisfying

‖f‖Mβ(Rn) :=

{
ˆ

Rn

|f(x)|2

1 + |x|n+β
dx

}1/2

<∞.

We point out that the space Mβ(R
n) was introduced by Duong and Yan in [24] and

it is a Banach space under the norm ‖ · ‖Mβ(Rn). For any given operator L satisfying
Assumptions (A) and (B), let

(2.5) θ(L) := sup{ε ∈ (0,∞) : (2.2) and (2.3) hold true}
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and

M(Rn) :=

{
Mθ(L)(R

n), if θ(L) <∞,⋃
β∈(0,∞)Mβ(R

n), if θ(L) = ∞.

Let s ∈ Z+. For any f ∈ M(Rn) and (x, t) ∈ Rn+1
+ := Rn × (0,∞), let

(2.6) Ps,tf(x) := f(x)− (I − e−tL)s+1f(x) and Qs,tf(x) := (tL)s+1e−tLf(x),

and, particularly, let

(2.7) Ptf(x) := P0,tf(x) = e−tLf(x) and Qtf(x) := Q0,tf(x) = tLe−tLf(x).

Here, we point out that these operators in (2.6) were introduced by Blunck and
Kunstmann [7] and Holfmann and Martell [27].

Remark 2.5. (i) For all f ∈ M(Rn), the operators Ps,tf and Qs,tf are well
defined. Moreover, the kernels ps,t of Ps,t and qs,t of Qs,t satisfy that there exists a
positive constant C such that, for all t ∈ (0,∞) and x, y ∈ Rn,

(2.8) |ps,tm(x, y)|+ |qs,tm(x, y)| ≤ Ct−ng

(
|x− y|

t

)
,

where the function g satisfies the conditions as in Assumption (A); see, for example,
[48].

(ii) A typical example of L satisfying θ(L) = ∞ is that the kernels {pt}t≥0 of
{e−tL}t≥0 have the pointwise Gaussian upper bound, namely, there exists a positive

constant C such that, for all t ∈ (0,∞) and x, y ∈ Rn, |pt(x, y)| ≤
C

tn/2 e
− |x−y|2

t .

Obviously, if ∆ :=
∑n

i=1
∂2

∂xi
is the Laplacian operator and L = −∆, then the heat

kernels have the pointwise Gaussian upper bound. There are several other operators
whose heat kernels have the pointwise Gaussian upper bound; see, for example, [48,
p. 4390, Remarks].

(iii) Let s ∈ Z+ and p ∈ (1,∞). Then, by (i) of this remark, we easily conclude
that there exists a positive constant C such that, for all t ∈ (0,∞) and f ∈ Lp(Rn),

‖Ps,tm(f)‖Lp(Rn) ≤ C‖f‖Lp(Rn).

2.4. Definition of Hardy spaces H
p(·)
L (Rn). For all functions f ∈ L2(Rn),

define the Lusin area function SL(f) by setting, for all x ∈ Rn,

SL(f)(x) :=

{
ˆ

Γ(x)

|Qtmf(y)|
2 dy dt

tn+1

}1/2

,

here and hereafter, for all x ∈ Rn, Γ(x) := {(y, t) ∈ Rn+1
+ : |y − x| < t} and Qt is

defined as in (2.7). In [5], Auscher et al. proved that, for any p ∈ (1,∞), there exists
a positive constant C(p), depending on p, such that, for all f ∈ Lp(Rn),

(2.9) C−1
(p)‖f‖Lp(Rn) ≤ ‖SL(f)‖Lp(Rn) ≤ C(p)‖f‖Lp(Rn);

see also Duong and McIntosh [21] and Yan [47].
We now introduce the variable exponent Hardy spaces associated with operators.

Definition 2.6. Let L be an operator satisfying Assumptions (A) and (B), and

p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] . A function f ∈ L2(Rn) is said to be in H̃
p(·)
L (Rn)

if SL(f) ∈ Lp(·)(Rn); moreover, define

‖f‖
H

p(·)
L (Rn)

:= ‖SL(f)‖Lp(·)(Rn) := inf

{
λ ∈ (0,∞) :

ˆ

Rn

[
SL(f)(x)

λ

]p(x)
dx ≤ 1

}
.
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Then the variable Hardy space associated with operator L, denoted by H
p(·)
L (Rn), is

defined to be the completion of H̃
p(·)
L (Rn) in the quasi-norm ‖ · ‖

H
p(·)
L (Rn)

.

Remark 2.7. (i) By the theorem of completion of Yosida [53, p. 65], we find

that H̃
p(·)
L (Rn) is dense in H

p(·)
L (Rn), namely, for any f ∈ H

p(·)
L (Rn), there exists

a Cauchy sequence {fk}k∈N in H̃
p(·)
L (Rn) such that limk→∞ ‖fk − f‖

H
p(·)
L (Rn)

= 0.

Moreover, if {fk}k∈N is a Cauchy sequence in H̃
p(·)
L (Rn), then there exists an unique

f ∈ H
p(·)
L (Rn) such that limk→∞ ‖fk−f‖Hp(·)

L (Rn)
= 0. Moreover, L2(Rn)∩H

p(·)
L (Rn)

is dense in H
p(·)
L (Rn).

(ii) We point out that smooth functions with compact supports do not necessarily

belong to H
p(·)
L (Rn); see [48] and also Remark 4.4 below for more details.

(iii) Observe that, when p(·) ≡ p ∈ (0,∞), Lp(·)(Rn) = Lp(Rn). If p(·) ≡ 1, then

H
p(·)
L (Rn) = H1

L(R
n), which was introduced by Auscher et al. [5]; see also Duong

and Yan [23]. If p(·) ≡ p ∈ ( n
n+θ(L)

, 1), then the space H
p(·)
L (Rn) is just the space

Hp
L(R

n) introduced by Yan [48].
(iv) Different from the space Hp

L(R
n) which is just Lp(Rn) when p ∈ (1,∞)

(see, for example, [48, p. 4400]), since it is still unclear whether (2.9) holds true or
not with Lp(Rn) replaced by Lp(·)(Rn) when p+ ∈ (1,∞), it is also unclear whether

H
p(·)
L (Rn) and Lp(·)(Rn) (or Hp(·)(Rn)) coincide or not. We will not push this issue

in this article due to its length.

We end this section by comparing the variable exponent Hardy spaces associated
with operators in this article with the Musielak–Orlicz–Hardy spaces associated with
operators satisfying reinforced off-diagonal estimates in [8]. Indeed, in general, these
two scales of Hardy-type spaces do not cover each other.

Remark 2.8. Let ϕ : Rn × [0,∞) → [0,∞) be a growth function in [32] and
L an operator satisfying reinforced off-diagonal estimates in [8]. Then Bui et al.
[8] introduced the Musielak–Orlicz–Hardy space associated with operator L via the
Lusin area function, denoted by Hϕ,L(R

n). Recall that the Musielak–Orlicz space
Lϕ(Rn) is defined to be the set of all measurable functions f on Rn such that

‖f‖Lϕ(Rn) := inf

{
λ ∈ (0,∞) :

ˆ

Rn

ϕ(x, |f(x)|/λ) dx ≤ 1

}
<∞.

Observe that, if

(2.10) ϕ(x, t) := tp(x) for all x ∈ Rn and t ∈ [0,∞),

then Lϕ(Rn) = Lp(·)(Rn). However, a general Musielak–Orlicz function ϕ satisfying
all the assumptions in [32] (and hence [8]) may not have the form as in (2.10) (see
[32]). On the other hand, it was proved in [49, Remark 2.23(iii)] that there exists a
variable exponent function p(·) ∈ C log(Rn), but tp(·) is not a uniformly Muckenhoupt
weight, which was required in [32] (and hence [8]). Thus, Musielak–Orlicz–Hardy
spaces associated with operators in [8] and variable exponent Hardy spaces associated
with operators in this article do not cover each other.

Moreover, in Theorem 5.3 below, we show that, under some additional assump-

tions on L, the spaces H
p(·)
L (Rn) coincide with the variable exponent Hardy spaces

Hp(·)(Rn) which can not cover and also can not be covered by Musielak–Orlicz Hardy
spaces in [32] based on the same reason as above.
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3. Molecular characterizations of H
p(·)
L (Rn)

In this section, we aim to obtain the molecular characterizations of H
p(·)
L (Rn). To

this end, we first give out some properties of the tent spaces with variable exponents
including their atomic characterizations, which are then applied to establish the

molecular characterizations ofH
p(·)
L (Rn) by using a project operator πL corresponding

to L.

3.1. Atomic characterizations of tent spaces T
p(·)
2 (Rn+1

+ ). We begin with
the definition of the tent space with variable exponent. Let p(·) ∈ P(Rn). For all
measurable functions g on Rn+1

+ and x ∈ Rn, define

T (g)(x) :=

{
ˆ

Γ(x)

|g(y, t)|2
dy dt

tn+1

}1/2

and

Cp(·)(g)(x) := sup
Q∋x

|Q|1/2

‖χQ‖Lp(·)(Rn)

{
ˆ

Q̂

|g(y, t)|2
dy dt

t

}1/2

,

where the supremum is taken over all cubes Q of Rn containing x and Q̂ denotes the

tent over Q, namely, Q̂ := {(y, t) ∈ Rn+1
+ : B(y, t) ⊂ Q}.

Definition 3.1. Let p(·) ∈ P(Rn).

(i) Let q ∈ (0,∞). Then the tent space T q
2 (R

n+1
+ ) is defined to be the set of all

measurable functions g on Rn+1
+ such that ‖g‖T q

2 (R
n+1
+ ) := ‖T (g)‖Lq(Rn) <∞.

(ii) The tent space with variable exponent T
p(·)
2 (Rn+1

+ ) is defined to be the set of all
measurable functions g on Rn+1

+ such that ‖g‖
T

p(·)
2 (Rn+1

+ )
:= ‖T (g)‖Lp(·)(Rn) <

∞.
(iii) The space T

p(·)
2,∞(Rn+1

+ ) is defined to be the set of all measurable functions g

on Rn+1
+ such that ‖g‖

T
p(·)
2,∞(Rn+1

+ )
:= ‖Cp(·)(g)‖L∞(Rn) <∞.

Remark 3.2. (i) We point out that the spaces T q
2 (R

n+1
+ ) and T

p(·)
2 (Rn+1

+ ) were
introduced in [10] and [55], respectively. Moreover, if p(·) ≡ q ∈ (0,∞), then

T
p(·)
2 (Rn+1

+ ) = T q
2 (R

n+1
+ ).

(ii) If g ∈ T 2
2 (R

n+1
+ ), then we easily see that ‖g‖T 2

2 (R
n+1
+ ) = {

´

Rn+1
+

|g(x, t)|2 dx dt
t
}

1
2 .

Let q ∈ (1,∞) and p(·) ∈ P(Rn). Recall that a measurable function a on Rn+1
+

is called a (p(·), q)-atom if a satisfies

(i) supp a ⊂ Q̂ for some cube Q ⊂ Rn;
(ii) ‖a‖T q

2 (R
n+1
+ ) ≤ |Q|1/q‖χQ‖

−1
Lp(·)(Rn)

.

Furthermore, if a is a (p(·), q)-atom for all q ∈ (1,∞), then a is call a (p(·),∞)-
atom. We point out that the (p(·),∞)-atom was introduced in [55].

For any p(·) ∈ P(Rn), {λj}j∈N ⊂ C and cubes {Qj}j∈N of Rn, let

(3.1) A ({λj}j∈N, {Qj}j∈N) :=

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|χQj

‖Qj‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

,

here and hereafter, we let

(3.2) p := min{1, p−}

with p− as in (2.1).
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The following atomic decomposition of T
p(·)
2 (Rn+1

+ ) was proved in [55, Theo-
rem 2.16].

Lemma 3.3. Let p(·) ∈ C log(Rn). Then, for all f ∈ T
p(·)
2 (Rn+1

+ ), there exist
{λj}j∈N ⊂ C and a sequence {aj}j∈N of (p(·),∞)-atoms such that, for almost every
(x, t) ∈ Rn+1

+ ,

(3.3) f(x, t) =
∑

j∈N

λjaj(x, t);

moreover, the series in (3.3) converges absolutely for almost all (x, t) ∈ Rn+1
+ and

there exists a positive constant C such that, for all f ∈ T
p(·)
2 (Rn+1

+ ),

(3.4) B({λjaj}j∈N) := A({λj}j∈N, {Qj}j∈N) ≤ C‖f‖
T

p(·)
2 (Rn+1

+ )
,

where, for each j ∈ N, Qj denotes the cube such that supp aj ⊂ Q̂j .

By Lemma 3.3, we have the following conclusion.

Corollary 3.4. Let p(·) ∈ C log(Rn). Assume that f ∈ T
p(·)
2 (Rn+1

+ ), then the

decomposition (3.3) also holds true in T
p(·)
2 (Rn+1

+ ).

To prove Corollary 3.4, we need the following useful lemma, which is just [44,
Lemma 4.1].

Lemma 3.5. Let p(·) ∈ C log(Rn) and q ∈ [1,∞) ∩ (p+,∞) with p+ as in (2.1).
Then there exists a positive constant C such that, for all sequences {Qj}j∈N of cubes
of Rn, numbers {λj}j∈N ⊂ C and functions {aj}j∈N satisfying that, for each j ∈ N,
supp aj ⊂ Qj and ‖aj‖Lq(Rn) ≤ |Qj|

1/q,

∥∥∥∥∥∥

(
∞∑

j=1

|λjaj|
p

) 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

≤ C

∥∥∥∥∥∥

(
∞∑

j=1

|λjχQj
|p

) 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

,

where p is as in (3.2).

Proof of Corollary 3.4. Let f ∈ T
p(·)
2 (Rn+1

+ ). Then, by Lemma 3.3, we may
assume that f =

∑
j∈N λjaj almost everywhere on Rn+1

+ , where {λj}j∈N ⊂ C and

{aj}j∈N is a sequence of (p(·),∞)-atoms such that, for each j ∈ N, supp aj ⊂ Q̂j

with some cube Qj ⊂ Rn, and

(3.5) A ({λj}j∈N, {Qj}j∈N) . ‖f‖
T

p(·)
2 (Rn+1

+ )
.

Let q ∈ [1,∞)∩ (p+,∞). Then, by the definition of (p(·),∞)-atoms, we see that, for
all j ∈ N,

‖T (aj)‖Lq(Rn) = ‖aj‖T q
2 (R

n+1
+ ) ≤

|Qj|
1/q

‖χQj
‖Lp(·)(Rn)

.

From this, Lemma 3.5 and the fact that, for all θ ∈ (0, 1] and {ξj}j∈N ⊂ C,

(3.6)

(
∑

j∈N

|ξj|

)θ

≤
∑

j∈N

|ξj|
θ,
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we deduce that, for all N ∈ N,
∥∥∥∥∥T
(
f −

N∑

j=1

λjaj

)∥∥∥∥∥
Lp(·)(Rn)

≤

∥∥∥∥∥

∞∑

j=N+1

|λj|T (aj)

∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥

{
∞∑

j=N+1

[
|λj|χQj

‖χQj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

.

(3.7)

This, combined with (3.5) and the dominated convergence theorem (see [14, Theo-
rem 2.62]), implies that

lim
N→∞

∥∥∥∥∥T
(
f −

N∑

j=1

λjaj

)∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥
lim

N→∞

{
∞∑

j=N+1

[
|λj |χQj

‖χQj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

= 0.

