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Abstract. The main goal of the paper is to introduce and study the relative derivatives for

general topological spaces. We also prove a generalization of Rolle’s and Cauchy’s mean value

theorems for real valued functions defined on topological spaces.

1. Introduction

In recent years notions similar to the notions of uniform convergence, monotonic-
ity, Lipschitz condition and others have been defined in a topological way (see e.g.
[5], [9], or [14]). We can use a topological approach to prove generalized mean value
theorems too.

In this paper we prove a generalization of Cauchy’s mean value theorem for
real valued functions defined on topological spaces. To be able to use topological
structures instead of the structure of the real line, we will be using the relative
derivative. The classical relative derivative replaces the identity function id : R → R

by a function g : R → R. This notion is used in various contexts (e.g. in [2] or [10]).
In this paper we define relative derivative for functions on a general topological space
with values in a linear topological space. The notion “approaching infinity” will be
replaced by a topological notion that could be described by the words “avoiding
compacts”.

We would like to thank the referee for propositions, that helped to make the ar-
ticle more comprehensible. The referee added also new insights by proposing Propo-
sitions 2.2, 3.2, Corollary 2.5, Lemma 2.6. and by generalizing Example 2.4.

It should be noted here that the generalized differentiation is currently developing
by several mathematicians in the frame of the theory of arbitrary metric spaces. See,
for example, [1, 3, 6, 11].The differentiation theory in linear topological spaces is a
well-known part of analysis. Nonetheless, it seems that there were not any attempts
to introduce a differentiation in topological spaces without linear or metric structures,
which is the case in the present paper.

2. Generalized derivative

In this paper when we say “a field”, we mean the fields R or C. In what follows
we will suppose that X is a topological space, A ⊂ X and Y is a linear topological
space defined over a field F . A function g defined on X is discrete on A at a point
p ∈ X, if there is an open neighborhood V of p such that the statement

g(p) /∈ g((V ∩ A)\{p})
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holds. It is clear that g is a discrete function (i.e. the set g−1(g(p)) is discrete for
every p ∈ X), if and only if g is discrete on X at all points. Now we define the notion
of generalized derivative.

Definition 2.1. Let p be limit point of A and g : X → F be discrete at p on A.
A function f : X → Y has a g-derivative l ∈ Y at p on A if for every net {xγ}γ∈Γ of

points xγ ∈ A\{p} converging to p, the net
{

f(xγ )−f(p)
g(xγ )−g(p)

}

γ∈Γ
converges to l.

If l is a g-derivative of f at p on A, then we write

l =g/A f ′(p) = lim
x→p,x∈A

f(x)− f(p)

g(x)− g(p)

and gf
′(p) =g/X f ′(a) for A = X.

It is easy to see that, for Hausdorff spaces Y , a g-derivative gf
′(p) if it exists, is

unique.

Proposition 2.2. The following properties are equivalent for every linear topo-
logical space Y .

(i) Y is a Hausdorff topological space.
(ii) For every topological space X, p ∈ X, f : X → Y and every g : X → F ,

which is discrete at p, the g-derivative gf
′(p) is unique if it exists.

Proof. The implication (i) ⇒ (ii) follows from the general properties of nets
in topological spaces (see, for example, [7, p. 51]). Suppose now that Y is not a
Hausdorff topological space. Since a linear topological space is Hausdorff if and only
if this space is a T1 space there is y0 ∈ Y such that

Cl{y0} 6= {y0}.

The topology of Y is translation invariant, so we have also

Cl{0} 6= {0}.

Let f : X → Y be the constant function with f(x) = 0 for every x ∈ X. Then
for every p ∈ X and every g : X → F which is discrete at p the equality

gf
′(p) = y

holds for each y ∈ Cl{0}. The implication (ii) ⇒ (i) follows. �

Remark 2.3. It is easy to see that this new kind of derivative is a linear operator.
When X = A = Y = F = R and g(x) ≡ x we obtain the classical definition of the
derivative. In general a function f can have a g-derivative also when f and g are not
continuous.

The following example illustrates Definition 2.1.

Example 2.4. Let Y be Hausdorff and let p be a point of X such that X is the
unique open set containing p. If there is a g-derivative l of a function f : X → Y at
p on X, then the equality

(1) f(x) = f(p) + (g(x)− g(p))l

holds for every x ∈ X\{p}. Conversely, if g : X → F is discrete at p on X and l is
an arbitrary vector from Y and f : X → Y satisfies (1) for every x ∈ X\{p}, then l
is the g-derivative of f at p on X.
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Corollary 2.5. Let Y be Hausdorff and let, for given g, a function f : X → Y
have a g-derivative at every p ∈ X. If X is a space with trivial topology, then f is
either injective or constant.

Proof. Let X be the space with trivial topology. If there is p ∈ X such that

gf
′(p) = 0 then by formula (1) f is constant. Otherwise, (1) implies that f is injective,

because g is injective as a discrete map defined on a space with trivial topology. �

Lemma 2.6. Let Y be Hausdorff, let g : X → F be discreet and discontinuous at
p on X and let f : X → Y be continuous at p. Suppose that there exists a derivative

gf
′(p), then the equality gf

′(p) = 0 holds.

