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Abstract. Using ideas developed by Bergweiller, Rippon and Stallard, we improve three

theorems of Wiman–Valiron type without the use of power series.

1. Introduction

An important consequence of the Wiman–Valiron theory for an entire function
f is a precise estimate of that function at points z sufficiently close to points zr at
which the maximum modulus of f is attained on circles of radius r. The estimate
takes the form

(1.1) f(z) ∼ f(zr)

(

z

zr

)N(r,f)

where N(r, f) is the so-called central index of f .
These estimates have had applications in the theory of ordinary differential equa-

tions with entire coefficients as well as in the iteration of entire functions. Similar
estimates were obtained by the authors for functions analytic in the unit disc [6], for
entire functions of several variables [4, 7] and for classes of subharmonic functions
which are well approximated by entire functions in large discs [8]. Generally such
results depend crucially on an analysis of the coefficients of the power series repre-
sentation of f (see for example [9]) and as such the methods are not generalizable to
functions with no such representation.

Using only certain convexity properties of the maximum of subharmonic functions
and standard harmonic measure estimates, Bergweiller, Rippon and Stallard [1, 2]
were able to extend (1.1) to certain classes of meromorphic functions. Modifying
their methods, Langley and Rossi [11] obtained similar results for an analagous class
of meromorphic functions in the unit disc.

In this note we show that the methods in [2] and [1] can also be modified to give
a non-power series proof and improvement to the main result in [8] as well as a more
general version of the main result in [4]. Finally by assuming that f has finite order
we improve a general result of Bergweiller on the size of the set where (1.1) holds.
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2. Statement of Theorem 1

We first extend the result in [8]. Suppose that u is subharmonic in the plane
with B(r, u) = max|z|=r u(z) and

(2.1) a(r, u) =
dB(r, u)

d log r
.

Since B is a convex function of log r, we have that a is increasing with r.
We use ∆(z, r) and C(z, r) to denote the open disc and the circle with radius r

and centre z. We call ∆(z, T ) a Wiman–Valiron disc for a function u subharmonic
in the plane if u(z) = B(|z|, u) and

(2.2) u(w) = log |g(w)|
for all w ∈ ∆(z, T ), where g is analytic and nonzero in ∆(z, T ).

As in [8] we restrict our attention to functions which are harmonic near points
where they are large. To be precise we define ψ : [t0,∞) → (0,∞) to be any function
satisfying

(2.3)

ˆ ∞

t0

dt

ψ(t)
<∞

and

1 ≤ tψ′(t)

ψ(t)
≤ L < 2.

These conditions imply that for all t ≥ t0

(2.4) c1t ≤ ψ(t) ≤ c2t
L

where c1, c2 > 0 are constants depending on t0 and ψ(t0).
Let u(zr) = B(r, u), where |zr| = r, and set

(2.5) τ(r) = max(r, B(r, u))

and

(2.6) T (r) =
r

√

ψ(a(r, u))
.

We say that u is admissible if

(2.7) a(r, u) → ∞
and there are numbers c > 1 and K > 0 and a set E of finite logarithmic measure
such that whenever r 6∈ E is sufficiently large and z ∈ ∆(zr, 4T (r)) satisfies

(2.8) u(z) > B(|z|, u)−K log τ(|z|),
then u is harmonic in ∆(z, τ(|z|)−c).

We will prove:

Theorem 2.1. Let u be subharmonic in C and admissible. Then there is a set

E ⊆ R
+ of finite logarithmic measure such that, for all r ∈ R

+ \E, ∆(zr, T (r)) is a

Wiman–Valiron disc for u. Further for z ∈ ∆(zr, T (r)),

(2.9) g(z) = (1 + o(1))g(zr)

(

z

zr

)a(r,u)

and for any positive integer q

(2.10)
g(q)(z)

g(z)
= (1 + o(1))

(

a(r, u)

z

)q

,
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uniformly as r → ∞, where g is given by (2.2).

Remarks. 1. We note that a general subharmonic function may not possess
Wiman–Valiron discs—e.g. a function with a fairly thick set of point masses. Thus
some restriction on the functions akin to admissible is a necessary one. After the
proof of Theorem 2.1 we will show that the subharmonic functions considered in [2]
and [1] are automatically admissible and as such this theorem can be considered a
generalization of Theorem 2.2 in [2] or Theorem 1.1 in [1].