Therefore, (3.3) holds true in T
p(·)
2 (Rn+1

+ ), which completes the proof of Corollary
3.4. �

Remark 3.6. It was proved in [29, Proposition 3.1] that, if f ∈ T q
2 (R

n+1
+ ) with

q ∈ (0,∞), then the decomposition (3.3) also holds true in T q
2 (R

n+1
+ ).

Using Corollary 3.4 and an argument similar to that used in the proof of (3.7), we

obtain the following atomic characterization of T
p(·)
2 (Rn+1

+ ), the details being omitted.

Corollary 3.7. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1]. Then f ∈ T
p(·)
2 (Rn+1

+ ) if
and only if there exist {λj}j∈N ⊂ C and a sequence {aj}j∈N of (p(·),∞)-atoms such
that, for almost every (x, t) ∈ Rn+1

+ , f(x, t) =
∑

j∈N λjaj(x, t) and

ˆ

Rn

{
∑

j∈N

[
λjχQj

‖χQj
‖Lp(·)(Rn)

]p} p(x)
p

dx <∞,

where, for each j, Qj denotes the cube appearing in the support of aj ; moreover, for

all f ∈ T
p(·)
2 (Rn+1

+ ), ‖f‖
T

p(·)
2 (Rn+1

+ )
∼ A({λj}j∈N, {Qj}j∈N) with the implicit positive

constants independent of f .

The following remark plays an important role in the proof of Theorem 4.3.

Remark 3.8. Let p(·) ∈ P(Rn) satisfy p+ ∈ (0, 1]. Then, by [37, Remark 4.4],
we know that, for any {λj}j∈N ⊂ C and cubes {Qj}j∈N of Rn,

∑

j∈N

|λj | ≤ A({λj}j∈N, {Qj}j∈N).

In what follows, let T
p(·)
2,c (Rn+1

+ ) and T q
2,c(R

n+1
+ ) with q ∈ (0,∞) be the sets of all

functions, respectively, in T
p(·)
2 (Rn+1

+ ) and T q
2 (R

n+1
+ ) with compact supports.

Proposition 3.9. Let p(·) ∈ C log(Rn). Then T
p(·)
2,c (Rn+1

+ ) ⊂ T 2
2,c(R

n+1
+ ) as sets.

Proof. By [29, Lemma 3.3(i)], we know that, for any q ∈ (0,∞), T q
2,c(R

n+1
+ ) ⊂

T 2
2,c(R

n+1
+ ). Thus, to prove this proposition, it suffices to show that T

p(·)
2,c (Rn+1

+ ) ⊂

T q0
2,c(R

n+1
+ ) for some q0 ∈ (0,∞). To this end, suppose that f ∈ T

p(·)
2,c (Rn+1

+ ) and

supp f ⊂ K, where K is a compact set in Rn+1
+ . Let Q be a cube in Rn such that
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K ⊂ Q̂. Then supp T (f) ⊂ Q. From this and the fact that p− ≤ p(x) for all x ∈ Rn,
we deduce that

ˆ

Rn

[T (f)(x)]p− dx ≤

ˆ

{x∈Q : T (f)(x)<1}

[T (f)(x)]p− dx+

ˆ

{x∈Q : T (f)(x)≥1}

· · ·

≤ |Q|+

ˆ

Rn

[T (f)(x)]p(x) dx <∞,

which implies that T
p(·)
2,c (Rn+1

+ ) ⊂ T
p−
2,c (R

n+1
+ ) as sets and hence completes the proof

of Proposition 3.9. �

3.2. Molecular characterizations of H
p(·)
L (Rn). In this subsection, we es-

tablish the molecular characterizations of H
p(·)
L (Rn). We begin with some notions. In

what follows, for any q ∈ (0,∞), let Lq(Rn+1
+ ) be the set of all q-integrable functions

on Rn+1
+ and Lq

loc (R
n+1
+ ) the set of all locally q-integrable functions on Rn+1

+ . For
any p(·) ∈ P(Rn), let

(3.8) s0 := ⌊(n/m)(1/p− − 1)⌋ ,

namely, s0 denotes the largest integer smaller than or equal to n
m
( 1
p−

− 1).

Let m be as in (2.2) and s ∈ [s0,∞). Let C(m,s) be a positive constant, depending
on m and s, such that

(3.9) C(m,s)

ˆ ∞

0

tm(s+2)e−2tm(1− e−tm)s0+1 dt

t
= 1.

Let q ∈ (0,∞). Recall that the operator πL is defined by setting, for all f ∈
T q
2,c(R

n+1
+ ) and x ∈ Rn,

πL(f)(x) := C(m,s)

ˆ ∞

0

Qs,tm(I − Ps0,tm)(f(·, t))(x)
dt

t
.

Moreover, πL is well defined and πL(f) ∈ L2(Rn) for all f ∈ T q
2,c(R

n+1
+ ) (see [48,

p. 4395]).

Remark 3.10. Let f ∈ L2(Rn). Then, by [48, (3.10)], we know that

f = C(m,s)

ˆ ∞

0

Qs,tm(I − Ps0,tm)Qtmf
dt

t
,

where the integral converges in L2(Rn); see also [3, 35].

Definition 3.11. Let p(·) ∈ C log(Rn) and s ∈ [s0,∞) with s0 as in (3.8). A
measurable function α on Rn is called a (p(·), s, L)-molecule if there exists a (p(·),∞)-
atom a supported on Q for some cube Q ⊂ Rn such that, for all x ∈ Rn, α(x) :=
πL(a)(x).

When it is necessary to specify the cube Q, then a is called a (p(·), s, L)-molecule

associated with Q.

Remark 3.12. Let p(·) ∈ C log(Rn) with p− ∈ ( n
n+θ(L)

,∞), where p− and θ(L)

are as in (2.1) and (2.5), respectively. Then, by Proposition 3.17(ii) below, we see that
the (p(·), s, L)-molecule is well defined. Indeed, if a is a (p(·),∞)-atom, by Corol-

lary 3.7, we then know a ∈ T
p(·)
2 (Rn+1

+ ), which, together with Proposition 3.17(ii)

below, implies that πL(a) ∈ H
p(·)
L (Rn). Thus, the (p(·), s, L)-molecule is well defined.

The molecular characterization of H
p(·)
L (Rn) is stated as follows.



Molecular characterizations and dualities of variable exponent Hardy spaces 369

Theorem 3.13. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] and p− ∈ ( n
n+θ(L)

, 1], and

s ∈ [s0,∞) with p+, p−, θ(L) and s0, respectively, as in (2.1), (2.5) and (3.8).

(i) If f ∈ H
p(·)
L (Rn), then there exist {λj}j∈N ⊂ C and a sequence {αj}j∈N of

(p(·), s, L)-molecules associated with cubes {Qj}j∈N such that f =
∑

j∈N λjαj

in H
p(·)
L (Rn) and

B({λjαj}j∈N) := A({λj}j∈N, {Qj}j∈N) ≤ C‖f‖
H

p(·)
L (Rn)

with C being a positive constant independent of f .
(ii) Suppose that {λk}k∈N ⊂ C and {αk}k∈N is a family of (p(·), s, L)-molecules

satisfying B({λkαk}k∈N) <∞. Then
∑

k∈N λkαk converges in H
p(·)
L (Rn) and

∥∥∥∥∥
∑

k∈N

λkαk

∥∥∥∥∥
H

p(·)
L (Rn)

≤ CB({λkαk}k∈N)

with C being a positive constant independent of {λkαk}k∈N.

The proof of Theorem 4.3 strongly depends on several auxiliary estimates and
will be presented later. The following Lemma 3.14 is just [55, Lemma 2.6] (For the
case when p− > 1, see also [28, Corollary 3.4]).

Lemma 3.14. Let p(·) ∈ C log(Rn). Then there exists a positive constant C such
that, for all cubes Q1 and Q2 satisfying Q1 ⊂ Q2,

C−1

(
|Q1|

|Q2|

)1/p−

≤
‖χQ1‖Lp(·)(Rn)

‖χQ2‖Lp(·)(Rn)

≤ C

(
|Q1|

|Q2|

)1/p+

,

where p− and p+ are as in (2.1).

The following Fefferman–Stein vector-valued inequality of the Hardy–Littlewood
maximal operator M on the space Lp(·)(Rn) was obtained in [15, Corollary 2.1].

Lemma 3.15. Let r ∈ (1,∞) and p(·) ∈ C log(Rn). If p− ∈ (1,∞) with p− as in
(2.1), then there exists a positive constant C such that, for all sequences {fj}

∞
j=1 of

measurable functions,
∥∥∥∥∥∥

{
∞∑

j=1

[M(fj)]
r

}1/r
∥∥∥∥∥∥
Lp(·)(Rn)

≤ C

∥∥∥∥∥∥

(
∞∑

j=1

|fj|
r

)1/r
∥∥∥∥∥∥
Lp(·)(Rn)

.

Remark 3.16. Let k ∈ N and p(·) ∈ C log(Rn). Then, by Lemma 3.15 and the
fact that, for all cubes Q ⊂ Rn, r ∈ (0, p−), χ2kQ ≤ 2kn/r[M(χQ)]

1/r, we conclude
that there exists a positive constant C such that, for any {λj}j∈N ⊂ C and cubes
{Qj}j∈N of Rn,

A({λj}j∈N, {2
kQj}j∈N) ≤ C2

kn( 1
r
− 1

p+
)
A({λj}j∈N, {Qj}j∈N),

where p− and p+ are as in (2.1).

Proposition 3.17. Let p(·) ∈ C log(Rn) with p− ∈ ( n
n+θ(L)

,∞) and q ∈ (1,∞),

where p− and θ(L) are as in (2.1) and (2.5), respectively. Then

(i) the operator πL is a bounded linear operator from T q
2 (R

n+1
+ ) to Lq(Rn);

(ii) the operator πL, well defined on the space T
p(·)
2,c (Rn+1

+ ), extends to a bounded

linear operator from T
p(·)
2 (Rn+1

+ ) to H
p(·)
L (Rn).
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Proof. To prove this proposition, it suffices to show (ii), since (i) is just [48,

Lemma 3.4(a)]. Noticing that, due to Corollary 3.7, T
p(·)
2,c (Rn+1

+ ) is a dense subset of

T
p(·)
2 (Rn+1

+ ), to prove (ii), we only need to show that πL maps T
p(·)
2,c (Rn+1

+ ) continuously

into H
p(·)
L (Rn).

To this end, let f ∈ T
p(·)
2,c (Rn+1

+ ). Then, by Proposition 3.9, we know that

f ∈ T 2
2,c(R

n+1
+ ) and hence πL is well defined on T

p(·)
2,c (Rn+1

+ ) by (i). This, combined
with Lemma 3.3, Corollary 3.4 and Remark 3.6, implies that there exist sequences

{λj}j∈N ⊂ C and {aj}j∈N of (p(·),∞)-atoms such that, for each j ∈ N, supp aj ⊂ Q̂j

with some cube Qj ⊂ Rn, f =
∑

j∈N λjaj in both T
p(·)
2 (Rn+1

+ ) and T 2
2 (R

n+1
+ ), and

A({λj}j∈N, {Qj}j∈N) . ‖f‖
T

p(·)
2 (Rn+1

+ )
. Thus, it follows from (i) that, for all N ∈ N,

∥∥∥∥∥πL
(
f −

N∑

j=1

λjaj

)∥∥∥∥∥
L2(Rn)

.

∥∥∥∥∥

∞∑

j=N+1

λjaj

∥∥∥∥∥
T 2
2 (R

n+1
+ )

→ 0

as N → ∞; furthermore,

πL(f) = lim
N→∞

N∑

j=1

πL(λjaj)

=
∑

j∈N

λjC(m,s)

ˆ ∞

0

Qs,tm(I − Ps0,tm)(aj(·, t))
dt

t
=:
∑

j∈N

λjαj

(3.10)

in L2(Rn), where s0 is as in (3.8) and s ∈ [s0,∞).
Next, we prove ‖SL(πL(f))‖Lp(·)(Rn) . ‖f‖

T
p(·)
2 (Rn+1

+ )
. Observe that, for almost

every x ∈ Rn,

SL(πL(f))(x) = SL

(
∑

j∈N

λjαj

)
(x) ≤

∑

j∈N

SL(λjαj)(x)

due to (3.10), the Fatou lemma and the fact that SL is bounded on L2(Rn) (see (2.9)).
Then, by Remark 2.1(i) and the Fatou lemma of Lp(·)(Rn) (see [14, Theorem 2.61]),
we see that

(3.11) ‖SL(πL(f))‖Lp(·)(Rn) ≤





∞∑

i=0

∥∥∥∥∥∥

(
∑

j∈N

[
SL(λjαj)χUi(Qj)

]p
) 1

p

∥∥∥∥∥∥

p

Lp(·)(Rn)





1
p

,

where p is as in (3.2) and, for any j ∈ N, U0(Qj) := 4Qj and Ui(Qj) := 2i+2Qj\(2
i+1Qj)

for all i ∈ N.
By (2.9), (i) and Lemma 3.14, we find that, for all q ∈ (1,∞),

‖SL(αj)‖Lq(4Qj)
. ‖αj‖Lq(Rn) ∼ ‖πL(aj)‖Lq(Rn) . ‖aj‖T q

2 (R
n+1
+ ) . |Qj |

1
q ‖χ4Qj

‖−1
Lp(·)(Rn)

.

From this, Lemma 3.5 and Remark 3.16, we deduce that
∥∥∥∥∥∥

(
∑

j∈N

[
|λj|SL(αj)χ4Qj

]p
) 1

p

∥∥∥∥∥∥
Lp(·)(Rn)

. A ({λj}j∈N, {4Qj}j∈N) . A ({λj}j∈N, {Qj}j∈N) . ‖f‖
T

p(·)
2 (Rn+1

+ )
.

(3.12)
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Since p− ∈ ( n
n+θ(L)

,∞), we choose ε ∈ (0, θ(L)) such that p− ∈ ( n
n+ε

,∞). For

i ∈ N, by [30, (4.12)], we know that, for all x ∈ (4Qj)
∁,

SL(αj)(x) . (rQj
)ε+

n
2 |x− xQj

|−(n+ε)‖aj‖T 2
2 (R

n+1
+ ).

Then, by this, the Hölder inequality and Lemma 3.14, we further find that, for any
q ∈ (p+,∞) ∩ [2,∞) with p+ as in (2.1),

‖SL(αj)‖Lq(Ui(Qj)) . 2i(
n
q
−n−ε)|Qj|

1
q
− 1

2‖aj‖T 2
2 (R

n+1
+ ) . 2i(

n
q
−n−ε)‖aj‖T q

2 (R
n+1
+ )

. 2−i(n+ε)|2iQj |
1
q ‖χQj

‖−1
Lp(·)(Rn)

.
(3.13)

Observe that, for all r ∈ ( n
n+ε

, p−), χ2iQj
≤ 2

n
r
i[M(χQj

)]
1
r . Thus, from this, (3.13)

and Lemmas 3.5 and 3.15, we deduce that
∥∥∥∥∥∥

(
∑

j∈N

[
|λj |SL(αj)χUi(Qj)

]p
) 1

p

∥∥∥∥∥∥
Lp(·)(Rn)

. 2−i(n+ε)

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|χ2iQj

‖χQj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. 2−i(n+ε−n/r)A({λj}j∈N, {Qj}j∈N) . 2−i(n+ε−n/r)‖f‖
T

p(·)
2 (Rn+1

+ )
.

