EXAMPLES OF METRIC MEASURE SPACES RELATED TO MODIFIED HARDY–LITTLEWOOD MAXIMAL OPERATORS

Krzysztof Stempak

Politechnika Wrocławska, Wydział Matematyki Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland; Krzysztof.Stempak@pwr.edu.pl

Abstract. We furnish elementary examples of (nondoubling) metric measure spaces, for which the modified Hardy–Littlewood maximal operators M_k and M_k^c , uncentered and centered, fail to be weak type (1, 1) for $1 \le k < 3$ and $1 \le k < 2$, respectively.

1. Introduction

The aim of this short note is to complement our previous article [2], where we proved that the modified Hardy–Littlewood maximal operators M_3 and M_2^c , uncentered and centered, are weak type (1, 1); see [2, Theorem 3.1]. This was done in the setting of a general metric measure space (X, d, μ) with the sole assumption on the Borel measure μ to be finite on bounded sets (balls of measure zero are admitted). Recall that for a parameter $k \geq 1$ the modified Hardy–Littlewood maximal operator $M_k = M_{k,d,\mu}$ is defined by

$$M_k f(x) = \sup_{x \in B} \frac{1}{\mu(kB)} \int_B |f| \, d\mu, \qquad x \in X,$$

where the supremum is taken over all open balls B containing x, and the balls of measure zero are omitted. Here kB denotes the ball concentric with B and of radius k times that of B. The centered version $M_k^c = M_{k,d,\mu}^c$ is defined analogously but the balls included in the definition of M_k^c and related to $x \in X$ are centered at x (and of positive measure).

The results of [2, Theorem 3.1], as acknowledged in [2, p. 447], are sharp in the sense that, in general, any k < 3 or any k < 2 is not enough in the uncentered or in the centered case, respectively, for M_k or M_k^c to be of weak type (1, 1). This was shown by Sawano [1] by a direct construction, see the proof of [1, Proposition 1.1] for the centered case; for the uncentered case it was mentioned in the beginning of [1, Section 3] that a similar construction can be done.

Looking at [1, Section 2.3] one can admit that the construction is tangled. In this note we present extremely elementary examples which prove the abovementioned sharpness.

2. Examples

In both examples X is a countable planar graph, connected and acyclic, equipped with the geodesic distance d, that is the length of the (unique) minimal path joining

doi:10.5186/aasfm.2016.4119

²⁰¹⁰ Mathematics Subject Classification: Primary 42B25.

Key words: Metric measure space, non-doubling measure, modified Hardy–Littlewood maximal operator, weak type (1, 1).

Research supported by funds of Faculty of Pure and Applied Mathematics of Technical University of Wrocław, Project # S50075.

two points; the distance between two points joined by an edge is, by definition, equal to 1. The induced topology is discrete and (X, d) is separable. The Borel (nondoubling) measure μ on X is either the countable measure or a slight modification of it; the measure of any ball is positive and finite.

Example 2.1. (centered case) Consider the graph X with vertices x_n and x_{nj} , and edges joining x_n with x_{n+1} , and x_n with x_{nj} , for any $n \in \mathbb{N}$ and $j \in \{1, 2, ..., n\}$. See Figure 1. Let μ be the counting measure on X, $\mu(\{x\}) = 1$ for $x \in X$. Consider (X, d, μ) as a metric measure space and fix $1 \leq k < 2$. We shall estimate $M_k^c \delta_{x_n}(x_{nj})$, where δ_{x_n} denotes the Dirac delta at x_n . Take r > 1 such that kr < 2. Let $B = B(x_{nj}, r)$. Then $B = \{x_{nj}, x_n\}$ and $kB = B(x_{nj}, kr) = \{x_{nj}, x_n\}$, hence $\mu(kB)^{-1} \int_B \delta_{x_n} d\mu = \frac{1}{2}$. Consequently, $M_k^c \delta_{x_n}(x_{nj}) \geq \frac{1}{2}$ and $\mu(\{M_k^c \delta_{x_n} > \frac{1}{3}\}) \geq n$. Since $\|\delta_{x_n}\|_{\ell^1(X,\mu)} = 1$, M_k^c fails to be weak type (1, 1).

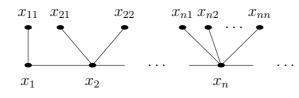


Figure 1.

Example 2.2. (uncentered case) Consider the graph X with vertices x_n , x_{nj} and y_{nj} , and edges joining x_n with x_{n+1} , x_n with x_{nj} , and x_{nj} with y_{nj} , for any $n \in \mathbb{N}$ and $j \in \{1, 2, \ldots, n\}$. See Figure 2 (where only the branch starting from x_n is shown). Let μ be the measure on X, such that $\mu(\{x_n\}) = \mu(\{y_{nj}\}) = 1$, and $\mu(\{x_{nj}\}) = \frac{1}{n}$. Consider (X, d, μ) as a metric measure space, fix $1 \leq k < 3$ and choose 1 < r < 2 such that kr < 3. Let $B = B(x_{nj}, r)$. Then $B = \{x_n, x_{nj}, y_{nj}\}$ and $kB \subset \{x_{n-1}, x_n, x_{n+1}, x_{n1}, \ldots, x_{nn}, y_{nj}\}$, for $n \geq 2$, say. Therefore $\mu(kB)^{-1} \int_B \delta_{x_n} d\mu \geq \frac{1}{5}$, and hence $M_k \delta_{x_n}(y_{nj}) \geq \frac{1}{5}$. Consequently, $\mu(\{M_k \delta_{x_n} > \frac{1}{6}\}) \geq n$. Since $\|\delta_{x_n}\|_{\ell^1(X,\mu)} = 1$, M_k fails to be weak type (1, 1).

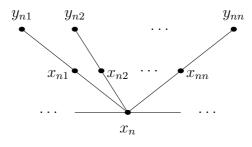


Figure 2.

Finally, notice that since $\|\delta_{x_n}\|_{\ell^p(X,\mu)} = 1$ the above argument also shows that M_k^c for $1 \le k < 2$, and M_k for $1 \le k < 3$, fail to be weak type (p, p) for any $1 \le p < \infty$.

References

- [1] SAWANO, Y.: Sharp estimates of the modified Hardy–Littlewood maximal operator on the nonhomogeneous space via covering lemmas. Hokkaido Math. J. 34, 2005, 435–458.
- [2] STEMPAK, K.: Modified Hardy–Littlewood maximal operators on nondoubling metric measure spaces. - Ann. Acad. Sci. Fenn. Math. 40, 2015, 443–448.

Received 31 May 2015 • Accepted 7 September 2015