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Abstract. Let q be any complex number other than 0 and 1. We first asymptotically express

the logarithmic q-difference log f(qz) − log f(z) in terms of the logarithmic derivative f ′/f for

any meromorphic function f of order strictly less than 1/2. Then we show the assumption that the

order strictly less than 1/2 is sharp. Finally, we prove a q-difference analogue of the Wiman–Valiron

theorem for entire functions of order strictly less than 1/2.

1. Introduction

Wiman–Valiron theory is a powerful tool in the study of entire function theory
and complex differential equation theory (e.g. [6]). The most inspiring theorem in
this theory is the classical Wiman–Valiron theorem which reveals the local behavior
of entire functions and their derivatives when |f(z)| is close to its maximum modulus
at z (e.g. [3, 5, 9]).

By utilizing an analogue of Wiman–Valiron theory for difference equations, Berg-

weiler and Langley [1] investigated the zero distribution of ∆f(z)
def
= f(z+1)− f(z),

also in general ∆kf(z), for entire functions of order less than one. They obtained
that ∆kf(z) ∼ f (k)(z) holds outside an exceptional set. Ishizaki and Yanagihara [4]
showed an analogue of Wiman–Valiron theory by thoughtfully rewriting power series
of entire functions of order less than 1/2 into binomial series. Chiang and Feng [2]
established a relationship between log f(z + q)− log f(z) and f ′/f , further proved a
difference analogue of Wiman–Valiron theory estimates for entire functions of order
less than one, which can be used in the study of entire solutions of linear difference
equations.

The first main result in this paper is to establish a relationship between log f(qz)−
log f(z) and f ′/f for meromorphic functions of order less than 1/2 and show the
bound 1/2 is the best upper bound for this relationship. The second main result,
which is a by-product of the first main result, is a q-difference analogue of the Wiman–
Valiron theorem for any entire function of order less than 1/2.

As usual, the order of a meromorphic function f in C is defined by

ρf := lim sup
r→∞

log+ T (r, f)

log r
.
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The standard notations in Nevanlinna theory and entire function theory are also
employed. For example, T (r, f) is the Nevanlinna characteristic function of f and
ν(r, f) is the central index of f . Moreover, we say a set F ⊂ R+ is of the finite
logarithmic measure if and only if

ˆ

E

1

t
dt < ∞.

Also, for any complex-valued function f(z), the notation f(z) = O(g(|z|)) throughout
the paper is that there is an r0 > 0 such that |f(z)/g(|z|)| < C holds for a constant
C > 0 and for all z with |z| > r0. Furthermore, C(> 0) is always a constant in each
equation and its value may be different in its each appearance.

2. Main results

The following theorem reveals an interesting relationship between the logarithmic
q-difference of f and the logarithmic derivative of f . It is a key ingredient in the
proof of our q-difference analogue of the Wiman–Valiron theorem.

Theorem 2.1. If f is a transcendental meromorphic function of order strictly
less than 1/2 and q ∈ C\{0, 1}, then we have

(2.1) log
f(qz)

f(z)
= (q − 1)z

f ′(z)

f(z)
+O(1),

or, equivalently,
f(qz)

f(z)
= e(q−1)z

f ′(z)
f(z)

+O(1),

for any r outside an exceptional set which is of finite logarithmic measure.

Note that O(1) in above theorem depends on f, q.

Theorem 2.2. Let q be any complex number. There is an entire function f of
order 1/2 such that, if

√
z = −√

xi, for any x ∈ R
+, we have, as x → ∞,

log
f(qz)

f(z)
= (

√
q − 1)

√
x+ log(1 + o(1)) and

(q − 1)z
f ′(z)

f(z)
=

q − 1

2

√
x(1 + o(1)).

Furthermore, for any q ∈ C \ {1}, f does not satisfy (2.1) in Theorem 2.1.

Clearly, the theorem tells us that the condition ρ < 1/2 in Theorem 2.1 is the
best possible.

We now state our q-difference analogue for the Wiman–Valiron theorem for entire
functions of order less than 1/2.

Theorem 2.3. Suppose that m is any positive integer and q a complex number
with qm ∈ C\{0, 1}. Let f(z) be a transcendental entire function of order strictly less
than 1/2 and F ⊂ R

+ a set of finite logarithmic measure. Then for any 0 < δ < 1/4
and any z with |z| = r 6∈ F satisfying

|f(z)| > M(r, f)ν(r, f)δ−1/4,

we have
f(qmz)

f(z)
= e(q

m−1)ν(r,f)(1+o(1)).
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3. Proofs of our theorems

The following Poisson–Jensen formula plays an important role in proving our
Theorem 2.1.