(3.14)

Combining (3.11), (3.12) and (3.14), together with r > n
n+ε

, we conclude that

‖SL(πL(f))‖Lp(·)(Rn) .

{
∞∑

i=0

2−i(n+ε−n
r
)p‖f‖

T
p(·)
2 (Rn+1

+ )

}1/p

. ‖f‖
T

p(·)
2 (Rn+1

+ )
,

which implies that πL is a bounded linear operator from T
p(·)
2 (Rn+1

+ ) to H
p(·)
L (Rn)

and hence completes the proof of Proposition 3.17. �

We now turn to the proof of Theorem 3.13.

Proof of Theorem 3.13. We first prove (i). Let C(m,s) be the constant as in (3.9)

and f ∈ H
p(·)
L (Rn) ∩ L2(Rn). Then, by Remark 3.10, we see that

(3.15) f = C(m,s)

ˆ ∞

0

Qs,tm(I − Ps0,tm)Qtmf
dt

t
= πL(Qtmf)

in L2(Rn), where s0 is as in (3.8) and s ∈ [s0,∞). Since f ∈ H
p(·)
L (Rn), it follows that

Qtmf ∈ T
p(·)
2 (Rn+1

+ ). Thus, by Lemma 3.3 and Corollary 3.4, we find that Qtmf =∑
j∈N λjaj in the sense of both pointwise and in T

p(·)
2 (Rn+1

+ ), where {λj}j∈N ⊂ C

and {aj}j∈N are (p(·),∞)-atoms satisfying that, for each j ∈ N, supp aj ⊂ Qj with
some cube Qj ⊂ Rn, and

A ({λj}j∈N, {Qj}j∈N) . ‖Qtmf‖T p(·)
2 (Rn+1

+ )
∼ ‖f‖

H
p(·)
L (Rn)

.

For any j ∈ N, let αj := πL(aj). Then αj is a (p(·), s, L)-molecule and, by (3.15)
and Proposition 3.17, we conclude that

f = πL(Qtmf) =
∑

j∈N

λjπL(aj) =:
∑

j∈N

λjαj

in both L2(Rn) and H
p(·)
L (Rn).
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Now, for any f ∈ H
p(·)
L (Rn), since H

p(·)
L (Rn) ∩ L2(Rn) is dense in H

p(·)
L (Rn), it

follows that there exists a sequence {fk}k∈N ⊂ [H
p(·)
L (Rn) ∩ L2(Rn)] such that, for

all k ∈ N,

‖f − fk‖Hp(·)
L (Rn)

≤ 2−k‖f‖
H

p(·)
L (Rn)

.

Let f0 := 0. Then

(3.16) f =
∑

k∈N

(fk − fk−1) in H
p(·)
L (Rn).

From the above argument, we deduce that, for each k ∈ N, there exist {λkj}k∈N ⊂ C

and a sequence {αk
j}j∈N of (p(·), s, L)-molecules such that

(3.17) fk − fk−1 =
∑

j∈N

λkjα
k
j in H

p(·)
L (Rn)

and

A({λkj}j∈N, {Q
k
j}j∈N) . ‖fk − fk−1‖Hp(·)

L (Rn)
. 2−k‖f‖

H
p(·)
L (Rn)

,

where, for any k, j ∈ N, Qk
j denotes the cube appearing in the definition of the

(p(·), s, L)-molecule αk
j . By this, the Minkowski inequality, (ii) and (iii) of Remark 2.1

and (3.6), we see that

ˆ

Rn

{
∑

k∈N

∑

j∈N

[
|λkj |χQk

j

‖f‖
H

p(·)
L (Rn)

‖χQk
j
‖Lp(·)(Rn)

]p} p(x)
p

dx

≤

ˆ

Rn




∑

k∈N

[
∑

j∈N

(
|λkj |χQk

j

‖f‖
H

p(·)
L (Rn)

‖χQk
j
‖Lp(·)(Rn)

)p]p(x)


1
p

dx

.



∑

k∈N





ˆ

Rn

2−kp(x)

[
∑

j∈N

(
|λkj |χQk

j

2−k‖f‖
H

p(·)
L (Rn)

‖χQk
j
‖Lp(·)(Rn)

)p] p(x)
p

dx





p



1
p

.

(
∑

k∈N

2−kp2

)1/p

<∞,

which implies that B
(
{λkjα

k
j }j,k∈N

)
. ‖f‖

H
p(·)
L (Rn)

. Moreover, by (3.16) and (3.17),

we conclude that

f =
∑

k∈N

∑

j∈N

λkjα
k
j

in H
p(·)
L (Rn) and hence the proof of (i) is completed.
Next, we show (ii). Without loss of generality, we may assume that, for each

k ∈ N, αk := πL(ak), where ak is a (p(·),∞)-atom supported on Q̂k for some cube
Qk ⊂ Rn. Then, from Proposition 3.17(ii) and Corollary 3.7, we deduce that, for all



Molecular characterizations and dualities of variable exponent Hardy spaces 373

N1, N2 ∈ N with N1 < N2,
∥∥∥∥∥

N2∑

k=N1

λkαk

∥∥∥∥∥
H

p(·)
L (Rn)

∼

∥∥∥∥∥πL
(

N2∑

k=N1

λkak

)∥∥∥∥∥
H

p(·)
L (Rn)

.

∥∥∥∥∥

N2∑

k=N1

λkak

∥∥∥∥∥
T

p(·)
2 (Rn+1

+ )

.

∥∥∥∥∥∥

{
N2∑

k=N1

[
|λk|χQk

‖χQk
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

,

which tends to zero as N1, N2 → ∞ due to the dominated convergence theorem.

Thus,
∑

k∈N λkαk converges in H
p(·)
L (Rn) and, by the Fatou lemma of Lp(·)(Rn),

Proposition 3.17(ii) and Corollary 3.7, we further know that
∥∥∥∥∥

∞∑

k=1

λkαk

∥∥∥∥∥
H

p(·)
L (Rn)

≤ lim inf
N→∞

∥∥∥∥∥

N∑

k=1

λkαk

∥∥∥∥∥
H

p(·)
L (Rn)

= lim inf
N→∞

∥∥∥∥∥πL

(
N∑

k=1

λkak

)∥∥∥∥∥
H

p(·)
L (Rn)

. lim inf
N→∞

∥∥∥∥∥

N∑

k=1

λkak

∥∥∥∥∥
T

p(·)
2 (Rn+1

+ )

. lim inf
N→∞

∥∥∥∥∥∥

{
N∑

k=1

[
|λk|χQk

‖χQk
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. B({λkαk}k∈N),

which completes the proof of Theorem 3.13. �

In what follows, for all s ∈ [s0,∞) with s0 as in (3.8) and p(·) ∈ P(Rn), denote

by H
p(·)
L,fin(R

n) the set of finite linear combinations of (p(·), s, L)-molecules. For any

f ∈ H
p(·)
L,fin(R

n), the quasi-norm is given by

‖f‖
H

p(·)
L,fin(R

n)
:= inf

{
B({λjαj}

N
j=1) : N ∈ N, f =

N∑

j=1

λjαj

}
,

where the infimum is taken over all finite molecular decompositions of f .

Corollary 3.18. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] and p− ∈ ( n
n+θ(L)

, 1],

where p−, p+ and θ(L) are, respectively, as in (2.1) and (2.5). Then H
p(·)
L,fin(R

n) is

dense in H
p(·)
L (Rn).

Proof. Let f ∈ H
p(·)
L (Rn) ∩ L2(Rn). Then Qtmf ∈ T

p(·)
2 (Rn+1

+ ) and hence, by

Lemma 3.3, we have Qtmf =
∑

k λkak in T
p(·)
2 (Rn+1

+ ), where {λk}k∈N ⊂ C and
{ak}k∈N are (p(·),∞)-atoms. For every k ∈ N, let αk := πL(ak). Then {αk}k∈N are
(p(·), s, L)-molecules. Thus, by Proposition 3.17(ii), we conclude that, for all N ∈ N,

∥∥∥∥∥f −
N∑

k=1

λkαk

∥∥∥∥∥
H

p(·)
L (Rn)

=

∥∥∥∥∥πL
(
Qtmf −

N∑

k=1

λkak

)∥∥∥∥∥
H

p(·)
L (Rn)

.

∥∥∥∥∥Qtmf −
N∑

k=1

λkak

∥∥∥∥∥
T

p(·)
2 (Rn+1

+ )

→ 0,

as N → ∞, which implies that H
p(·)
L,fin(R

n) is dense in H
p(·)
L (Rn) ∩ L2(Rn) and hence

in H
p(·)
L (Rn). This finishes the proof of Corollary 3.18. �
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4. BMO-type spaces and the duality of H
p(·)
L (Rn)

In this section, we mainly consider the duality of H
p(·)
L (Rn). To this end, moti-

vated by [30], we introduce the space BMOs
p(·),L(R

n) associated with the operator L
and the variable exponent p(·).

Definition 4.1. Let L satisfy Assumptions (A) and (B), p(·) ∈ C log(Rn) with
p+ ∈ (0, 1] and s ∈ [s0,∞), where p+ and s0 are, respectively, as in (2.1) and (3.8).
Then the BMO-type space BMOs

p(·),L(R
n) is defined to be the set of all functions

f ∈ M(Rn) such that ‖f‖BMOs
p(·),L(R

n) <∞, where

‖f‖BMOs
p(·),L(R

n) := sup
Q⊂Rn

|Q|1/2

‖χQ‖Lp(·)(Rn)

{
ˆ

Q

|f(x)− Ps,(rQ)mf(x)|
2 dx

} 1
2

and the supremum is taken over all cubes Q of Rn.

Remark 4.2. (i) The space (BMOs
p(·),L(R

n), ‖ · ‖BMOs
p(·),L(R

n)) is a vector space

with the semi-norm vanishing on the space K(L,s)(R
n) which is defined by

K(L,s)(R
n) :={f ∈ M(Rn) : Ps,tf(x) = f(x) for almost every x ∈ Rn

and all t ∈ (0,∞)}.

In this article, the space BMOs
p(·),L(R

n) is understood to be modulo K(L,s)(R
n); see

[23, Section 6] for a discussion of K(L,0)(R
n) when L is a second order elliptic operator

of divergence form or a Schrödinger operator.
(ii) If p(·) ≡ 1 and s = 0, then BMOs

p(·),L(R
n) is just BMOL(R

n) introduced by

Duong and Yan [23]. If p(·) ∈ P(Rn) is defined by 1
p(·)

:= α + 1
2

for some constant

α ∈ (0, θ(L)
n

), then BMOs
p(·),L(R

n) becomes the space LL(α, 2, s) studied in [48].

Now we state the main result of this section as follows.

Theorem 4.3. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] and p− ∈ ( n
n+θ(L)

, 1] with

p+, p− and θ(L), respectively, as in (2.1) and (2.5). Let s0 be as in (3.8) and L∗

denote the adjoint operator of L. Then (H
p(·)
L (Rn))∗ coincides with BMOs0

p(·),L∗(Rn)

in the following sense:

(i) If g ∈ BMOs0
p(·),L∗(Rn), then the linear mapping ℓ, which is initially defined

on H
p(·)
L,fin(R

n) by

(4.1) ℓg(f) :=

ˆ

Rn

f(x)g(x) dx,

extends to a bounded linear functional on H
p(·)
L (Rn) and

‖ℓg‖(Hp(·)
L (Rn))∗

≤ C‖g‖BMO
s0
p(·),L∗(Rn),

where C is a positive constant independent of g.

(ii) Conversely, let ℓ be a bounded linear functional on H
p(·)
L (Rn). Then ℓ has the

form as in (4.1) with a unique g ∈ BMOs0
p(·),L∗(Rn) for all f ∈ H

p(·)
L,fin(R

n) and

‖g‖BMO
s0
p(·),L∗ (Rn) ≤ C̃‖ℓ‖

(H
p(·)
L (Rn))∗

,

where C̃ is a positive constant independent of ℓ.
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Remark 4.4. Let p(·), s0, L, L∗ and θ(L) be as in Theorem 4.3.

(i) If f ∈ H
p(·)
L (Rn), then, from Theorem 4.3, we deduce that f satisfies the cance-

lation condition
´

Rn f(x)g(x) dx = 0 for all g ∈ KL∗,s0(R
n), since, if g ∈ KL∗,s0(R

n),
then ‖g‖BMO

s0
p(·),L∗(Rn) = 0. Observe that, if g ∈ KL∗,s0(R

n), then g is not necessary

to be zero almost everywhere and hence, if f is a smooth function with compact
support, then

´

Rn f(x)g(x) dx may not equal zero. Therefore, smooth functions with

compact supports are not necessary to be in H
p(·)
L (Rn); see also [23, p. 962].

(ii) Observe that, by the proof of Corollary 3.18, we see that

H
p(·)
L,fin(R

n) ⊂ [H
p(·)
L (Rn) ∩ L2(Rn)]

and H
p(·)
L,fin(R

n) is dense in H
p(·)
L (Rn)∩L2(Rn). From this, it follows that, if we require

that (4.1) holds true for all f ∈ H
p(·)
L (Rn) ∩ L2(Rn) instead of all f ∈ H

p(·)
L,fin(R

n),
then all conclusions of Theorem 4.3 also hold true.

To prove Theorem 4.3, we need some preparations.

Proposition 4.5. Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1] and p− ∈ ( n
n+θ(L)

, 1],

and s ∈ [s0,∞), where p+, p−, θ(L) and s0 are, respectively, as in (2.1), (2.5)
and (3.8). Then there exists a positive constant C such that, for all t ∈ (0,∞),
K ∈ (1,∞), f ∈ BMOs

p(·),L(R
n) and x ∈ Rn, when p+ = 1,

|Ps,tf(x)− Ps,Ktf(x)|

≤ C(1 + log2K)
∥∥∥χ

Q(x,(Kt)
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, (Kt)
1
m )|−1‖f‖BMOs

p(·),L
(Rn)

(4.2)

and, when p+ ∈ (0, 1),

|Ps,tf(x)− Ps,Ktf(x)|

≤ C
∥∥∥χ

Q(x,(Kt)
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, (Kt)
1
m )|−1‖f‖BMOs

p(·),L(R
n).

(4.3)

Proof. Without loss of generality, we may assume that ‖f‖BMOs
p(·),L(R

n) = 1. We

claim that, for all t, v ∈ (0,∞) with t
2
≤ v ≤ 2t, and x ∈ Rn,

(4.4) |Ps,tf(x)− Ps,vf(x)| .
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, t
1
m )|−1.