Proof. Since g is discontinuous at p, there exists c > 0 and a net {xγ}γ∈Γ such
that {xγ}γ∈Γ is convergent to p and

(2) |g(xγ)− g(p)| ≥ c

holds for every γ ∈ Γ. Since f is continuous at p, the net {f(xγ)−f(p)}γ∈Γ converges
to 0 ∈ Y . Inequality (2) implies that

∣

∣

∣

∣

c

g(xγ)− g(p)

∣

∣

∣

∣

≤ 1

for every γ ∈ Γ. Consequently the net
{

cf(xγ )−f(p)
g(xγ )−g(p)

}

γ∈Γ
converges to 0 ∈ Y . It implies

that
{

f(xγ )−f(p)
g(xγ )−g(p)

}

γ∈Γ
is convergent to 0. Let l =g f ′(p). The net

{

f(xγ)−f(p)
g(xγ)−g(p)

− l
}

γ∈Γ

converges to 0. Hence the constant net {yγ}γ∈Γ, yγ = l, is also convergent to 0. Since
Y is Hausdorff, it is possible only if l = 0 holds. �

The examples and assertions presented above served to illustrate some properties
of the relative derivative defined on topological spaces. The reader can see, that the
continuity or discontinuity of a g-differentiable function f correlates strongly with
the continuity properties of g. This topic will be discussed in another paper.

3. A generalization of Cauchy’s mean value theorem

A function g : X → R will be called feebly monotone at p ∈ X on A ⊆ X if for
every open O ∋ p there exist s, t ∈ O ∩ A such that the double inequality

g(s) < g(p) < g(t)

holds.
The following lemma is a generalization of the fact, that if a differentiable function

f has an extremum at a, then f ′(a) = 0.

Lemma 3.1. Let p be a limit point of A and let g : X → R be feebly monotone
and discrete at p on A. If a function f : X → R has at p a g/A-derivative and a local
extremum on A, then the equality

(3) g/Af
′(p) = 0

holds.

Proof. Suppose that p is a point of local maximum of f on A and there is g/Af
′(p).

Then there exist two nets {sγ}γ∈Γ and {tγ}γ∈Γ of points from A, both converging to
p, such that

g(sγ) < g(p) < g(tγ) and
f(sγ)− f(p)

g(sγ)− g(p)
≥ 0 ≥

f(tγ)− f(p)

g(tγ)− g(p)
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hold. Since the nets
{

f(sγ)−f(p)
g(sγ)−g(p)

}

γ∈Γ
and

{

f(tγ )−f(p)
g(tγ )−g(p)

}

γ∈Γ
converge to g/Af

′(p), equality

(3) follows. �

Note that g and f from the preceding lemma are not supposed to be continuous.
The assumption “g : X → R is feebly monotone at p on A” can not be dropped

in Lemma 3.1. In fact, the following proposition holds.

Proposition 3.2. Let p be a limit point of A and let g : X → R be discrete on
A at p. Write ℑp for the set of all real-valued functions on X, which have a local
extremum and g-derivative at p on A. Then the following statements are equivalent.

(i) Equality (3) holds for every f ∈ ℑp.
(ii) g is feebly monotone at p on A.

Proof. The implication (ii) ⇒ (i) is already proved in Lemma 3.1. To prove (i)
⇒ (ii) it suffices to note that g/Ag

′(p) = 1 holds and, moreover, if (ii) does not hold,
then g ∈ ℑp and (i) does not hold. �

Now we give a generalization of Cauchy’s mean value theorem.

Theorem 3.3. Let (X, T ) be an arbitrary topological space. Let f : X → R,
g : X → R be continuous functions, let h : X → R be discrete and let a, b, c, d ∈ R.
Suppose that for every compact K ⊂ X and every x ∈ int(K) the function h is
feebly monotone at x on X and there exist finite hf

′(x) and hg
′(x). If for every ε > 0

there is a compact Kε ⊂ X such that the inequality

min{|f(x)− a|+ |g(x)− b|; |f(x)− c|+ |g(x)− d|} < ε

holds for every x ∈ X\Kε, then there exists z ∈ X such that

hf
′(z)(d− b) =h g′(z)(c− a)

holds.

Proof. Let us define a function p : X → R by the rule

p(x) = f(x)(d− b)− g(x)(c− a)− (ad− bc), x ∈ X.

Since f and g are continuous, p is continuous too. Moreover, because of the assump-
tions of our theorem the following is true:

(∗∗) For each ε > 0 there exists a compact set Cε ⊂ X such that for all x from
X\Cε |p(x)| < ε holds.

To see that (∗∗) is true, let us consider an arbitrary ε > 0. Denote M :=
max{|d− b|, |c− a|, 1}. There exists a compact set Cε ⊂ X such that, for all x from
X\Cε

min{|f(x)− a|+ |g(x)− b|; |f(x)− c|+ |g(x)− d|} <
ε

2M
holds.