Lemma 3.1. [8, p. 163] Let f(z) be a meromorphic function in the complex
plane, not identically zero. Let {aµ}µ∈N and {bν}ν∈N be the sequences of zeros and
poles, with due account of multiplicities, of f(z), respectively. Then for |z| < R < ∞,

log f(z) =
1

2π

ˆ 2π

0

log |f(Reiθ)|Reiθ + z

Reiθ − z
dθ −

∑

|aµ|<R

log
R2 − aµz

R(z − aµ)

+
∑

|bν |<R

log
R2 − bνz

R(z − bν)
+ iK,

(3.1)

where

K = arg f(0)−
∑

|bν |<R

arg

(

−R

bν

)

+
∑

|aµ|<R

arg

(

−R

aµ

)

+ 2mπ

and m is an integer depending on R, f and the choice of branch of the logarithm
functions of both sides of (3.1).

We also need following lemmas.

Lemma 3.2. [2, Lemma 3.2] Let us define

logw = log |w|+ i argw, −π ≤ argw < π,

to be the principal branch of the logarithmic function in the complex plane. Then
we have

log(1 + w)− w = O(|w|2) +O

(

∣

∣

∣

∣

w

1 + w

∣

∣

∣

∣

2
)

for all w in C.

The next result is a well-known lemma of Cartan [7, pp. 19–22].

Lemma 3.3. Let a1, . . . , am be any finite collection of complex numbers, and let
d > 0 be any given positive number. Then there exists a finite collection of closed
disks D1, . . . , Dq with corresponding radii r1, . . . , rq that satisfy r1 + · · · + rq = 2d,
such that if z 6∈ Dj for all j = 1, . . . , q, then there is a permutation of the points
a1, . . . , am, say, b1, . . . , bm, that satisfy

|z − bk| > k
d

m
for k = 1, . . . , m, where the permutation may depend on z.

In the sequel, we denote the number of zeros and poles of f in |z| < r by n(r)
and set m(r) = m(r, f) +m(r.1/f).

Lemma 3.4. Let q ∈ C \ {0} and φ > 1 an increasing function on R. If f(z) is
a transcendental meromorphic function, then we have

log
f(qz)

f(z)
= (q − 1)z

f ′(z)

f(z)
+O

( |q − 1|2m(rφ(r))

φ2(r)

)

+O

( |q − 1|2n(rφ(r))
φ2(r)

)

+O





∑

|sk|<rφ(r)

∣

∣

∣

∣

(q − 1)z

z − sk

∣

∣

∣

∣



+O(1),
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for any z with |z| = r, and sk is either a pole or a zero of f .

Proof. Let {aµ}µ∈N and {bν}ν∈N be the sequences of zeros and poles, with due
account of multiplicities, of f(z), respectively. For q ∈ C\{0, 1}, and R > |qz|+|z/q|,
if we substitute qz for z into (3.1), then we conclude that

log f(qz) =
1

2π

ˆ 2π

0

log |f(Reiθ)|Reiθ + qz

Reiθ − qz
dθ −

∑

|aµ|<R

log
R2 − aµqz

R(qz − aµ)

+
∑

|bν |<R

log
R2 − bνqz

R(qz − bν)
+O(1).

(3.2)

where O(1) also depends on q now. It is easy to check that

log
R2 − ckqz

R(qz − ck)
− log

R2 − ckz

R(z − ck)
= log

R2 − ckqz

R2 − ckz
− log

qz − ck
z − ck

= log

(

1− (q − 1)ckz

R2 − ckz

)

− log

(

1 +
(q − 1)z

z − ck

)

,

(3.3)

where {ck}k∈N = {aµ}µ∈N
⋃

{bν}ν∈N. Combining (3.3) with (3.1) and (3.2), we have

log
f(qz)

f(z)
=

1

2π

ˆ 2π

0

log |f(Reiθ)| 2(q − 1)zReiθ

(Reiθ − qz)(Reiθ − z)
dθ

−
∑

|aµ|<R

(

log

(

1− (q − 1)aµz

R2 − aµz

)

− log

(

1 +
(q − 1)z

z − aµ

))

+
∑

|bν |<R

(

log

(

1− (q − 1)bνz

R2 − bνz

)

− log

(

1 +
(q − 1)z

z − bν

))

+O(1).