If this claim holds true, then, by Lemma 3.14, we see that

|Ps,tf(x)− Ps,Ktf(x)| ≤

l−1∑

i=0

∣∣Ps,2itf(x)− Ps,2i+1tf(x)
∣∣+
∣∣Ps,2ltf(x)− Ps,Ktf(x)

∣∣

.
l−1∑

i=0

‖χ
Q(x,(2it)

1
m )

‖Lp(·)(Rn)

|Q(x, (2it)
1
m )|

+
‖χ

Q(x,(Kt)
1
m )

‖Lp(·)(Rn)

|Q(x, (Kt)
1
m )|

.





l−1∑

i=0

[
|Q(x, (2it)

1
m )|

|Q(x, (Kt)
1
m )|

] 1
p+

−1

+ 1





‖χ
Q(x,(Kt)

1
m )

‖Lp(·)(Rn)

|Q(x, (Kt)
1
m )|

,

where l := ⌊log2K⌋. By this, we further conclude that, when p+ = 1,

|Ps,tf(x)− Ps,Ktf(x)| . (1 + log2K)
∥∥∥χ

Q(x,(Kt)
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, (Kt)
1
m )|−1
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and, when p+ ∈ (0, 1),

|Ps,tf(x)− Ps,Ktf(x)| .
∥∥∥χ

Q(x,(Kt)
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, (Kt)
1
m )|−1,

which implies that (4.2) and (4.3) hold true.
Therefore, to complete the proof of this proposition, it remains to prove the above

claim. By the commutative properties of semigroups, we have

(4.5) Ps,tf − Ps,vf = Ps,t(f − Ps,vf)− Ps,v(f − Ps,tf).

Since θ(L) ∈ (n[ 1
p−

− 1],∞) and p+ ∈ (0, 1], it follows that there exists ε ∈ (0, θ(L))

such that

(4.6) ε > n

(
1

p−
− 1

)
> n

(
1

p−
−

1

p+

)
.

From (2.8), Assumption (A), the Hölder inequality, Lemma 3.14 and the fact that
t
2
≤ v ≤ 2t, we deduce that, for all x ∈ Rn,

|Ps,t(f − Ps,vf)(x)| . t−
n
m

ˆ

Rn

g

(
|x− y|

t1/m

)
|f(y)− Ps,vf(y)| dy

.

{
v−

n
m

ˆ

Q(x,v
1
m )

|f(y)− Ps,vf(y)|
2 dy

}1/2

+ v−
n
m

∞∑

i=1

ˆ

Si

g

(
|x− y|

t
1
m

)
|f(y)− Ps,vf(y)| dy

.
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, t
1
m )|−1‖f‖BMOs

p(·),L(R
n)

+
∞∑

i=1

2−
n+ε
m

iv−
n
m

ˆ

Q(x,(2iv)
1
m )

|f(y)− Ps,vf(y)| dy,

(4.7)

where, for each i ∈ N, Si := Q(x, (2iv)
1
m )\Q(x, (2i−1v)

1
m ). Notice that, for any i ∈ N,

there exists a collection {Qi,j}
Ni
j=1 of cubes with Ni ∼ 2ni/m such that ℓ(Qi,j) = v1/m

and Q(x, (2iv)1/m) ⊂
⋃Ni

j=1Qi,j . Thus, by the Hölder inequality and Lemma 3.14, we
find that

ˆ

Q(x,(2iv)
1
m )

|f(y)− Ps,vf(y)| dy ≤

Ni∑

j=1

ˆ

Qi,j

|f(y)− Ps,vf(y)| dy

.
Ni∑

j=1

{
ˆ

Qi,j

|f(y)− Ps,vf(y)|
2 dy

}1
2

|Qi,j|
1
2

. ‖f‖BMOs
p(·),L(R

n)

Ni∑

j=1

‖χQi,j
‖Lp(·)(Rn)

. 2
n
m
i2

− n
m
( 1
p+

− 1
p−

)i
∥∥∥χ

Q(x,v
1
m )

∥∥∥
Lp(·)(Rn)

,
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which, together with Lemma 3.14 again and (4.6), implies that

∞∑

i=1

2−in+ε
m v−

n
m

ˆ

Q(x,(2iv)
1
m )

|f(y)− Ps,vf(y)| dy

. v−
n
m

∞∑

i=1

2
− n

m
[ ε
n
+ 1

p+
− 1

p−
]i
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

∼
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, t
1
m )|−1.

By this and (4.7), we further conclude that, for all x ∈ Rn,

(4.8) |Ps,t(f − Ps,vf)(x)| .
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, t
1
m )|−1.

By an argument similar to that used in the proof of (4.8), we also see that, for
all x ∈ Rn,

|Ps,v(f − Ps,tf)(x)| .
∥∥∥χ

Q(x,t
1
m )

∥∥∥
Lp(·)(Rn)

|Q(x, t
1
m )|−1,

which, combined with (4.5) and (4.8), implies that (4.4) holds true. This finishes the
proof of Proposition 4.5. �

Proposition 4.6. Let p(·) and s be as in Proposition 4.5. Then, for any δ ∈
(n[ 1

p−
−1],∞), there exists a positive constant C such that, for all f ∈ BMOs

p(·),L(R
n),

t ∈ (0,∞) and x ∈ Rn,

ˆ

Rn

|f(y)− Ps,tf(y)|

(t
1
m + |x− y|)n+δ

dy ≤ Ct−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L

(Rn).

Proof. For all t ∈ (0,∞) and x ∈ Rn, we write

ˆ

Rn

|f(y)− Ps,tf(y)|

(t
1
m + |x− y|)n+δ

dy =

ˆ

Q(x,t
1
m )

|f(y)− Ps,tf(y)|

(t
1
m + |x− y|)n+δ

dy +

ˆ

[Q(x,t
1
m )]∁

· · · =: I1 + I2.

Obviously, by the Hölder inequality, we easily see that

I1 . t−
n+δ
m

ˆ

Q(x,t
1
m )

|f(y)− Ps,tf(y)| dy . t−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n).

To estimate I2, we first notice that

I2 .
∞∑

k=1

(2kt)−
n+δ
m

ˆ

Q(x,(2kt)
1
m )

|f(y)− Ps,tf(y)| dy

.
∞∑

k=1

(2kt)−
n+δ
m

ˆ

Q(x,(2kt)
1
m )

|f(y)− Ps,2ktf(y)| dy

+
∞∑

k=1

(2kt)−
n+δ
m sup

y∈Q(x,(2kt)
1
m )

|Ps,tf(y)− Ps,2ktf(y)||Q(x, (2
kt)

1
m )|

=: I2,1 + I2,2.

(4.9)
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By the Hölder inequality, Lemma 3.14 and the fact that δ > n( 1
p−

− 1), we find that

I2,1 .
∞∑

k=1

(2kt)−
n+δ
m

∥∥∥χ
Q(x,(2kt)

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n)

. t−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n)

∞∑

k=1

2
−k(n+δ− n

p−
)

. t−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n).

(4.10)

For I2,2, by Proposition 4.5 and Lemma 3.14, we know that

I2,2 .
∞∑

k=1

k(2kt)−
n+δ
m sup

y∈Q(x,(2kt)
1
m )

∥∥∥χ
Q(y,(2kt)

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n)

.
∞∑

k=1

k(2kt)−
n+δ
m

∥∥∥χ
Q(x,(2kt)

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n)

. t−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L

(Rn).

This, together with (4.9) and (4.10), implies that

I2 . t−
n+δ
m

∥∥∥χ
Q(x,t

1
m )

∥∥∥
Lp(·)(Rn)

‖f‖BMOs
p(·),L(R

n),

which completes the proof of Proposition 4.6. �

Let p(·) ∈ P(Rn). Recall that a measure dµ on Rn+1
+ is called a p(·)-Carleson

measure if

‖dµ‖p(·) := sup
Q⊂Rn

|Q|1/2

‖χQ‖Lp(·)(Rn)

{
ˆ

Q̂

d|µ|

}1/2

<∞,

where the supremum is taken over all cubes Q of Rn and Q̂ denotes the tent over Q;
see [55].

Proposition 4.7. Let p(·), s0 and s be as in Proposition 4.5. If f ∈ BMOs0
p(·),L(R

n),

then the measure

dµf(x, t) := |Qs,tm(I − Ps0,tm)f(x)|
2 dx dt

t
, ∀ (x, t) ∈ Rn+1

+

is a p(·)-Carleson measure on Rn+1
+ and there exists a positive constant C, indepen-

dent of f , such that ‖dµf‖p(·) ≤ C‖f‖BMO
s0
p(·),L

(Rn).

Proof. Since s ≥ s0 = ⌊ n
m
( 1
p−

− 1)⌋ and θ(L) ∈ (n[ 1
p−

− 1],∞) with θ(L) as in

(2.5), it follows that there exists ε ∈ (n[ 1
p−

−1], θ(L)) such thatm(s+1) > ε. To prove

this proposition, by definition, it suffices to show that, for any cube R := R(xR, rR)
with some xR ∈ Rn and rR ∈ (0,∞),

(4.11)
|R|1/2

‖χR‖Lp(·)(Rn)

{
ˆ

R̂

|Qs,tm(I − Ps0,tm)f(x)|
2 dxdt

t

}1/2

. ‖f‖BMO
s0
p(·),L

(Rn).

Observe that

I − Ps0,tm = (I − Ps0,tm)
[
I − Ps0,(rR)m

]
+ Ps0,(rR)m(I − Ps0,tm).
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Then the estimate (4.11) is a direct consequence of

|R|1/2

‖χR‖Lp(·)(Rn)

{
ˆ

R̂

∣∣Qs,tm(I − Ps0,tm)
[
I − Ps0,(rR)m

]
f(x)

∣∣2 dx dt
t

}1/2

. ‖f‖BMO
s0
p(·),L

(Rn)

(4.12)

and

|R|1/2

‖χR‖Lp(·)(Rn)

{
ˆ

R̂

|Qs,tmPs0,(rR)m(I − Ps0,tm)f(x)|
2 dx dt

t

}1/2

. ‖f‖BMO
s0
p(·),L

(Rn).

(4.13)

Next we prove (4.12) and (4.13), respectively. To show (4.12), let

b1 :=
[
I − Ps0,(rR)m

]
fχ2R and b2 :=

[
I − Ps0,(rR)m

]
fχRn\(2R).

By [30, (4.25)], we know that

(4.14) J :=

{
ˆ

R̂

|Qs,tm(I − Ps0,tm)b1(x)|
2 dx dt

t

}1/2

. ‖b1‖L2(Rn),

which, combined with Proposition 4.5 and Lemma 3.14, implies that

J .

{
ˆ

2R

∣∣[I − Ps0,(2rR)m
]
f(x)

∣∣2 dx
} 1

2

+ |R|1/2 sup
x∈2R

|Ps0,(rR)mf(x)− Ps0,(2rR)mf(x)|

. |R|−1/2‖χR‖Lp(·)(Rn)‖f‖BMO
s0
p(·),L

(Rn).

For b2, we write

(4.15) Qs,tm(I − Ps0,tm)b2 = Qs,tmb2 −Qs,tmPs0,tmb2.

Let (x, t) ∈ R̂. Then, by (2.3), (2.8) and Proposition 4.6, we have

|Qs,tmb2(x)| .

ˆ

Rn\(2R)

tε

|x− y|n+ε

∣∣[I − Ps0,(rR)m
]
f(y)

∣∣ dy

.

ˆ

Rn

tε

(rR + |x− y|)n+ε

∣∣[I − Ps0,(rR)m
]
f(y)

∣∣ dy

. (t/rR)
ε|R|−1‖χR‖Lp(·)(Rn)‖f‖BMO

s0
p(·),L

(Rn),

which implies that

(4.16)

{
ˆ

R̂

|Qs,tmb2(x)|
2 dx dt

t

}1/2

. |R|−1/2‖χR‖Lp(·)(Rn)‖f‖BMO
s0
p(·),L

(Rn).

On the other hand, for all k ∈ {1, . . . , s0+1}, t, v ∈ (0,∞), f ∈ M(Rn) and x ∈ Rn,
let

(4.17) Ψk
t,vf(x) := [kvm + tm]s+1

(
ds+1Pη

dηs+1

∣∣∣∣
kvm+tm

f

)
(x).

Then, by Assumption (A) and (2.4), we conclude that ψk
t,v, the kernel of Ψk

t,v, satisfies
that, for all t, v ∈ (0,∞) and x, y ∈ Rn,

(4.18) |ψk
t,v(x, y)| .

vε

(v + t + |x− y|)n+ε
.
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From this, Proposition 4.6 and the fact that

(4.19) Ps0,vmf =
s0+1∑

k=1

(−1)k+1Ck
s0+1e

−kvmLf,

where Ck
s0+1 :=

(s0+1)!
k!(s0+1−k)!

, we deduce that, for all (x, t) ∈ R̂,

|Qs,tmPs0,tmb2(x)| =

∣∣∣∣∣

s0+1∑

k=1

(−1)kCk
s0+1

tm(s+1)

[(k + 1)tm]s+1
Ψk

t,tb2(x)

∣∣∣∣∣

.

ˆ

Rn\(2R)

tε

(t+ |x− y|)n+ε

∣∣[I − Ps0,(rR)m
]
f(y)

∣∣ dy

.

(
t

rR

)ε ˆ

Rn

(rR)
ε

(rR + |x− y|)n+ε

∣∣[I − Ps0,(rR)m
]
f(y)

∣∣ dy

. (t/rR)
ε ‖χR‖Lp(·)(Rn)‖f‖BMO

s0
p(·),L

(Rn),

(4.20)

which further implies that

(4.21)

{
ˆ

R̂

|Qs,tmPs0,tmb2(x)|
2 dx dt

t

}1/2

. |R|−1/2‖χR‖Lp(·)(Rn)‖f‖BMO
s0
p(·),L

(Rn).

Combining (4.14), (4.15), (4.16) and (4.21), we conclude that (4.12) holds true.
Similarly, by (4.17), (4.18), (4.19) and Proposition 4.6, we also see that, for all

(x, t) ∈ R̂,
∣∣Qs,tmPs0,(rR)m(I − Ps0,tm)(f)(x)

∣∣

=

∣∣∣∣∣

s0+1∑

k=1

(−1)kCk
s0+1

tm(s+1)

[k(rR)m + tm]s+1
Ψk

t,rR
(I − Ps0,tm)(f)(x)

∣∣∣∣∣

.
tm(s+1)

[k(rR)m + tm]s+1

ˆ

Rn

(rR)
ε

(rR + t+ |x− y|)n+ε
|(I − Ps0,tm)(f)(y)| dy

.

(
t

rR

)m(s+1)−ε ˆ

Rn

tε

(t+ |x− y|)n+ε
|(I − Ps0,tm)(f)(r)| dy

. t−n

(
t

rR

)m(s+1)−ε

‖χQ(x,t)‖Lp(·)(Rn)‖f‖BMOs
p(·),L(R

n),

which, together with Lemma 3.14, implies that, for all (x, t) ∈ R̂,

∣∣Qs,tmPs0,(rR)m(I − Ps0,tm)(f)(x)
∣∣ . t−n

(
t

rR

)m(s+1)−ε

‖χR‖Lp(·)(Rn)‖f‖BMOs
p(·),L

(Rn).