2. Theorem 1 extends and improves Theorem 1 in [8]. First of all the Wiman–
Valiron discs are centred at the points where the maximum is attained and not just
near such points as was the case in the original theorem. Secondly the definition of
admissibilty only applies near the maximum points zr. More importantly, Theorem 1
removes a very unnatural lower growth hypothesis on u which marred the original
theorem. Finally the new proof greatly simplifies the old one.

3. For Theorem 2.1 to be meaningful, the discs in the definition of admissible
must be much smaller than the Wiman–Valiron discs. This is the case since by (3.1)
below and since ψ increases we have that

(2.11)
τ(r)−c

T (r)
→ 0

as r → ∞ outside of a set of finite logarithmic measure.

3. Proof of Theorem 2.1

We need some preliminary results. Fix δ0 ∈ (0, 1) such that 1 + δ0 < c. Then
there exists a set E1 of finite logarithmic measure such that for r 6∈ E1

(3.1) a(r, u) ≤ B(r, u)1+δ0 .

Indeed, if E1 is the set on which (3.1) fails, then
ˆ

E1

dr

r
≤
ˆ

E1

a(r, u)

B(r, u)1+δ0

dr

r
≤
ˆ ∞

0

a(r, u)

B(r, u)1+δ0

dr

r
=

ˆ ∞

0

B′(r, u)

B(r, u)1+δ0
dr <∞

since B(r, u) → ∞.
Finally by a result of Bergweiller (end of section 2 in [1]) there is a set E2 ∈ R

+

of finite logarithmic measure such that for all r 6∈ E2

(3.2) B(s, u) ≤ B(r, u) + a(r, u) log
s

r
+ o(1), r → ∞

for all s satisfying

(3.3)
∣

∣

∣
log

s

r

∣

∣

∣
≤ 16ρ(r),

where

(3.4) ρ(r) = T (r)/r =
1

√

ψ(a(r, u))
.

By the convexity of B we also obtain for s, r > 0 that

(3.5) B(s, u) ≥ B(r, u) + a(r, u) log
s

r
.

We now let E = E1 ∪ E2 ∪ E . Thus if r 6∈ E we have by (3.2), (3.3), (3.5) and (2.7)
that for all z, w ∈ ∆(zr, 12T (r)),

|B(|z|, u)− B(|w|, u)| ≤ 24a(r, u)ρ(r) + o(1)
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as r → ∞. Then by (2.4) and (3.1)

(3.6)
∣

∣B(|z|, u)− B(|w|, u)
∣

∣ = o(B(r, u)).

By (2.4)
∣

∣|z| − |w|
∣

∣ ≤ 24T (r) = o(r)

and so we have that

(3.7)
∣

∣τ(|z|)− τ(|w|)
∣

∣ = o(τ(r)),

z, w ∈ ∆(zr, 12T (r)).
Set

u1(z) = u(z)− B(r, u)− a(r, u) log
|z|
r
.

Note that u1 is subharmonic in ∆(zr, 12T (r)) and since u(z) ≤ B(|z|, u) we have by
(3.2) that

(3.8) u1(z) ≤ ǫ(r) = o(1)

uniformly as r → ∞, r 6∈ E, for z ∈ ∆(zr, 12T (r)).
We claim that u is harmonic in ∆(zr, 4T (r)). Indeed, if not, then we can find ζ ∈

∆(zr, 4T (r)) at which u is not harmonic. By the definition of admissible this would
imply that for all sufficiently large r, (2.8) fails on the entire circle C(ζ, τ(|ζ |)−c/2).
From (3.2) and (2.8) we obtain for all z on this circle

(3.9) u(z) ≤ B(|z|, u)−K log(τ(|z|) ≤ u(zr) + a(r, u) log
|z|
r

+ ǫ(r)−K log(τ(|z|))

where ǫ(r) → 0 as r → ∞.
Let r1 = τ(|ζ |)−c/2, r2 = 8T (r) and denote by h(z) the first three terms on the

right hand side of (3.9). Then by (3.8), (3.9) and (3.7)

h(z)−K log τ(|ζ |) log(r2/|z − ζ |)
log(r2/r1)

is a harmonic majorant for u in the annulus A = {z : r1 ≤ |z − ζ | ≤ r2}.
We claim that zr ∈ A. Indeed since u is admissible, u is harmonic in ∆(zr, τ(r)

−c).
This together with (3.7) gives |zr − ζ | > τ(r)−c > τ(|ζ |)−c/2 for all large r 6∈ E and
proves the claim.