For each x from X the following is true:

|p(x)| = |f(x)(d− b)− g(x)(c− a)− (ad− bc)|

= |(f(x)− a)(d− b) + ad− ab− (g(x)− b)(c− a)− bc + ab− ad+ bc|

= |(f(x)− a)(d− b)− (g(x)− b)(c− a)|

≤ |(f(x)− a)||(d− b)| + |(g(x)− b)||(c− a)|

≤ (|f(x)− a| + |g(x)− b|)M

(4)



Topological generalization of Cauchy’s mean value theorem 319

and quite similarly

|p(x)| = |f(x)(d− b)− g(x)(c− a)− (ad− bc)|

= |(f(x)− c))(d− b) + cd− cb− (g(x)− d)(c− a)− dc+ ad− ad+ bc|

= |(f(x)− c)(d− b)− (g(x)− d)(c− a)|

≤ |(f(x)− c)||(d− b)|+ |(g(x)− d)||(c− a)|

≤ (|f(x)− c|+ |g(x)− d|)M.

(5)

It follows from (4) and (5) that

(6) |p(x)| ≤ min{|f(x)− a|+ |g(x)− b|; |f(x)− c|+ |g(x)− d|}M

Now we can see, that if x is from X\Cε, then

|p(x)| ≤ min{|f(x)− a|+ |g(x)− b|; |f(x)− c|+ |g(x)− d|}M <
ε

2M
M

and this means that (∗∗) is true.
Now let us distinguish two possible cases.
(i) The function p(x) is constant. Then for each x from X hg

′(x) = 0 which
means, because of the definition of p that hf

′(x)(d − b) =h g′(x)(c− a). Which was
to be proved.

(ii) There exists x0 from X such that p(x0) 6= 0. Suppose, that p(x0) > 0 (the
case p(x0) < 0 would be treated in a similar way). Let us consider a positive number
u such that p(x0) > 2u > u > 0 is true.

Because of the assumptions of our theorem there exists a compact set Ku ⊂ X
such that for all x from X\Ku we have

min{|f(x)− a|+ |g(x)− b|; |f(x)− c|+ |g(x)− d|} <
u

M
.

So for all x from X\Ku we obtain p(x) < u (see (6)).
This means that x0 ∈ Ku. Since Ku is compact, the continuous function p(x) has

its maximum at a point z ∈ Ku (with respect to Ku). But since p(z) ≥ p(x0) > 2u
we can see, that p attains at z its global maximum. Now it is quite clear that
z ∈ int(Ku). (If z /∈ int(Ku) then there exists a net {xγ}γ∈Γ of points from X\Ku

converging to z. We know that for all γ ∈ Γ we have p(xγ) < u. From this and from
the continuity of p we would obtain that the net p({xγ}γ∈Γ) converges to p(z) and
this would mean that p(z) ≤ u, which is not possible.)

Since z is an interior point of a compact subset of X, there exist finite derivatives

hf
′(z) and hg

′(z). Of course, the derivative hp
′(z) exists too and

hp
′(z) = hf

′(z)(d− b)− hg
′(z)(c− a)

is true.
Since p has its maximum at z, according to Lemma 3.1

hp
′(z) = hf

′(z)(d− b)− hg
′(z)(c− a) = 0

and this is equivalent to

hf
′(z)(d − b) = hg

′(z)(c− a).

This ends the proof. �

The following Lemma, proposed by the referee, shows, how the situation simplifies
under stronger conditions: if X is supposed to be compact and if we are differentiating
with respect to a function h , that is feebly monotone at every point of X.
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Lemma 3.4. Let X be compact, let f : X → R and g : X → R be continuous
and let at every x ∈ X h : X → R be discrete and feebly monotone. If for every
x ∈ X there exist hf

′(x) and hg
′(x), then for arbitrary a, b, c, d ∈ R there is z ∈ X

such that

hf
′(z)(d− b) = hg

′(z)(c− a)

holds.

Proof. Suppose that hf
′(x) and hg

′(x) exist for every x ∈ X. Note that every
continuous h : X → R has a global maximum at a point of X and consequently such
h is not feebly monotone at this point. So h is discontinuous at a point z ∈ X and,
by Lemma 2.6 hf

′(z) = 0 =h g′(z) and we are done. �

Let us remark that the proof of Theorem 3.3 contained also the proof of the
following generalized Rolle’s mean value theorem:

Theorem 3.5. Let (X, T ) be a topological space. Let p : X → R be a continuous
function. Let h : X → R be a discrete function. Let h be such, that for every compact
subset K of X and every point x ∈ int(K) h is feebly monotone. Let for each compact
subset K of X and for each x from int(K) there exist a finite derivative hp

′(x).
If for every ε > 0 there is a compact set Cε ⊂ X such that |p(x)| < ε for very

x ∈ X\Cε, then there exists z ∈ X such that hp
′(z) = 0.
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