By this and the fact that m(s + 1) > ε, we further conclude that (4.13) holds true.
This finishes the proof of Proposition 4.7. �

Proposition 4.8. (i) Let q ∈ (1,∞) and q∗ := q
q−1

. Then, for all f ∈

T q
2 (R

n+1
+ ) and g ∈ T q∗

2 (Rn+1
+ ),

ˆ

Rn+1
+

|f(y, t)g(y, t)|
dy dt

t
≤

ˆ

Rn

T (f)(x)T (g)(x) dx.
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(ii) Let p(·) ∈ C log(Rn) satisfy p+ ∈ (0, 1]. Then the dual space of T
p(·)
2 (Rn+1

+ ) is

T
p(·)
2,∞(Rn+1

+ ) in the following sense: for any h ∈ T
p(·)
2,∞(Rn+1

+ ), the mapping

(4.22) ℓh(f) :=

ˆ

Rn+1
+

h(y, t)f(y, t)
dy dt

t

is a bounded linear functional on T
p(·)
2 (Rn+1

+ ); conversely, if ℓ is a bounded

linear functional on T
p(·)
2 (Rn+1

+ ), then ℓ has the form as in (4.22) with a unique

h ∈ T
p(·)
2,∞(Rn+1

+ ). Moreover, ‖h‖
T

p(·)
2,∞(Rn+1

+ )
∼ ‖ℓh‖(T p(·)

2 (Rn+1
+ ))∗

with the implicit

positive constants independent of h.

Proof. To prove this proposition, it suffices to show (ii), since (i) was already

proved in [10, p. 316, Theorem 2]. We first show that T
p(·)
2,∞(Rn+1

+ ) ⊂ (T
p(·)
2 (Rn+1

+ ))∗.

Let h ∈ T
p(·)
2,∞(Rn+1

+ ). Then, by the Hölder inequality and Remark 3.2(ii), we find

that, for any (p(·),∞)-atom a supported on Q̂ with some cube Q ⊂ Rn,
ˆ

Rn+1
+

|h(x, t)a(x, t)|
dx dt

t
≤

|Q|1/2

‖χQ‖Lp(·)(Rn)

{
ˆ

Q̂

|h(x, t)|2
dx dt

t

}1/2

≤ ‖Cp(·)(h)‖L∞(Rn) = ‖h‖
T

p(·)
2,∞(Rn+1

+ )
.

(4.23)

For any f ∈ T
p(·)
2 (Rn+1

+ ), by Lemma 3.3, we know that, for almost every (x, t) ∈ Rn+1
+ ,

f(x, t) =
∑

j∈N λjaj(x, t), where {λj}j∈N and {aj}j∈N are as in Lemma 3.3 satisfying

(3.4). From this, (4.23) and Remark 3.8, we deduce that

|ℓh(f)| ≤
∑

j∈N

|λj|

ˆ

Rn+1
+

|h(x, t)||aj(x, t)|
dx dt

t

≤
∑

j∈N

|λj|‖h‖T p(·)
2,∞(Rn+1

+ )
. ‖h‖

T
p(·)
2,∞(Rn+1

+ )
‖f‖

T
p(·)
2 (Rn+1

+ )
,

which implies that ℓh is a bounded linear functional on T
p(·)
2 (Rn+1

+ ) and

‖ℓh‖(T p(·)
2 (Rn+1

+ ))∗
. ‖h‖

T
p(·)
2,∞(Rn+1

+ )
.

Next, we prove that (T
p(·)
2 (Rn+1

+ ))∗ ⊂ T
p(·)
2,∞(Rn+1

+ ). Let ℓ ∈ (T
p(·)
2 (Rn+1

+ ))∗. For

all k ∈ N, let Õk := {(x, t) ∈ Rn+1
+ : |x| ≤ k, 1/k ≤ t ≤ k}. Then {Õk}k∈N is a

family of compact sets of Rn+1
+ and Rn+1

+ =
⋃

k∈N Õk. Observe that, for each k ∈ N,

if f ∈ L2(Rn+1
+ ) with supp f ⊂ Õk, then supp T (f) ⊂ O∗

k := {x ∈ Rn : |x| ≤ 2k}.
It follows, from the Hölder inequality, that

ˆ

O∗
k

T (f)(x) dx ≤ |O∗
k|

1/2

{
ˆ

O∗
k

ˆ

Γ(x)

|f(y, t)|2
dy dt

tn+1
dx

}1/2

. |O∗
k|

1/2

{
ˆ

Õk

|f(y, t)|2
dy dt

t

}1/2

∼ |O∗
k|

1/2‖f‖L2(Õk)
.

By this and the fact that p+ ∈ (0, 1], we further find that

ˆ

Rn

[
T (f)(x)

|O∗
k|

− 1
2‖f‖L2(Õk)

]p(x)
dx ≤

ˆ

O∗
k

[
1 +

|O∗
k|

1
2T (f)(x)

‖f‖L2(Õk)

]p(x)
dx . |O∗

k|,
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which implies that ‖f‖
T

p(·)
2 (Rn+1

+ )
≤ C(k)‖f‖L2(Õk)

, where C(k) is a positive constant

depending on k. Thus, ℓ also induces a bounded linear functional on L2(Õk). By the

Riesz theorem, there exists a unique hk ∈ L2(Õk) such that, for all f ∈ L2(Õk),

ℓ(f) =

ˆ

Rn+1
+

f(x, t)hk(x, t)
dx dt

t
.

Obviously, hk+1χÕk
= hk for all k ∈ N. Let

h := h1χÕ1
+

∞∑

k=2

hkχÕk\Õk−1
.

Then h ∈ L2
loc (R

n+1
+ ) and, for any f ∈ L2(Rn+1

+ ) having compact support,

ℓ(f) =

ˆ

Rn+1
+

f(y, t)h(y, t)
dy dt

t
.

Now, for any f ∈ T
p(·)
2 (Rn+1

+ ), by Lemma 3.3, we have f(x, t) =
∑

j∈N λjaj(x, t)

for almost every (x, t) ∈ Rn+1
+ , where {λj}j∈N and {aj}j∈N are as in Lemma 3.3

satisfying (3.4). For all N ∈ N, let fN :=
∑N

j=1 λjaj . Then fN → f in T
p(·)
2 (Rn+1

+ ) as

N → ∞ due to Corollary 3.4. Moreover, it is easy to see that fN ∈ L2(Rn+1
+ ) having

compact support and hence

ℓ(fN) =

ˆ

Rn+1
+

fN(y, t)h(y, t)
dy dt

t
.

Observer that, for all N ∈ N,

|fN | ≤

N∑

j=1

|λj||aj| ≤
∑

j∈N

|λj||aj|

and, by (4.23) and Remark 3.8, we find that

∑

j∈N

|λj |

ˆ

Rn+1
+

|h(x, t)||aj(x, t)|
dx dt

t
. ‖h‖

T
p(·)
2,∞(Rn+1

+ )

∑

j∈N

|λj|

. ‖h‖
T

p(·)
2,∞(Rn+1

+ )
B({λjaj}j∈N)

. ‖h‖
T

p(·)
2,∞(Rn+1

+ )
‖f‖

T
p(·)
2 (Rn+1

+ )
.

Therefore, from the dominated convergence theorem, we deduce that

ℓ(f) = lim
N→∞

ℓ(fN) =

ˆ

Rn+1
+

f(y, t)h(y, t)
dy dt

t
.

To complete the proof of this proposition, it remains to show that h ∈ T
p(·)
2,∞(Rn+1

+ ).

Indeed, for any cube Q ⊂ Rn and j ∈ N, let RQ,j := Q̂ ∩ {(x, t) ∈ Rn+1
+ : t ≥ 1/j}

and

ηj :=
|Q|1/2hχRQ,j

‖χQ‖Lp(·)(Rn)‖hχRQ,j
‖L2(Rn+1

+ )

.
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Then, by the Minkowski inequality, we find that

‖ηj‖T 2
2 (R

n+1
+ ) ∼

{
ˆ

Rn

ˆ

Γ(x)

|ηj(y, t)|
2 dy dt

tn+1
dx

} 1
2

.

{
ˆ

RQ,j

|ηj(y, t)|
2 dy dt

t

} 1
2

. |Q|1/2‖χQ‖
−1
Lp(·)(Rn)

,

namely, ηj is a (p(·), 2)-atom up to a positive constant multiple. From this, the Fatou
lemma and Corollary 3.7, we further deduce that

|Q|1/2

‖χQ‖Lp(·)(Rn)

{
ˆ

Q̂

|h(y, t)|2
dydt

t

}1/2

≤ lim inf
j→∞

ˆ

Rn+1
+

|Q|
1
2h(y, t)h(y, t)χRQ,j

(y, t)

‖χQ‖Lp(·)(Rn)‖hχRQ,j
‖L2(Rn+1

+ )

dy dt

t
= lim inf

j→∞
ℓ(ηj)

. lim inf
j→∞

‖ℓ‖
(T

p(·)
2 (Rn+1

+ ))∗
‖ηj‖T p(·)

2 (Rn+1
+ )

. ‖ℓ‖
(T

p(·)
2 (Rn+1

+ ))∗
,

which, together with the arbitrariness of cubes Q, implies that h ∈ T
p(·)
2,∞(Rn+1

+ ) and

‖h‖
T

p(·)
2,∞(Rn+1

+ )
. ‖ℓ‖

(T
p(·)
2 (Rn+1

+ ))∗
.

This finishes the proof of Proposition 4.8. �

To prove Theorem 4.3, we also need the following estimate.

Lemma 4.9. Let p(·) and s0 be as in Proposition 4.5. Then there exists a positive
constant C such that, for all f ∈ L2(Rn) satisfying supp f ⊂ Q := Q(xQ, rQ) with
some xQ ∈ Rn and rQ ∈ (0,∞),

∥∥∥(I − Ps0,rmQ
)f
∥∥∥
H

p(·)
L (Rn)

≤ C|Q|−1/2‖χQ‖Lp(·)(Rn)‖f‖L2(Rn).

Proof. Obviously, we have
∥∥∥SL([I − Ps0,rmQ

]f)
∥∥∥
Lp(·)(Rn)

.
∥∥∥SL([I − Ps0,rmQ

]f)χ4Q

∥∥∥
Lp(·)(Rn)

+
∥∥∥SL([I − Ps0,rmQ

]f)χRn\(4Q)

∥∥∥
Lp(·)(Rn)

=: J1 + J2.

(4.24)

By the boundedness of SL in L2(Rn) (see (2.9)) and Remark 2.5(iii), we see that

‖SL([I − Ps0,rmQ
]f)‖L2(Rn) . ‖f‖L2(Rn),

which, together with Lemmas 3.5 and 3.14, implies that

(4.25) J1 . |Q|−1/2‖χQ‖Lp(·)(Rn)‖f‖L2(Rn).

To deal with the term J2, since p− ∈ ( n
n+θ(L)

, 1] with p− and θ(L) as in (2.1) and

(2.5), respectively, we choose ε ∈ (0, θ(L)) such that p− ∈ ( n
n+ε

, 1]. Notice that, for

all x /∈ 4Q,

SL(I − Ps0,rmQ
)(f)(x) .

(rQ)
n
2
+ε

|x− xQ|n+ǫ
‖f‖L2(Rn);
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see [30, (4.20)]. Then, by this, Lemma 3.14 and the fact that ε ∈ (n( 1
p−

− 1), θ(L)),

we further know that, for any r ∈ (0, p−),

J2 ∼

∥∥∥∥∥

∞∑

k=0

SL(I − Ps0,rmQ
)(f)χ(4k+1Q)\(4kQ)

∥∥∥∥∥
Lp(·)(Rn)

.

{
∞∑

k=0

∥∥∥∥
(rQ)

n
2
+ε

| · −xQ|n+ǫ
χ(4k+1Q)\(4kQ)

∥∥∥∥
r

Lp(·)(Rn)

} 1
r

‖f‖L2(Rn)

.

{
∞∑

k=0

4−k(n+ε)r‖χ4kQ‖Lp(·)(Rn)

} 1
r

|Q|−
1
2‖f‖L2(Rn)

.

{
∞∑

k=0

4−k(n+ε−n/p−)r

} 1
r

‖χQ‖Lp(·)(Rn)|Q|
− 1

2‖f‖L2(Rn)

∼ |Q|−
1
2‖χQ‖Lp(·)(Rn)‖f‖L2(Rn).

(4.26)

Combining the estimates (4.24), (4.25) and (4.26), we conclude the desired result
and then complete the proof of Lemma 4.9. �

For all s ∈ [s0,∞) with s0 as in (3.8), t ∈ (0,∞), f ∈ M(Rn) and x ∈ Rn, let

P ∗
s,tf(x) := f(x)− (I − e−tL∗

)s+1f(x) and Q∗
s,tf(x) := (tL∗)s+1e−tL∗

f(x),

where L∗ denotes the adjoint operator of L in L2(Rn). Suppose that α is a (p(·), s, L)-

molecule. Then, by Theorem 3.13(ii), we see that α ∈ H
p(·)
L (Rn) and hence G :=

Qtmα ∈ T
p(·)
2 (Rn+1

+ ). Let f ∈ M(Rn) be such that

µf(x, t) := |Q∗
s,tm(I − P ∗

s0,tm)f(x)|
2 dx dt

t
, ∀ (x, t) ∈ Rn+1

+

is a p(·)-Carleson measure on Rn+1
+ and, for all (x, t) ∈ Rn+1

+ , let

F (x, t) := Q∗
s,tm(I − P ∗

s0,tm)f(x).

Then ‖F‖
T

p(·)
2,∞(Rn+1

+ )
. ‖µf‖p(·) < ∞. From this and Proposition 4.8(ii), we deduce

that the integral

J(F,G) :=

ˆ

Rn+1
+

F (x, t)G(x, t)
dx dt

t

converges absolutely and hence
ˆ

Rn+1
+

∣∣Qtmα(x)Q
∗
s,tm(I − P ∗

s0,tm
)f(x)

∣∣ dx dt
t

<∞.

Indeed, by an argument similar to that used in the proof of [23, Proposition 5.1], we
have the following technical lemma, the details being omitted.

Lemma 4.10. Let p(·) ∈ C log(Rn), s0 and s be as in Proposition 4.5. Suppose
that α is a (p(·), s, L)-molecule and f ∈ M(Rn) satisfies that

µf(x, t) := |Q∗
s,tm(I − P ∗

s0,tm
)f(x)|2

dx dt

t

for all (x, t) ∈ Rn+1
+ is a p(·)-Carleson measure on Rn+1

+ . Then
ˆ

Rn

f(x)α(x) dx = C(m,s)

ˆ

Rn+1
+

Qtmα(x)Q
∗
s,tm(I − P ∗

s0,tm
)f(x)

dx dt

t
,
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where C(m,s) is as in (3.9).

We are now ready to prove Theorem 4.3.

Proof of Theorem 4.3. We first prove (i). Let g ∈ BMOs0
p(·),L∗(Rn) and f ∈

H
p(·)
L,fin(R

n). Then f has an expression f =
∑N

j=1 λjaj , where N ∈ N, {λj}
N
j=1 ⊂ C

and {αj}
N
j=1 are (p(·), s, L)-molecules associated with cubes {Rj}

N
j=1 of Rn satisfying

∥∥∥∥∥∥

{
N∑

j=1

[
|λj|

‖χRj
‖Lp(·)(Rn)

χRj

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H

p(·)
L,fin(R

n)
.

For each j ∈ N, since αj ∈ H
p(·)
L (Rn), it follows that Qtmαj ∈ T

p(·)
2 (Rn+1

+ ). By
this and Corollary 3.7, we know that, for any j ∈ N, there exist {λkj}k∈N ⊂ C

and a sequence {akj}k∈N of (p(·),∞)-atoms such that Qtmαj =
∑

k∈N λ
k
ja

k
j almost

everywhere on Rn+1
+ , supp akj ⊂ R̂k

j with some cube Rk
j ⊂ Rn for all k ∈ N, and

B({λkja
k
j}k∈N) . ‖Qtmαj‖T p(·)

2 (Rn+1
+ )

∼ ‖αj‖Hp(·)
L (Rn)

.