Thus we obtain

u(zr) ≤ u(zr)−K log τ(|ζ |) log(r2/|zr − ζ |)
log r2/r1

+ ǫ(r)

≤ u(zr)−K log τ(|ζ |) log 2

log 16T (r)τ(|ζ |)c + ǫ(r)

≤ u(zr)−
1

2
K log τ(|ζ |) log 2

log τ(|ζ |)c+1
+ ǫ(r)

= u(zr)−
1

2
K

log 2

c+ 1
+ ǫ(r).

The last inequality occurs for large r and follows from the fact that T (r) = o(τ(r))
and (3.7). Thus we have the contradiction u(zr) < u(zr).

Proceeding as in [2] we see that u = log |g| where g is analytic and nonzero in
∆(zr, 4T (r)). The function

(3.10) g1(z) = log

(

g(z)

g(zr)

(zr
z

)a(u,r)
)
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is analytic in ∆(zr, 4T (r)). Here the branch is chosen so that g1(zr) = 0. By (3.8)
we have that for z ∈ ∆(zr, 4T (r)), ℜg1(z) = u1(z) → 0 as r → ∞, r 6∈ E. By the
Borel–Carathéodory inequality we obtain that

(3.11) |g1(z)| → 0

for z ∈ ∆(zr, 2T (r)) and (2.9) is proved.
To prove (2.10) we note that by (3.11), (2.4), (2.7) and Cauchy’s theorem we

obtain for all non-negative integers q and z ∈ ∆(zr, T (r))

(3.12) g
(q)
1 (z) ≤ o(T (r)−q) = o(ψ(a(r, u))q/2/rq) = o(a(r, u)/r)q

uniformly in r.
Now

log g(z) = log g(zr) + a(r, u) log
z

zr
+ g1(z)

for z ∈ ∆(zr, 2T (r)). So by (3.12)

(3.13)
g′(z)

g(z)
= (1 + o(1))

a(r, u)

z

for z ∈ ∆(zr, T (r)) and we have (2.10) for q = 1. Further

g′′(z)

g(z)
=

(

g′(z)

g(z)

)′

+

(

g′(z)

g(z)

)2

and so by (3.13), (3.12) and (2.7) we obtain (2.10) for q = 2. We proceed as in [11]
by induction noticing that for all q

g(q+1)(z)

g(z)
=

(

g(q)(z)

g(z)

)′

+
g(q)(z)

g(z)

g′(z)

g(z)
.

Theorem 1 is proved.
In [2] and [1] the subharmonic functions u have the form u = max(log |g|, 0) in a

domain D, a direct tract of the meromorphic function g in which log |g| > 0. Such
functions are apriori admissible. Indeed, by equation (2.5) in [2], u satisfies (2.7).
As in [2] we have ∆(z,2T (r)) ⊆ D, forcing u to be harmonic there. By (2.11) we see
that u is admissible in ∆(z,T (r)).

4. Statement of Theorem 4.1

We denote the polydisc centred at (z1, z2) with radii (r1, r2) byD(z1, z2; r1, r2) Let
f(z1, z2) be an entire function in C

2 and let M(r1, r2) =M(r1, r2, f) be the maximum
of |f | on the polydisc D(0, 0; r1, r2).We note that logM is a convex function in the
(log r1, log r2) plane and increases in each variable separately. We denote

(4.1) a1(r, u) =
∂B(r1, r2)

∂ log r1
, a2(r, u) =

∂B(r1, r2)

∂ log r2
.

We define the two dimensional logarithmic measure of a set F ⊆ (0,∞)× (0,∞) by

logmeasF =

¨

F

dr ds

rs
.