Thus, from Lemma 4.10, the Hölder inequality, Proposition 4.7, Remarks 3.2(ii) and
3.8, we deduce that

∣∣∣∣
ˆ

Rn

αj(x)g(x) dx

∣∣∣∣ ∼
∣∣∣∣∣

ˆ

Rn+1
+

Qtmαj(y)Q
∗
s,tm(I − P ∗

s0,tm)g(y)

∣∣∣∣∣
dy dt

t

.
∑

k∈N

ˆ

R̂k
j

|λkja
k
j (y, t)Q

∗
s,tm(I − P ∗

s0,tm
)g(y)|

dy dt

t

.
∑

k∈N

|λkj |

{
ˆ

R̂k
j

|akj (y, t)|
2 dy dt

t

} 1
2

|Rk
j |

1
2‖χRk

j
‖Lp(·)(Rn)‖g‖BMO

s0
p(·),L∗(Rn)

.
∑

k∈N

|λkj |‖g‖BMO
s0
p(·),L∗(Rn) . B({λkja

k
j}k∈N)‖g‖BMO

s0
p(·),L∗(Rn)

. ‖g‖BMO
s0
p(·),L∗ (Rn)‖αj‖Hp(·)

L (Rn)
. ‖g‖BMO

s0
p(·),L∗(Rn).

By this and Remark 3.8, we further obtain

∣∣∣∣
ˆ

Rn

f(x)g(x) dx

∣∣∣∣ ≤
N∑

j=1

|λj|

∣∣∣∣
ˆ

Rn

αj(x)g(x) dx

∣∣∣∣ .
N∑

j=1

|λj |‖g‖BMO
s0
p(·),L∗(Rn)

.

∥∥∥∥∥∥

{
N∑

j=1

[
|λj |

‖χRj
‖Lp(·)(Rn)

χRj

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

‖g‖BMO
s0
p(·),L∗(Rn)

. ‖f‖
H

p(·)
L (Rn)

‖g‖BMO
s0
p(·),L∗(Rn).

Therefore, by Corollary 3.18 and a density argument, we conclude that ℓg is a bounded

linear functional on H
p(·)
L (Rn) and ‖ℓg‖(Hp(·)

L (Rn))∗
. ‖g‖BMO

s0
p(·),L∗(Rn).
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Next we show (ii). For any η ∈ T
p(·)
2 (Rn+1

+ ), by Proposition 3.17(ii), we know

that πL(η) ∈ H
p(·)
L (Rn) and hence, for any ℓ ∈ (H

p(·)
L (Rn))∗, we have

|(ℓ ◦ πL)(η)| = |ℓ(πl(η))| . ‖ℓ‖
(H

p(·)
L (Rn))∗

‖πL(η)‖Hp(·)
L (Rn)

. ‖ℓ‖
(H

p(·)
L (Rn))∗

‖πL‖T p(·)
2 (Rn+1

+ )→H
p(·)
L (Rn)

‖η‖
T

p(·)
2 (Rn+1

+ )
.

In other words, ℓ ◦ πL is a bounded linear functional on T
p(·)
2 (Rn+1

+ ). Thus, by

Proposition 4.8(ii), we find that there exists a function h ∈ T
p(·)
2,∞(Rn) such that, for

all η ∈ T
p(·)
2 (Rn+1

+ ),

(4.27) (ℓ ◦ πL)(η) =

ˆ

Rn+1
+

η(x, t)h(x, t)
dxdt

t
.

On the other hand, by Remark 3.10, we see that, for all f ∈ H
p(·)
L (Rn) ∩ L2(Rn),

f = πL(Qtmf) in L2(Rn). From this and (4.27), we deduce that

ℓ(f) = (ℓ ◦ πL)(Qtmf) =

ˆ

Rn+1
+

h(x, t)Qtmf(x)
dxdt

t

=

ˆ

Rn

{
ˆ ∞

0

(Q∗
tmh)(x, t)

dt

t

}
f(x) dx =:

ˆ

Rn

g(x)f(x) dx.

To complete the proof of Theorem 4.3, it remains to prove that g ∈ BMOs0
p(·),L∗(Rn).

For any Q := Q(xQ, rQ) ⊂ Rn with some xQ ∈ Rn and rQ ∈ (0,∞), by Lemma 4.9,
we conclude that
{
ˆ

Q

|g(x)− P ∗
s0,rmQ

g(x)|2 dx

} 1
2

= sup
‖u‖L2(Q)≤1

∣∣∣∣
ˆ

Rn

[
g(x)− P ∗

s0,rmQ
g(x)

]
u(x) dx

∣∣∣∣

= sup
‖u‖L2(Q)≤1

∣∣∣∣
ˆ

Rn

g(x)
[
(I − Ps0,rmQ

)u(x)
]
dx

∣∣∣∣

= sup
‖u‖L2(Q)≤1

∣∣∣ℓ([I − Ps0,rmQ
]u)
∣∣∣

. ‖ℓ‖
(H

p(·)
L (Rn))∗

sup
‖u‖L2(Q)≤1

∥∥∥(I − Ps0,rmQ
)u
∥∥∥
H

p(·)
L (Rn)

. ‖ℓ‖
(H

p(·)
L (Rn))∗

|Q|−1/2‖χQ‖Lp(·)(Rn).

From this, we deduce that g ∈ BMOs0
p(·),L∗(Rn) and ‖g‖BMO

s0
p(·),L∗(Rn) . ‖ℓ‖

(H
p(·)
L (Rn))∗

,

which complete the proof of Theorem 4.3. �

From Proposition 4.7, Theorem 4.3 and an argument similar to that used in the
proof of [30, Theorem 4.5], we easily deduce the following characterization of the
BMO-type spaces, the details being omitted.

Corollary 4.11. Let p(·) ∈ C log(Rn), s0 and s be as in Proposition 4.5. Then
g ∈ BMOs0

p(·),L∗(Rn) if and only if g ∈ M(Rn) and |Q∗
s,tm(I −P ∗

s0,tm)g(x)|
2 dx dt

t
for all

(x, t) ∈ Rn+1
+ is a p(·)-Carleson measure. Moreover,

‖g‖BMO
s0
p(·),L∗(Rn) ∼

∥∥Q∗
s,tm(I − P ∗

s0,tm
)g
∥∥
T

p(·)
2,∞(Rn+1

+ )

with the implicit positive constants independent of g.
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5. Applications

In this section, we give out two applications of the molecular characterizations

of the spaces H
p(·)
L (Rn) established in Theorem 3.13. One is to investigate the co-

incidence between the spaces H
p(·)
L (Rn) and Hp(·)(Rn), where Hp(·)(Rn) denotes the

Hardy space with variable exponent introduced by Nakai and Sawano in [37]. An-

other is to study the boundedness of the fractional integral L−γ on H
p(·)
L (Rn).

5.1. The coincidence between H
p(·)
L (Rn) and H

p(·)(Rn). We begin with
recalling the definition of the Hardy space with variable exponent introduced in [37].
Let S(Rn) be the space of all Schwartz functions and S ′(Rn) its topological dual

space. For any N ∈ N, let

FN(R
n) :=



ψ ∈ S(Rn) :

∑

β∈Zn
+, |β|≤N

sup
x∈Rn

(1 + |x|)N |Dβψ(x)| ≤ 1



 ,

where, for all β := (β1, . . . , βn) ∈ Zn
+, |β| := β1+· · ·+βn andDβ := ( ∂

∂x1
)β1 · · · ( ∂

∂xn
)βn.

Then, for all f ∈ S ′(Rn), the grand maximal function f ∗
N is defined by setting, for

all x ∈ Rn,

f ∗
N(x) := sup {|f ∗ ψt(x)| : t ∈ (0,∞) and ψ ∈ FN(R

n)} ,

where, for all t ∈ (0,∞) and ξ ∈ Rn, ψt(ξ) := t−nψ(ξ/t).

Definition 5.1. Let p(·) ∈ C log(Rn) and N ∈ ( n
p−

+ n + 1,∞). Then the

Hardy space with variable exponent p(·), denoted by Hp(·)(Rn), is defined to be the
set of all f ∈ S ′(Rn) such that f ∗

N ∈ Lp(·)(Rn), equipped with the quasi-norm
‖f‖Hp(·)(Rn) := ‖f ∗

N‖Lp(·)(Rn).

Remark 5.2. In [37, Theorem 3.3], it was proved that the space Hp(·)(Rn) is
independent of N as long as N is sufficiently large. Although the range of N is not
presented explicitly in [37, Theorem 3.3], it was pointed out in [55, Remark 1.3(ii)]
that N ∈ ( n

p−
+ n+ 1,∞) does the work.

In what follows, suppose that L is a linear operator of type ν on L2(Rn) with
ν ∈ (0, π

2
). Then it generates an analytic semigroup {e−zL}z, where z ∈ C satisfies

0 ≤ | arg(z)| < π
2
− ν. Following [48], we assume that the kernels of {e−tL}t>0,

{pt}t>0, satisfy the following conditions: there exist positive constants C, m and
τ ∈ (n( 1

p−
− 1), 1] such that, for all t ∈ (0,∞) and x, y, h ∈ Rn,

|pt(x, y)| ≤ C
t1/m

(t1/m + |x− y|)n+1
,(5.1)

|pt(x+ h, y)− pt(x, y)|+|pt(x, y + h)− pt(x, y)| ≤ C
t1/m

(t1/m+|x− y|)n+1+γ
|h|τ(5.2)

when 2|h| ≤ t1/m + |x− y|, and

(5.3)

ˆ

Rn

pt(z, y) dz = 1 =

ˆ

Rn

pt(x, z) dz.

Theorem 5.3. Let L be a linear operator of type v on L2(Rn) with v ∈ (0, π
2
)

and its heat kernel satisfy (5.1), (5.2) and (5.3). Assume that p(·) ∈ C log(Rn) satisfies
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p+ ∈ (0, 1], p− ∈ ( n
n+1

, 1] and 2
p−

− 1
p+
< n+1

n
, where p− and p+ are as in (2.1). Then

Hp(·)(Rn) and H
p(·)
L (Rn) coincide with equivalent quasi-norms.

Remark 5.4. Obviously, if L = −∆, then its heat kernel satisfies (5.1), (5.2)
and (5.3). It was also pointed out by Yan [48, p. 4405, Remark] that the assumptions
(5.1), (5.2) and (5.3) are satisfied by the divergence form operator L := −div (A∇)
when A has real entries, or when the dimension n = 1 or 2 in the case of complex
entries; see also [23, 24, 30] for some other examples.

To prove Theorem 5.3, we need the atomic characterization of Hp(·)(Rn). Let
p(·) ∈ P(Rn), q ∈ [1,∞] ∩ (p+,∞] and d := max{0, ⌊n(1/p− − 1)⌋}. Recall that a
function a on Rn is called a (p(·), q, d)-atom if a satisfies

(i) supp a ⊂ R for some cube R ⊂ Rn;

(ii) ‖a‖Lq(Rn) ≤
|R|1/q

‖χR‖
Lp(·)(Rn)

;

(iii)
´

Rn a(x)x
β dx = 0 for all β ∈ Zn

+ with |β| ≤ d.

Definition 5.5. Let p(·) ∈ C log(Rn), q ∈ [1,∞] ∩ (p+,∞] and

d := max{0, ⌊n(1/p− − 1)⌋}

with p− and p+ as in (2.1). Then the atomic Hardy space H
p(·),q
at (Rn) is defined

to be the set of all f ∈ S ′(Rn) such that f can be written as f =
∑

j∈N λjaj in

S ′(Rn), where {λj}j∈N ⊂ C and {aj}j∈N are (p(·), q, d)-atoms satisfying that, for
each j ∈ N, supp aj ⊂ Rj for some cube Rj ⊂ Rn and A({λj}j∈N, {Rj}j∈N) < ∞,
where A({λj}j∈N, {Rj}j∈N) is as in (3.1) with {Qj}j∈N replaced by {Rj}j∈N.

Moreover, for any f ∈ H
p(·),q
at (Rn), its quasi-norm is defined by

‖f‖
H

p(·),q
at (Rn)

:= inf{A({λj}j∈N, {Rj}j∈N)},

where the infimum is taken over all admissible decompositions of f as above.

The following lemma was originally established by Nakai and Sawano in [37,
Theorem 4.6] and further improved by Sawano in [44, Theorem 1.1].

Lemma 5.6. Let p(·) ∈ C log(Rn) and q ∈ [1,∞] ∩ (p+,∞] with p+ as in (2.1).

Then the spaces Hp(·)(Rn) and H
p(·),q
at (Rn) coincide with equivalent quasi-norms.

Proof of Theorem 5.3. To prove this theorem, by Lemma 5.6, it suffices to

show that H
p(·),2
at (Rn) and H

p(·)
L (Rn) coincide with equivalent quasi-norms. Since

p− ∈ ( n
n+1

, 1], it follows that d = max{0, ⌊n(1/p− − 1)⌋} = 0 in this case.

We first show that H
p(·),2
at (Rn) ⊂ H

p(·)
L (Rn). To this end, let qt be the kernel of

the operator Qt. Then, by [23, Lemma 6.10] (see also [48, p. 4404]), we find that, for
any γ ∈ (n[ 1

p−
−1], τ) and δ ∈ (0, 1), there exists a positive constant C such that, for

all t ∈ (0,∞) and x, y, h ∈ Rn,

|qt(x, y)| ≤ C
tδ/m

(t1/m + |x− y|)n+δ
,(5.4)

|qt(x+ h, y)− qt(x, y)|+|qt(x, y + h)− qt(x, y)| ≤ C
tδ/m

(t1/m+|x− y|)n+δ+γ
|h|γ(5.5)

when 2|h| ≤ t1/m + |x− y|, and

(5.6)

ˆ

Rn

qt(z, y) dz = 1 =

ˆ

Rn

qt(x, z) dz.
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Let f ∈ H
p(·),2
at (Rn). Then, by Definition 5.5, we see that f has an atomic

decomposition f =
∑

j∈N λjaj , where {λj}j∈N ⊂ C and {aj}j∈N are (p(·), 2, 0)-atoms
such that, for each j ∈ N, supp aj ⊂ Rj with some cube Rj ⊂ Rn, and

(5.7) B({λjaj}j∈N) . ‖f‖
H

p(·),2
at (Rn)

.

Thus, we have

‖SL(f)‖Lp(·)(Rn) ≤

∥∥∥∥∥
∑

j∈N

|λj|SL(aj)

∥∥∥∥∥
Lp(·)(Rn)

≤

∥∥∥∥∥
∑

j∈N

|λj|SL(aj)χ4Rj

∥∥∥∥∥
Lp(·)(Rn)

+

∥∥∥∥∥
∑

j∈N

|λj |SL(aj)χ(4Rj)∁

∥∥∥∥∥
Lp(·)(Rn)

=: I + II.

For I, since, due to (2.9), ‖SL(aj)‖L2(Rn) . ‖aj‖L2(Rn) .
|Rj |1/2

‖χRj
‖
Lp(·)(Rn)

, it follows,

from Lemma 3.5, that I . B({λjaj}j∈N) . ‖f‖
H

p(·),2
at (Rn)

.