We let ψ be as in Section 2 and set

(4.2) T1(r1, r2) =
r1

4
√

ψ(a1(r1, r2))
, T2(r1, r2) =

r2

4
√

ψ(a2(r1, r2))
.

We will prove
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Theorem 4.1. Let f(z1, z2) be an entire function in C
2 with |z1,r1| = r1, |z2,r2| =

r2 and |f(z1,r1, z2,r2)| =M(r1, r2). Then there is a set E ⊆ (0,∞)× (0,∞) and κ > 0
for which

(4.3) logmeasE ∩ (0, R1)× (0, R2) ≤ κ(logR1 + logR2)

for all large R1,R2 and such that for all (z1, z2) in

D = D(z1,r1, z2,r2 ;T1(r1, r2), T2(r1, r2))

and (r1, r2) ∈ (R+)2 \ E,

(4.4)
f(z1, z2)

f(z1,r1, z2,r2)
= (1 + o(1))

(

z1
z1,r1

)a1(r1,r2) ( z2
z2,r2

)a2(r1,r2)

uniformly as r1 → ∞ and r2 → ∞.

Remarks. 1. One would hope that (4.4) would imply that

(4.5)
∂p1+p2

∂zp11 ∂z
p2
2

f(z1, z2) = (1 + o(1))

(

a1(r1, r2)

z1

)p1 (a2(r1, r2)

z2

)p2

f(z1, z2)

but as shown in [3] this is only true if

log a∗ ≤ a∗
C(log a∗)2

where a∗ = max(a1, a2), a∗ = min(a1, a2) and C > 0 is a certain constant. Further-
more the condition is essentially sharp. (Note that in [3], a1 and a2 are replaced by
the two central indices but these quantities are asymptotic.)

We can obtain (4.5) via (4.4) as we obtained (2.10) from (2.9) (albeit not as
elegantly). By using Cauchy estimates one variable at a time we get uniform bounds
on the error function in (4.4) much as we did in (3.12). Our error in estimating
∂p1+p2

∂z
p1
1

∂z
p2
2

f(z1, z2) is of the order

o

(

ψ(a∗(r1, r2)
pq/4)

rp1r
q
2

)

.

This implies that (4.5) holds but with a much stronger condition than that obtained
in [3], namely that

a∗ ≥ K
√

ψ(a∗)

for some K > 0.
2. Fenton has shown in [3] that sets E satisfying (4.3) occur naturally in two

dimensional Wiman–Valiron theory and no smaller such set will suffice.
3. After the proof of Theorem 4.1 we will sketch how it can be extended to

meromorphic functions in C
2 with direct tracts.

5. Proof of Theorem 4.1

Let Φ: [t0,∞) → R
+ be convex and increasing in r. By Lemma 2.1 in [1] there

is a set E ⊆ R
+ with measE ≤ κ, κ > 0, such that

(5.1) Φ(r + h) ≤ Φ(r) + Φ′(r)h+ ǫ(r)

where ǫ(r) → 0 as r → ∞, r 6∈ E, uniformly for

|h| ≤ 1
√

ψ(Φ′(r))
.
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What is not mentioned explicitly in the Lemma but is seen in its proof is that both
κ and ǫ(r) depend only on ψ and not on Φ. This is important in what follows.

Let Φ: [t0,∞) × [t0,∞) → R
+ be convex as a function of two variables and

increasing in each variable separately and set for i = 1, 2,

Φi(r1, r2) =
∂

∂ri
Φ(r1, r2).

We obtain by (5.1)

Φ(r1 + h1, r2) ≤ Φ(r1, r2) + Φ1(r1, r2)h1 + ǫ(r1)

for all r1 6∈ Er2 and for all

|h1| ≤
1

√

ψ(Φ1(r1, r2))

where ǫ(r1) → 0 as r1 → ∞ uniformly in r2. Since measEr2 ≤ κ, we obtain

measE1 ∩ [a, R1]× [a, R2] =

ˆ R2

a

ˆ

Er2

dr1dr2 ≤ κR2

where E1 = ∪r2(Er2 × {r2}) We obtain a similar result for Φ(r1, r2 + h2) with a set
E2. Let E = E1 ∪ E2.

Lemma 5.1. Let Φ and E be as above. Then for all (r1, r2) 6∈ E and for (h1, h2)
in the rhombus Λ(r1, r2) with vertices

(

±1/
√

ψ(Φ1(r1, r2), 0
)

and
(

0,±1/
√

ψ(Φ2(r1, r2)
)

,

Φ(r1 + h1, r2 + h2) ≤ Φ(r1, r2) + Φ1(r1, r2)h1 + Φ2(r1, r2)h2 + o(1)

uniformly as r1 → ∞ and r2 → ∞. The set E satisfies

measE ∩ [a, R1]× [a, R2] ≤ κ(R1 +R2).

Proof. By the preceding discussion we obtain the inequalites

Φ(r1 + h1, r2) ≤ Φ(r1, r2) + Φ1(r1, r2)h1 + ǫ(r1)

and

Φ(r1, r2 + h2) ≤ Φ(r1, r2) + Φ2(r1, r2)h2 + ǫ(r2).

These inequalities measure the separation of the surface z = Φ(r1, r2) from its tan-
gent plane at (r1, r2) in the r1 and r2 directions respectively. Since Φ is convex the
separation of the graph over the rhombus is largest at its vertices. The lemma is
proved. �

Let Λ(r1, r2) be the rhombus in Lemma 5.1. By Lemma 5.1 and a logarithmic
change of variables we obtain

Lemma 5.2. For all (r1, r2) 6∈ E, where E satisfies (4.3) and
(

log
s1
r1
, log

s2
r2

)

∈ Λ(r1, r2)

we have

(5.2) logM(s1, s2) ≤ logM(r1, r2) + a1(r1, r2) log
s1
r1

+ a2(r1, r2) log
s2
r2

+ o(1)

uniformly as r1 → ∞ and r2 → ∞.
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Just as (3.2) gave us (3.8) in Theorem 2.1, (5.2) gives us a function

u1(z1, z2) = log |f(z1, z2)| − logM(r1, r2)− a1(r1, r2) log
|z1|
r1

− a2(r1, r2) log
|z2|
r2

subharmonic in each variable such that

(5.3) u1(z1, z2) = o(1)

uniformly in D(z1,r1, z2,r2 ; r1h1, r2h2)) as r1 → ∞, r2 → ∞, where (h1, h2) ∈ Λ(r1, r2)
and (r1, r2) 6∈ E.

We note that the rectangle centered at the origin with side lengths 4T1/r1 and
4T2/r2 lies in Λ(r1, r2), where T1 and T2 are given by (4.2). It follows that (5.3) holds
uniformly in the closure of D(z1,r1 , z2,r2; 2T1, 2T2).

We claim that f is not zero in D1 = D(z1,r1, z2,r2 ;T1, T2). To see this, suppose
that f(ζ1, ζ2) = 0 for (ζ1, ζ2) ∈ D1. Let ζ ∈ C and consider

(5.4) w(ζ) = f(z1,r1 + ω1ζ, z2,r2 + ω2ζ)

where ω1 = ζ1 − z1,r1 and ω2 = ζ2 − z2,r2 . Then w is entire with w(1) = 0. By
definition u1 − log |f | is harmonic provided z1 and z2 are not 0 and so u1(z1,r1 +
ω1ζ, z2,r2 +ω1ζ) and log |w(ζ)| have the same mass in D1. Let n(t) be the Riesz mass
of u1(z1,r1 + ω1ζ, z2,r2 + ω1ζ) in |ζ | ≤ t. Note that n(t) ≥ 1 for t ≥ 1.

By Jensen’s formula

log 2 ≤
ˆ 2

1

n(t)

t
dt ≤

ˆ 2

0

n(t)

t
dt

=
1

2π

ˆ 2π

0

u1(z1,r1 + 2ω1e
iθ, z2,r2 + 2ω2e

iθ) dθ − u1(z1,r1, z2,r2) = o(1)

as min(r1, r2) → ∞. The last equality follows by (5.3) and the fact that

(z1,r1 + 2ω1e
iθ, z2,r2 + 2ω2e

iθ) ∈ D1

for all θ. This contradiction implies that log |f | is harmonic in D1. Now we proceed
exactly as in the proof of Theorem 2.1, modifying (3.10) to produce an analytic
function g1 in two variables whose real part is u1. We use Borel–Carathéodory one
variable at a time and obtain (4.4). The proof of Theorem 4.1 is complete.