Next, we estimate the term II. For all x ∈ (4Rj)
∁, we have

SL(aj)(x) ≤

{
ˆ rRj

0

ˆ

B(x,t)

|Qtm(aj)(y)|
2 dy dt

tn+1

}1/2

+

{
ˆ ∞

rRj

ˆ

B(x,t)

· · ·

}1/2

=: II1(x) + II2(x).

Observe that, when x ∈ (4Rj)
∁, |x − y| < t and z ∈ Rj := Q(xRj

, rRj
) for some

xRj
∈ Rn and rRj

∈ (0,∞), we see that

t+ |y − z| ≥ |x− z| ≥
1

2
|x− xRj

|.

By this, (5.4) and the Hölder inequality, we find that, for all x ∈ (4Rj)
∁,

II1(x) .





ˆ rRj

0

ˆ

|x−y|<t

[
ˆ

Rj

tδ

(t+ |y − z|)n+δ
|aj(z)| dz

]2
dy dt

tn+1





1
2

.
(rRj

)δ

|x− xRj
|n+δ

‖aj‖L2(Rj)|Rj|
1
2 .

(rRj
)δ

|x− xRj
|n+δ

|Rj|

‖χRj
‖Lp(·)(Rn)

.

(5.8)

Choose δ ∈ (n[ 1
p−

−1], 1) and r ∈ (0, p−) such that n+δ > n
r
. Then, from (5.7), (5.8),

Lemma 3.15 and the fact that, for all k ∈ N, χ4kRj
≤ 2k

n
r [M(χRj

)]1/r, we deduce
that

∥∥∥∥∥
∑

j∈N

|λj|II1(·)χ(4Rj)∁

∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥
∑

k∈N

∑

j∈N

|λj||Rj|

‖χRj
‖Lp(·)(Rn)

(rRj
)δ

| · −xRj
|n+δ

χ(4kRj)\(4k−1Rj)

∥∥∥∥∥
Lp(·)(Rn)
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.




∑

k∈N

4−k(n+δ−n
r
)

∥∥∥∥∥
∑

j∈N

(
|λj|

‖χRj
‖Lp(·)(Rn)

[M(χRj
)]

1
r

)p
∥∥∥∥∥
L

p(·)
p (Rn)





1
p

.

∥∥∥∥∥∥∥




∑

j∈N

[
M

(
|λj|

r

‖χRj
‖r
Lp(·)(Rn)

χRj

)]p/r


r/p
∥∥∥∥∥∥∥

r

L
p(·)
r (Rn)

(5.9)

.

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|

‖χRj
‖Lp(·)(Rn)

χRj

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H

p(·),2
at (Rn)

.

On the other hand, by (5.5), (5.6) and the vanishing moment condition of aj, we
obtain

II2(x) ≤





ˆ ∞

rRj

ˆ

|y−x|<t

[
ˆ

Rj

|qtm(y, z)− qtm(y, xRj
)||aj(z)| dz

]2
dy dt

tn+1





1
2

.





ˆ ∞

rRj

ˆ

|y−x|<t

[
ˆ

Rj

|z − xRj
|γtδ

(t+ |y − z|)n+δ+γ
|aj(z)| dz

]2
dy dt

tn+1





1
2

.
(rRj

)γ

| · −xRj
|n+γ−γ1





ˆ ∞

rRj

[
ˆ

Rj

|aj(z)| dz

]2
t−2γ1

dt

t





1/2

,

where γ1 ∈ (0, γ) such that γ − γ1 ∈ (n[ 1
p−

− 1], 1), which, together with the Hölder

inequality, implies that, for all x ∈ (4Rj)
∁,

II2(x) .
(rRj

)γ−γ1

|x− xRj
|n+γ−γ1

|Rj|

‖χRj
‖Lp(·)(Rn)

.

By this and an argument similar to that used in the proof of (5.9), we conclude that
∥∥∥∥∥
∑

j∈N

|λj|II2(·)χ(4Rj)∁

∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H

p(·),2
at (Rn)

.

This, combined with (5.9), shows that II . ‖f‖
H

p(·),2
at (Rn)

. Therefore, f ∈ H
p(·)
L (Rn)

and
‖f‖

H
p(·)
L (Rn)

= ‖SL(f)‖Lp(·)(Rn) . ‖f‖
H

p(·),2
at (Rn)

,

which further implies that H
p(·),2
at (Rn) ⊂ H

p(·)
L (Rn).

Conversely, we prove that H
p(·)
L (Rn) ⊂ H

p(·),2
at (Rn). Let α be a (p(·), s, L)-

molecule and α = πL(a), where a is a (p(·),∞)-atom supported on R̂ for some
cube R ⊂ Rn. Let R := Q(xR, rR) with xR ∈ Rn and rR ∈ (0,∞), D0(R) := 2R
and, when k ∈ N, Dk(R) := (2k+1R) \ (2kR). Moreover, for any k ∈ Z+, we let
lk :=

´

Dk(R)
α(x) dx and

hk := αχDk(R) −
χDk(R)

|Dk(R)|

ˆ

Dk(R)

α(x) dx.
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Then, for all x ∈ Rn, we have

α(x) =
∑

k∈Z+

hk(x) +
∑

k∈Z+

lk
|Dk(R)|

χDk(R)(x)

=
∑

k∈Z+

hk(x) +
∑

k∈Z+

Nk+1 [χ̃k+1(x)− χ̃k(x)] =: J1 + J2,

where, for any k ∈ Z+, Nk :=
∑∞

j=k lj and χ̃k :=
χDk(R)

|Dk(R)|
.

We first deal with J1. Obviously, for all k ∈ Z+, supp hk ⊂ 2k+1R and
´

Rn hk(x) dx =
0. Moreover, by the Hölder inequality and Proposition 3.17(i), we see that

‖h0‖L2(Rn) . ‖α‖L2(Rn) . ‖a‖T 2
2 (R

n+1
+ ) . |R|−1/2‖χR‖Lp(·)(Rn).

Since supp a ⊂ R̂, it follows that, for all x ∈ Rn,

|α(x)| .

ˆ rR

0

|Qs,tm(I − Ps0,tm)(a(·, t))(x)|
dt

t

.

ˆ rR

0

|Qs,tm(a(·, t))(x)|
dt

t
+

ˆ rR

0

|(Qs,tmPs0,tm)(a(·, t))(x)|
dt

t
,

where s0 is as in (3.8) and s ∈ [s0,∞). By (5.4), (2.4) and the Hölder inequality, we
find that, for all k ∈ N and x ∈ Dk(R),

ˆ rR

0

|Qs,tm(a(·, t))(x)|
dt

t
.

ˆ rR

0

ˆ

R

tδ

(t+ |x− y|)n+δ
|a(y, t)|

dy dt

t

.
(rR)

n
2
+δ

|x− xR|n+δ
‖a‖T 2

2 (R
n+1
+ ) .

2−k(n+δ)

‖χR‖Lp(·)(Rn)

.

(5.10)

By an argument similar to that used in the proof of (4.20), we also have

ˆ rR

0

|(Qs,tmPs0,tm)(a(·, t))(x)|
dt

t
.

2−k(n+δ)

‖χR‖Lp(·)(Rn)

,

which, combined with (5.10), implies that, for all k ∈ N and x ∈ Dk(R),

(5.11) |α(x)| .
2−k(n+δ)

‖χR‖Lp(·)(Rn)

.

From this, together with Lemma 3.14, it follows that

‖hk‖L2(Rn) . ‖α‖L2(Dk(R)) . 2−k(n
2
+δ)‖χR‖

−1
Lp(·)(Rn)

|R|
1
2

. 2
−k(n+δ− n

p−
) |2k+1R|

1
2

‖2k+1R‖Lp(·)(Rn)

.
(5.12)

Thus, for each k ∈ N, 2
k(n+δ− n

p−
)
hk is a (p(·), 2, 0)-atom up to a positive constant

multiple. By (5.12) and the fact that δ > n( 1
p−

− 1), we find that

∥∥∥∥∥

∞∑

k=0

hk

∥∥∥∥∥
L2(Rn)

.
∞∑

k=0

‖hk‖L2(Rn) . ‖χR‖
−1
Lp(·)(Rn)

|R|
1
2 ,
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which implies that
∑∞

k=0 hk converges in S ′(Rn). Moreover, from Remark 2.1(i) and
the Fatou lemma of Lp(·)(Rn) (see [14, Theorem 2.61]), we deduce that

∥∥∥∥∥∥

{
∞∑

k=0

[
2−k(n+δ−n/p−)χ2k+1R

‖χ2k+1R‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

.

{
∞∑

k=0

∥∥∥∥
[
2−k(n+δ−n/p−)χ2k+1R

‖χ2k+1R‖Lp(·)(Rn)

]p∥∥∥∥
L

p(·)
p

} 1
p

. 1.

(5.13)

Therefore, J1 =
∑∞

k=0 hk ∈ H
p(·),2
at (Rn).

Next, we consider the term J2. Obviously, for any k ∈ Z+,

supp Nk+1(χ̃k+1 − χ̃k) ⊂ 2k+1R

and
ˆ

Rn

Nk+1 [χ̃k+1(x)− χ̃k(x)] dx = Nk+1

ˆ

Rn

[χ̃k+1(x)− χ̃k(x)] dx = 0.

On the other hand, by (5.11) and Lemma 3.14, we know that, for each k ∈ Z+,

‖Nk+1(χ̃k+1 − χ̃k)‖L2(Rn) .
1

|2kR|

ˆ

(2k+1R)∁
|α(x)| dx

. 2−k(n
2
+δ) |R|

1
2

‖χR‖Lp(·)(Rn)

. 2
−k(n+δ− n

p−
) |2k+1R|

1
2

‖2k+1R‖Lp(·)(Rn)

.

(5.14)

Therefore, for each k ∈ Z+, 2k(n+δ−n/p−)Nk+1(χ̃k+1 − χ̃k) is a (p(·), 2, 0)-atom up to
a positive constant multiple. Moreover, from (5.14), we deduce that

∥∥∥∥∥∥

∑

k∈Z+

Nk+1(χ̃k+1 − χ̃k)

∥∥∥∥∥∥
L2(Rn)

. ‖χR‖
−1
Lp(·)(Rn)

|R|
1
2

and hence J2 =
∑

k∈Z+
Nk+1(χ̃k+1 − χ̃k) converges in S ′(Rn). By this and (5.13), we

conclude that J2 ∈ H
p(·),2
at (Rn). Therefore, for the molecule α, we have

(5.15) α =
∑

k∈Z+

1

2k(n+δ−n/p−)
h̃k +

∑

k∈Z+

1

2k(n+δ−n/p−)
Ñk+1 (χ̃k+1 − χ̃k)

in L2(Rn) and hence in S ′(Rn), where, for every k ∈ Z+, h̃k and Ñk+1(χ̃k+1− χ̃k) are

(p(·), 2, 0)-atoms up to a positive constant multiple and, moreover, α ∈ H
p(·),2
at (Rn).

Now, for all f ∈ H
p(·)
L (Rn) ∩ L2(Rn), by Theorem 3.13(i), we find that f has an

atomic decomposition f =
∑

j∈N λjαj, where the summation converges in L2(Rn)

and also in H
p(·)
L (Rn), {λj}j∈N ⊂ C and {αj}j∈N are (p(·), s, L)-molecules, as in

Definition 3.11, such that

B({λjαj}j∈N) . ‖f‖
H

p(·)
L (Rn)

.

Moreover, we may assume that, for each j ∈ N, αj is a molecule associated with
some cube Rj := Q(xj , rj) for some xj ∈ Rn and rj ∈ (0,∞). Then, from what we
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have proved as in (5.15), we deduce that

f =
∑

j∈N

∑

k∈Z+

λj

2
k(n+δ− n

p−
)
h̃j,k +

∑

j∈N

∑

k∈Z+

λj

2
k(n+δ− n

p−
)
Ñj,k+1 (χ̃j,k+1 − χ̃j,k)

in L2(Rn) and hence also in S ′(Rn), where, for each j ∈ N and k ∈ Z+, h̃j,k and

Ñj,k+1(χ̃j,k+1 − χ̃j,k) are (p(·), 2, 0)-atoms, supported on 2k+1Rj , up to a positive
constant multiple. On the other hand, by Lemma 3.14, we see that, for any j ∈ N
and k ∈ Z+,

‖χRj
‖Lp(·)(Rn)

‖χ2kRj
‖Lp(·)(Rn)

.

(
|Rj |

|2kRj |

) 1
p+

∼ 2
−k n

p+ .

Then, by choosing δ ∈ (0, 1) such that δ ∈ (n[ 2
p−

− 1 − 1
p+
], 1), Lemma 3.15 and the

fact that, for any j ∈ N, k ∈ Z+, r ∈ (0, p) and x ∈ Rn,

χ2kRj
(x) ≤ 2kn/r

[
M(χRj

)(x)
] 1

r ,

we deduce that∥∥∥∥∥∥∥




∑

j∈N

∑

k∈Z+

[
|λj|2

−k(n+δ− n
p−

)
χ2k+1Rj

‖χ2k+1Rj
‖Lp(·)(Rn)

]p


1
p

∥∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥∥




∑

j∈N

∑

k∈Z+

[
|λj|2

−k(n+δ+ n
p+

− n
p−

−n
r
)
[M(χRj

)]
1
r

‖χRj
‖Lp(·)(Rn)

]p


1
p

∥∥∥∥∥∥∥
Lp(·)(Rn)

.

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|[M(χRj

)]
1
r

‖χRj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. B({λjαj}j∈N) . ‖f‖
H

p(·)
L (Rn)

.

Therefore, f ∈ H
p(·),2
at (Rn) and hence H

p(·)
L (Rn) ⊂ H

p(·),2
at (Rn). This finishes the

proof of Theorem 5.3. �

Remark 5.7. When p(·) is a constant exponent, Theorem 5.3 goes back to [48,
Theorem 6.1] (see also [30, Theorem 6.1]). We point out that the proof of Theorem 5.3
borrows some ideas from the proof of [30, Theorem 6.1].

5.2. Fractional integrals L
−γ on spaces H

p(·)
L (Rn). Let L satisfy Assump-

tions (A) and (B) as in Section 2. In this subsection, we establish the boundedness of
the fractional integral on variable exponent Hardy spaces associated with the opera-
tor L. Recall that, for any γ ∈ (0, n

m
) with m as in Assumption (A), the generalized

fractional integral L−γ associated with L is defined by setting, for all f ∈ L2(Rn)
and x ∈ Rn,

L−γ(f)(x) :=
1

Γ(γ)

ˆ ∞

0

tγ−1e−tL(f)(x) dt,

where Γ(γ) is an appropriate positive constant; see [48, p. 4400]. Notice that, if
L := −∆ with ∆ being the Laplacian, then L−γ becomes the classical fractional
integral; see, for example, [45, Chapter 5]. We also point out that the Hardy–
Littlewood–Sobolev inequality related to the semigroup itself of an operator was
studied by Yoshikawa [52].
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Remark 5.8. Let L satisfy Assumptions (A) and (B). For γ ∈ (0, n
m
) with m

as in Assumption (A), define the operator L̃−γ by setting, for all f ∈ L2(Rn) and
x ∈ Rn,

L̃−γ(f)(x) :=
1

Γ(γ)

ˆ ∞

0

tγ−1|e−tL(f)(x)| dt.