To extend Theorem 4.1 to direct tracts we follow closely the arguments in [2].
For a, b, c, d ∈ C we define

P = P(a, b, c, d) = {(a+ bz, c + dz) : z ∈ C}
to be a complex plane in C

2. Let D be an unbounded open, connected set in C
2 such

that for any complex plane P the boundary of the set D ∩ P consists of piecewise
smooth curves. If there is a function f(z1, z2) which is analytic in D, continuous in
D, and such that |f | > 1 in D while |f | = 1 on ∂D, then we will call D a direct tract

of f .
Define a subharmonic function v by

(5.5) v(z1, z2) =

{

log |f(z1, z2)| if (z1, z1) ∈ D,

0 otherwise.

We denote by B(r1, r2) the maximum of v on the polydisc D(0, 0; r1, r2) with a1 and
a2 the partial derivatives of B with respect to log r1 and log r2. Given r1, r2 > 0, let
(z1,r1, z2,r2) be as in Theorem 4.1 with log |f(z1,r1, z2,r2)| = B(r1, r2) and |z1,r1| = r1,
|z2,r2| = r2. Our goal is to show that (4.4) still holds in D(z1,r1, z2,r2 ;T1(r1, r2), T2(r1,
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r2)), where T1(r1, r2) and T2(r1, r2) are given by (4.2). By a rescaling (to fit the
notation in [2]) our methods in Theorem 4.1 give a subharmonic function

u1(z1, z2) = v(z1, z2)− B(r1, r2)− a1(r1, r2) log
|z1|
r1

− a2(r1, r2) log
|z2|
r2

such that (5.3) holds in D(z1,r1, z2,r2 ; 512T1(r1, r2), 512T2(r1, r2)). As in the proof of
Theorem 4.1 we are done once we prove that v is harmonic inD1 = D(z1,r1 , z2,r2;T1(r1,
r2), T2(r1, r2)). By definition of v this will be accomplished if we can show that
D1 ⊆ D for r1 and r2 sufficiently large.

So we assume that

(5.6) (ξ1, ξ2) ∈ D1 \ D,
and further that (ξ1, ξ2) is closest to (z1,r1 , z2,r2); this ensures that the line segment
from (z1,r1 , z2,r2) to (ξ1, ξ2) lies in D.

Let D(r1, r2) be the component of D ∩ P containing (z1,r1 , z2,r2), where P =
P(z1,r1 , ξ1 − z1,r1 , z2,r2, ξ2 − z2,r2). We note that f restricted to P can be considered
an analytic function of one variable which is large at the point (z1,r1 , z2,r2) ∈ D(r1, r2)
and whose modulus is no greater than 1 on ∂D(r1, r2). Thus D(r1, r2) is an unbounded
connected set in P and can be thought of as a direct tract for the restricted function.
Furthermore (5.3) holds when restricted to P. Thus we can follow the one variable
methods in [2] to show that D1∩P ⊆ D(r1, r2). This implies that (ξ1, ξ2) ∈ D(r1, r2)
and hence in D1, a contradiction.

6. Functions of finite order: density results

Let f be meromorphic in C with a direct tract D and let u be the associated
subharmonic function which equals log |f | on D and 0 elsewhere and let T (r) be as
in (2.6). In ([1], Theorems 1.1 and 1.2) it is not only shown that outside a set of r of
finite logarithmic measure

(6.1) f(z) = (1 + o(1))f(zr)

(

z

zr

)a(r,u)

for z ∈ ∆(zr, T (r)), but also an example is given showing that the magnitude of T (r)
is best possible. The example that establishes this is of infinite order. For finite order
we can do better.

Theorem 6.1. Let f be meromorphic of finite order λ with a direct tract D.

Then for every function T (r) satisfying T (r) = o(r/
√

a(r, u)), there exists a set E of

(upper) logarithmic density 0 such that (6.1) holds for z ∈ ∆(zr, T (r)), as r → ∞,

r 6∈ E.