It was proved in [30, Lemma 5.1(ii)] that, if γ ∈ (0, n
m
) and p1, p2 ∈ (1,∞) satisfy

1
p2

= 1
p1

− mγ
n

, then L̃−γ is bounded from Lp1(Rn) into Lp2(Rn).

The main result of this subsection is stated as follows.

Theorem 5.9. Let L satisfy Assumptions (A) and (B), γ ∈ (0, n
m
) with m as

in Assumption (A), p(·) ∈ C log(Rn) satisfy n
n+θ(L)

< p− ≤ p+ ≤ 1 with p−, p+ and

θ(L), respectively, as in (2.1) and (2.5). Assume that q(·) is defined by setting, for
all x ∈ Rn,

1

q(x)
:=

1

p(x)
−
mγ

n
.

Then the fractional integral L−γ maps H
p(·)
L (Rn) continuously into H

q(·)
L (Rn).

To prove Theorem 5.9, we need the following technical lemma, which is just [44,
Lemma 5.2] and plays a key role in the proof of Theorem 5.9.

Lemma 5.10. Let δ ∈ (0, n) and p(·) ∈ C log(Rn) satisfy p+ ∈ (0, n
δ
). Assume

that q(·) ∈ P(Rn) is defined by setting, for all x ∈ Rn, 1
q(x)

:= 1
p(x)

− δ
n
. Then there

exists a positive constant C such that, for all sequences {Rj}j∈N of cubes of Rn and
{λj}j∈N ⊂ C,

∥∥∥∥∥
∑

j∈N

|λj ||Rj|
δ
nχRj

∥∥∥∥∥
Lq(·)(Rn)

≤ C

∥∥∥∥∥
∑

j∈N

|λj|χRj

∥∥∥∥∥
Lp(·)(Rn)

.

Proof of Theorem 5.9. To prove this theorem, we only need to show that, for

all f ∈ H
p(·)
L (Rn) ∩ L2(Rn),

(5.16) ‖SL(L
−γ(f))‖Lq(·)(Rn) . ‖f‖

H
p(·)
L (Rn)

,

since H
p(·)
L (Rn) ∩ L2(Rn) is dense in H

p(·)
L (Rn).

Let f ∈ H
p(·)
L (Rn) ∩ L2(Rn). Then, by Theorem 3.13(ii), we see that there exist

{λj}j∈N ⊂ C and a sequence {αj}j∈N of (p(·), s0, L)-molecules associated with cubes

{Rj}j∈N such that f =
∑

j∈N λjαj in H
p(·)
L (Rn) and also in L2(Rn), and

A({λj}j∈N, {Rj}j∈N) . ‖f‖
H

p(·)
L (Rn)

.

Observe that L−γ is bounded from L2(Rn) to Lq(Rn) for some q ∈ (1,∞) such that
1
q
= 1

2
− mγ

n
(see [48, Theorem 5.1] and also Remark 5.8). It follows that, for almost

every x ∈ Rn,

|L−γ(f)(x)| .
∑

j∈N

|λj|

ˆ ∞

0

tγ−1|e−tL(αj)(x)| dt =:
∑

j∈N

|λj|L̃
−γ(αj)(x)
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and hence

∥∥SL(L
−γ(f))

∥∥
Lq(·)(Rn)

.

∥∥∥∥∥
∑

j∈N

|λj|SL(L̃
−γ(αj))χ4Rj

∥∥∥∥∥
Lq(·)(Rn)

+

∥∥∥∥∥
∑

j∈N

|λj |SL(L̃
−γ(αj))χ(4Rj )∁

∥∥∥∥∥
Lq(·)(Rn)

=: I1 + I2.

(5.17)

To deal with I1, let r ∈ (1, 2). Then, by the Hölder inequality, (2.9), Proposi-
tion 3.17 and Remark 5.8, we find that∥∥∥SL(L̃

−γ(αj))χ4Rj

∥∥∥
Lr(Rn)

. |Rj|
1
r
− 1

q

∥∥∥SL(L̃
−γ(αj))χ4Rj

∥∥∥
Lq(Rn)

. |Rj|
1
r
− 1

q

∥∥∥L̃−γ(αj)χ4Rj

∥∥∥
Lq(Rn)

. |Rj|
1
r
− 1

q ‖αj‖L2(Rn) . [ℓ(Rj)]
mγ |Rj |

1
r

‖χRj
‖Lp(·)(Rn)

.

This, combined with Lemmas 3.5 and 5.10, implies that

I1 .

∥∥∥∥∥
∑

j∈N

[
|λj|

‖χRj
‖Lp(·)(Rn)

]q
[ℓ(Rj)]

mγqχ4Rj

∥∥∥∥∥

1
q

L
q(·)
q

.

∥∥∥∥∥
∑

j∈N

[
|λj|χ4Rj

‖χRj
‖Lp(·)(Rn)

]q∥∥∥∥∥

1
q

L
p(·)
q

.

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|χ4Rj

‖χRj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

∼ A({λj}j∈N, {Rj}j∈N) . ‖f‖
H

p(·)
L (Rn)

,

(5.18)

where q := min{1, q−} with q− as in (2.1) via p(·) replaced by q(·).
Next, we estimate I2. Since n

n+θ(L)
< p−, it follows that there exists ε ∈ (0, θ(L))

such that n
n+ε

< p−. Moreover, we may choose r0 ∈ (0, p−) such that

ε ∈ (n[1/r0 − 1], θ(L)).

Assume that, for each j ∈ N, Rj := Q(xj , rj) for some xj ∈ Rn and rj ∈ (0,∞).
Then, by an argument similar to that used in the proof of [48, (5.3)], we conclude
that, for all j ∈ N and x ∈ (4Rj)

∁,

(5.19) SL(L̃
−γ(αj))(x) .

|rj|
ε+mγ+n

|x− xj |n+ε

1

‖χRj
‖Lp(·)(Rn)

.

For any k, j ∈ N, letDk(Rj) := (2k+2Rj)\(2
k+1Rj). Then, by (5.19) and Lemma 5.10,

we see that

I2 .

∥∥∥∥∥
∑

k, j∈N

|λj|

‖χRj
‖Lp(·)(Rn)

rε+mγ+n
j

| · −xj |n+ε
χDk(Rj)

∥∥∥∥∥
Lq(·)(Rn)

.

∥∥∥∥∥
∑

k, j∈N

|λj|

‖χRj
‖Lp(·)(Rn)

(2krj)
mγ

2k(n+ε+mγ)
χ2k+2Rj

∥∥∥∥∥
Lq(·)(Rn)

.

∥∥∥∥∥
∑

k, j∈N

|λj|

‖χRj
‖Lp(·)(Rn)

χ2k+2Rj

2k(n+ε+mγ)

∥∥∥∥∥
Lp(·)(Rn)

.
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Thus, from Lemma 3.15, Remark 2.1(i) and the fact that, for any k ∈ N,

χ2k+2Rj
. 2kn/r0[M(χRj

)]1/r0 ,

we deduce that

I2 .


∑

k∈N

2knp/r0

2kp(n+ε+mγ)

∥∥∥∥∥
∑

j∈N

{
|λj|

‖χRj
‖Lp(·)(Rn)

[M(χRj
)]

1
r0

}p
∥∥∥∥∥
L

p(·)
p (Rn)




1
p

.

∥∥∥∥∥∥

{
∑

j∈N

[
|λj|χRj

‖χRj
‖Lp(·)(Rn)

]p} 1
p

∥∥∥∥∥∥
Lp(·)(Rn)

. ‖f‖
H

p(·)
L (Rn)

.

This, together with (5.17) and (5.18), implies that (5.16) holds true, which shows

that L−γ is bounded from H
p(·)
L (Rn) to H

q(·)
L (Rn) and hence completes the proof of

Theorem 5.9. �

Remark 5.11. In the case of constant exponents, Theorem 5.9 was obtained by
Yan [48, Theorem 5.1].
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References

[1] Acerbi, E., and G. Mingione: Regularity results for stationary electro-rheological fluids. -
Arch. Ration. Mech. Anal. 164, 2002, 213–259.

[2] Acerbi, E., and G. Mingione: Gradient estimates for the p(x)-Laplacean system. - J. Reine
Angew. Math. 584, 2005, 117–148.

[3] Albrecht, D., X.T. Duong, and A. McIntosh: Operator theory and harmonic analysis. -
In: Instructional Workshop on Analysis and Geometry, Part III (Canberra, 1995), Proc. Centre
Math. Appl. Austral. Nat. Univ. 34, 1996, 77–136.

[4] Almeida, A., and P. Hästö: Besov spaces with variable smoothness and integrability. - J.
Funct. Anal. 258, 2010, 1628–1655.

[5] Auscher, P., X.T. Duong, and A. McIntosh: Boundedness of Banach space valued sin-
gular integral operators and Hardy spaces. - Unpublished manuscript, 2005.

[6] Birnbaum, Z., and W. Orlicz: Über die Verallgemeinerung des Begriffes der zueinander
konjugierten Potenzen. - Studia Math. 3, 1931, 1–67.

[7] Blunck, S., and P.C. Kunstmann: Weak type (p, p) estimates for Riesz transforms. - Math.
Z. 247, 2004, 137–148.

[8] Bui, T.A., J. Cao, L.D. Ky, D. Yang, and S. Yang: Musielak–Orlicz–Hardy spaces
associated with operators satisfying reinforced off-diagonal estimates. - Anal. Geom. Metr.
Spaces 1, 2013, 69–129.

[9] Chen, Y., S. Levine, and M. Rao: Variable exponent, linear growth functionals in image
restoration. - SIAM J. Appl. Math. 66, 2006, 1383–1406.

[10] Coifman, R.R., Y. Meyer, and E.M. Stein: Some new function spaces and their applica-
tions to harmonic analysis. - J. Funct. Anal. 62, 1985, 304–335.

[11] Coifman, R.R., and G. Weiss: Extensions of Hardy spaces and their use in analysis. - Bull.
Amer. Math. Soc. 83, 1977, 569–645.

[12] Coulhon, T., and X.T. Duong: Maximal regularity and kernel bounds: observations on a
theorem by Hieber and Prüss. - Adv. Differential Equations 5, 2000, 343–368.



Molecular characterizations and dualities of variable exponent Hardy spaces 397

[13] Cruz-Uribe, D.: The Hardy–Littlewood maximal operator on variable-Lp spaces. - In: Sem-
inar of Mathematical Analysis (Malaga/Seville, 2002/2003), Colecc. Abierta 64, Univ. Sevilla
Secr. Publ., Seville, 2003, 147–156.

[14] Cruz-Uribe, D.V., and A. Fiorenza: Variable Lebesgue spaces. Foundations and harmonic
analysis, applied and numerical harmonic analysis. - Birkhäuser/Springer, Heidelberg, 2013.

[15] Cruz-Uribe, D., A. Fiorenza, J.M. Martell, and C. Pérez: The boundedness of classical
operators on variable Lp spaces. - Ann. Acad. Sci. Fenn. Math. 31, 2006, 239–264.

[16] Cruz-Uribe, D., and L.-A.D. Wang: Variable Hardy spaces. - Indiana Univ. Math. J. 63,
2014, 447–493.

[17] Diening, L.: Maximal function on generalized Lebesgue spaces Lp(·)(Rn). - Math. Inequal.
Appl. 7, 2004, 245–253.

[18] Diening, L., P. Harjulehto, P. Hästö, and M. Růžička: Lebesgue and Sobolev spaces
with variable exponents. - Lecture Notes in Math. 2017, Springer, Heidelberg, 2011.

[19] Diening, L., P. Hästö, and S. Roudenko: Function spaces of variable smoothness and
integrability. - J. Funct. Anal. 256, 2009, 1731–1768.

[20] Drihem, D.: Some properties of variable Besov-type spaces. - Funct. Approx. Comment. Math.
52, 2015, 193–221.

[21] Duong, X.T., and A. MacIntosh: Singular integral operators with non-smooth kernels on
irregular domains. - Rev. Mat. Iberoam. 15, 1999, 233–265.

[22] Duong, X.T., J. Xiao, and L. Yan: Old and new Morrey spaces with heat kernel bounds. -
J. Fourier Anal. Appl. 13, 2007, 87–111.

[23] Duong, X.T., and L. Yan: Duality of Hardy and BMO spaces associated with operators
with heat kernel bounds. - J. Amer. Math. Soc. 18, 2005, 943–973.

[24] Duong, X.T., and L. Yan: New function spaces of BMO type, the John–Nirenberg inequality,
interpolation, and applications. - Comm. Pure Appl. Math. 58, 2005, 1375–1420.

[25] Fefferman, C., and E.M. Stein: Hp spaces of several variables. - Acta Math. 129, 1972,
137–193.

[26] Harjulehto, P., P. Hästö, and V. Latvala: Minimizers of the variable exponent, non-
uniformly convex Dirichlet energy. - J. Math. Pures Appl. (9) 89, 2008, 174–197.

[27] Hofmann, S., and J.M. Martell: Lp bounds for Riesz transforms and square roots associ-
ated to second order elliptic operators. - Publ. Mat. 47, 2003, 497–515.

[28] Izuki, M.: Vector-valued inequalities on Herz spaces and characterizations of Herz–Sobolev
spaces with variable exponent. - Glas. Mat. Ser. III 45:65, 2010, 475–503.

[29] Jiang, R., and D. Yang: New Orlicz–Hardy spaces associated with divergence form elliptic
operators. - J. Funct. Anal. 258, 2010, 1167–1224.

[30] Jiang, R., D. Yang, and Y. Zhou: Orlicz–Hardy spaces associated with operators. - Sci.
China Ser. A 52, 2009, 1042–1080.

[31] Kováčik, O., and J. Rákosník: On spaces Lp(x) and W k,p(x). - Czechoslovak Math. J. 41:116,
1991, 592–618.

[32] Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators.
- Integral Equations Operator Theory 78, 2014, 115–150.

[33] Liu, S., and L. Song: Boundedness of functional calculi of Schrödinger operators on general-
ized Lebesgue spaces Lp(Rn). - Manuscripta Math. 138, 2012, 119–139.

[34] Luxemburg, W.: Banach Function spaces. - Thesis, Technische Hogeschool te Delft, 1955.

[35] McIntosh, A.: Operators which have an H∞ functional calculus. - In: Miniconference on
operator theory and partial differential equations (North Ryde, 1986), Proc. Centre Math.
Anal. Austral. Nat. Univ. 14, 1986, 210–231.



398 Dachun Yang and Ciqiang Zhuo

[36] Müller, S.: Hardy space methods for nonlinear partial differential equations. - Tatra Mt.
Math. Publ. 4, 1994, 159–168.

[37] Nakai, E., and Y. Sawano: Hardy spaces with variable exponents and generalized Campanato
spaces. - J. Funct. Anal. 262, 2012, 3665–3748.

[38] Nakano, H.: Modulared semi-ordered linear spaces. - Maruzen Co., Ltd., Tokyo, 1950.

[39] Nakano, H.: Topology of linear topological spaces. - Maruzen Co., Ltd., Tokyo, 1951.

[40] Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. - Bull. Int. Acad. Pol. Ser.
A 8, 1932, 207–220.

[41] Ouhabaz, E.M.: Analysis of heat equations on domains. - London Math. Soc. Monogr. Ser.
31. Princeton Univ. Press, Princeton, NJ, 2005.
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