We remind the reader that the upper logarithmic density of a set E ⊆ R
+ is

defined by

logdensE = lim sup
r→∞

logmeas(E ∩ [1, r])

log r
.

Similarly the lower logarithmic density, logdensE is defined using liminf. When

logdensE = logdensE = L, we say that the logarithmic density of E is L and write
logdensE = L.

Theorem 6.1 is true if f is only assumed to have finite lower order. The excep-
tional set would then have lower logarithmic density 0. The generalization to lower
order is standard and we omit it.
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We note that it is sufficient (the argument is standard) to show that, given ǫ > 0
the conclusion of Theorem 6.1 holds outside a set of upper logarithmic density less
that ǫ.

Our goal is to improve (3.2) so that T (r) is at least o(r/
√

a(r, u)) except on a set
of logarithmic density 0. Theorem 6.1 follows from this by the argument in Section
12 of [2]. To do this we need a slight variant due to Fenton [5, Theorem 1] of a version
of the Borel–Nevanlinna lemma proved by Bergweiler [1, Lemma 2.1].

Let S : [a,∞) → R
+ be an increasing function such that

(6.2) lim sup
r→∞

logS(r)

r
≤ λ <∞.

Fix ǫ > 0. Let g(t) be a nonnegative function bounded above and below on compact
subsets of R+ such that

(6.3) g(r) = o(r)

as r → ∞ and let

(6.4) h(t) =
1

λ1t

where λ/λ1 < ǫ. Then the proof of Theorem 1 in [5] shows that with S = S(r)

(6.5) S(r + g(S)h(S)) ≤ S + g(S)

and

(6.6) S(r − g(S)h(S)) ≥ S − g(S)

except on a set Eǫ of r contained in the union of intervals of the form [rn, rn +
g(Sn)h(Sn)] where Sn = S(rn) and rn+1 ≥ rn + g(Sn)h(Sn). Furthermore

(6.7) g(Sn)h(Sn) ≤ (1 + o(1))

ˆ Sn+g(Sn)

Sn

h(t) dt.

(We remark that in [5] a more general h gives only a constant K in (6.7) rather than
1 + o(1).)

Let r ≥ a be arbitrary and let n be the largest positive integer such that rn +
g(Sn)h(Sn) ≤ r. Then by (6.7) and (6.3)

(6.8) g(Sn+1)h(Sn+1) ≤ (1 + o(1)) log(1 + g(Sn+1)/Sn+1) = o(1).

Now

meas(Eǫ ∩ (1, r)) ≤
n+1
∑

j=1

g(Sj)h(Sj).

Then by (6.7) and (6.8) we obtain

meas(Eǫ ∩ (1, r)) ≤ (1 + o(1))

ˆ Sn+g(Sn)

r1

h(t) dt.

By (6.3), the definition of h and (6.2) we obtain

(6.9) meas(Eǫ ∩ (1, r)) ≤ λ+ o(1)

λ1
log r

and it follows that Eǫ has upper logarithmic density at most ǫ.
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Let a(r) be as in Theorem 6.1. Since f has order λ, u and hence a(r, u) = a(r)
have orders at most λ, we apply the argument above to the function T (x) = a(ex) =
a(r). We obtain from (6.5) and (6.6) that for all r 6∈ Eǫ

(6.10) a(reg(a(r))/λ1a(r)) ≤ a(r) + g(a(r))

and

(6.11) a(re−g(a(r))/λ1a(r)) ≥ a(r)− g(a(r)).

Since a(r) = dB(r)/d log r we have

B(s) = B(r) +

ˆ s

r

a(t) dt

or

B(s) = B(r)−
ˆ r

s

a(t) dt,

for s ≥ r or s ≤ r respectively. Using (6.10) and (6.11), if | log s
r
| ≤ g(a(r))/λ1a(r)

we obtain for all r 6∈ Eǫ

B(s) ≤ B(r) + a(r) log
s

r
+ g(a(r))

∣

∣

∣
log

s

r

∣

∣

∣
.

We obtain (3.2) if also g(a(r))
∣

∣log s
r

∣

∣ = o(1). Both of these requirements are met

if g(t) = o(
√
t). Such a choice of g implies that (3.2) holds for all s such that

∣

∣log s
r

∣

∣ is less than any given function that is o(1/
√

a(r)), and is always possible if

T (r) = o(r/
√

a(r). As mentioned above this is enough to prove Theorem 6.1.

7. Functions of finite order: Pólya Peaks

An increasing, positive sequence rn → ∞ is called a sequence of Pólya Peaks of
order σ of the function k(r) if there exist positive sequences An → ∞ and ǫn → 0
such that

(7.1)
k(r)

k(rn)
≤ (1 + ǫn)

(

r

rn

)σ

(A−1
n rn ≤ r ≤ Anrn).

It is known that if k is also continuous and µ < ∞ and λ are the lower order and
order respectively of k then k(r) has a sequence of Pólya Peaks of order σ for every
σ ∈ [µ, λ] if λ < ∞ and for every σ ∈ [µ,∞) otherwise. In the proof of this result
(see [10, p. 710]) what is actually proved is that given any positive sequence ηn → 0,

(7.2)
k(r)

k(rn)
≤

(

r

rn

)σ
(rn
r

)ηn
(A−1

n rn ≤ r ≤ rn)

and

(7.3)
k(r)

k(rn)
≤

(

r

rn

)σ (
r

rn

)ηn

(rn ≤ r ≤ Anrn).

The two inequalities are combined to form (7.1) by setting ǫn = Aηn
n − 1. If in (7.1)

there is no apriori mention of the relationship between ǫn and ηn, then (7.1) is a
much weaker requirement than (7.2) and (7.3) when r and rn are asymptotic, which
is exactly the case in which we are interested. (We remark that we only use (7.3) in
what follows.)

Functions of finite lower order behave fairly regularly on a sequence of Pólya
Peaks and many of the inequalities involving functionals of Nevanlinna theory are
proved at the Pólya Peaks of one of these functionals (see [10, Sections 9.6 and
9.7]). We show that on a sequence sn asymptotically close to a sequence of Pólya
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Peaks, the inequality (3.2) holds with T (sn) at least as large as o(sn/
√

a(sn)) for any
subharmonic function u of finite lower order. Thus as in Theorem 6.1 if u = log |f |
on D and 0 elsewhere we obtain Wiman–Valiron disks of radii at least o(sn/

√

a(sn))
for f .

Let u be subharmonic of finite lower order µ. Fix hn = h ≥ 0. Define sn = rne
h,

tn = sne
h = rne

2h. Then by (7.3) applied to a(r) we obtain as h→ 0

B(tn) = B(sn) +

ˆ tn

sn

a(t)
dt

t
≤ B(sn) + a(tn)h ≤ B(sn) + a(rn)e

(σ+ηn)2hh

≤ B(sn) + a(sn)e
(σ+ηn)2hh = B(sn) + a(sn)h+ a(sn)(e

(σ+ηn)2h − 1)h

= B(sn) + a(sn)h+ a(sn)(1 + o(1))2σh2.

Similarly by (7.3) we obtain as h→ 0

B(rn) = B(sn)−
ˆ sn

rn

a(t)
dt

t
≤ B(sn)− a(rn)h ≤ B(sn)− a(sn)e

−(σ+ηn)hh

= B(sn) + a(sn)(−h) + a(sn)(e
−(σ+ηn)h − 1)(−h)

= B(sn) + a(sn)(−h) + a(sn)(1 + o(1))σh2.

We have proved that so long as rne
h = sn and |h| = o(1/

√

a(sn)) then

(7.4) B(sne
h) ≤ B(sn) + a(sn)h+ o(1)

and

(7.5) B(sne
−h) ≤ B(sn) + a(sn)(−h) + o(1).

By (7.4) and (7.5) the inequality

(7.6) B(sne
t) ≤ B(sn) + a(sn)t+ o(1)

holds at the endpoints of the interval [−h, h]. By the convexity of B, (7.6) holds for
all t ∈ [−h, h] where the o(1) approaches 0 uniformly in this interval and depends
only on σ. It follows by the method in [2] that Wiman–Valiron disks around sn have

radii greater than snρ(sn) where ρ(sn) = o(1/
√

a(sn)).
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