(3.4)

In order to estimate f ′/f , by differentiating the Poisson-Jensen formula (3.1) in
Lemma 3.1, we have

f ′(z)

f(z)
=

1

2π

ˆ 2π

0

log |f(Reiθ)| 2Reiθ

(Reiθ − z)2
dθ

+
∑

|aµ|<R

(

aµ
R2 − aµz

+
1

z − aµ

)

−
∑

|bν |<R

(

bν

R2 − bνz
+

1

z − bν

)

.
(3.5)

Combining equalities (3.4) and (3.5), we deduce that

log
f(qz)

f(z)
− (q − 1)z

f ′(z)

f(z)
=

1

2π

ˆ 2π

0

log |f(Reiθ)| 2Rz2(q − 1)2eiθ

(Reiθ − z)2(Reiθ − qz)
dθ

−
∑

|aµ|<R

{

log

(

1− (q − 1)aµz

R2 − aµz

)

+
(q − 1)zaµ
R2 − aµz

}

+
∑

|aµ|<R

{

log

(

1 +
(q − 1)z

z − aµ

)

− (q − 1)z

z − aµ

}

+
∑

|bν |<R

{

log

(

1− (q − 1)bνz

R2 − bνz

)

+
(q − 1)zbν

R2 − bνz

}
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−
∑

|bν |<R

{

log

(

1 +
(q − 1)z

z − bν

)

− (q − 1)z

z − bν

}

+O(1)

:= S1(z) + S2(z) + S3(z) + S4(z) + S5(z) +O(1).(3.6)

We will estimate |Si(z)|(i = 1, . . . , 5) separately. Let us estimate |S1(z)| at first. We
note the fact that

∣

∣

∣

∣

2Rz2(q − 1)2eiθ

(Reiθ − z)2(Reiθ − qz)

∣

∣

∣

∣

≤ 2|q − 1|2r2R
(R− r)2(R− |q|r) ,

and
1

2π

ˆ 2π

0

∣

∣log |f(Reiθ)|
∣

∣ dθ = m(R, f) +m(R, 1/f).

Therefore, from the above equations, we have

|S1(z)| ≤
2|q − 1|2r2R

(R− r)2(R− |q|r)(m(R, f) +m(R, 1/f)).

Let R = rφ(r). We have, for |z| = r,

|S1(z)| = O

( |q − 1|2m(R)

φ2(r)

)

.

In the following, we proceed to estimate |S2(z)| and |S4(z)| by means of Lemma 3.2.
It is easy to check that

log

(

1− (q − 1)aµz

R2 − aµz

)

+
(q − 1)zaµ
R2 − aµz

= O

(

∣

∣

∣

∣

(q − 1)zaµ
R2 − aµz

∣

∣

∣

∣

2
)

+O





∣

∣

∣

∣

∣

(q−1)zaµ
R2−aµz

1− (q−1)zaµ
R2−aµz

∣

∣

∣

∣

∣

2




= O

(

( |q − 1|r
R− r

)2
)

+O

(

( |q − 1|r
R− |q|r

)2
)

.

(3.7)

Similarly as in (3.7), we have

log

(

1− (q − 1)bνz

R2 − bνz

)

+
(q − 1)zbν

R2 − bνz
= O

(

( |q − 1|r
R− r

)2

+

( |q − 1|r
R− |q|r

)2
)

.

Recall n(r) is the number of zeros and poles of f in |z| ≤ r, counting multiplicities.
We conclude that

|Si(z)| = O





∑

|ck|<R

( |q − 1|r
R− r

)2

+

( |q − 1|r
R− |q|r

)2




= O

(

( |q − 1|r
R− r

)2

+

( |q − 1|r
R− |q|r

)2
)

n(R) (i = 2, 4).

Let R = rφ(r). We get for j = 2, 4 and |z| = r,

|Sj(z)| = O

( |q − 1|2n(R)

φ2(r)

)

.
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Now, we proceed to estimate |S3(z)| and |S5(z)|. First we claim that, for any
w ∈ C,

(3.8) w − log(1 + w) = O(|w|).
Indeed, |w − log(1 + w)| ≤ |w| + log(1 + |w|) + C1 ≤ C|w|, where C1, C are some
constants. It follows from (3.6) and (3.8) that

|S3(z)| =

∣

∣

∣

∣

∣

∣

∑

|aµ|<R

{

log

(

1 +
(q − 1)z

z − aµ

)

− (q − 1)z

z − aµ

}

∣

∣

∣

∣

∣

∣

= O





∑

|aµ|<R

∣

∣

∣

∣

(q − 1)z

z − aµ

∣

∣

∣

∣



 .

Similarly, we have

|S5(z)| = O





∑

|aµ|<R

∣

∣

∣

∣

(q − 1)bµ
z − bµ

∣

∣

∣

∣



 .

It follows the lemma is proved. �

Lemma 3.5. Let {sk} be the sequence in C. Then, when |z| = r,

∑

|sk|<R

∣

∣

∣

∣

z

z − sk

∣

∣

∣

∣

= O

(

(log r)2n(r2) log n(r2)

r

)

,

for all sufficiently large r outside a set E of finite logarithmic measure.

Proof. Given any sufficiently large r, set R = r2. Let n(R) denote the number of
the points sk that lie in |z| < R. For any z with |z| = r and |qz| + |z/q| < R, there
is an j, a positive integer, such that

ej ≤ r < ej+1.

Consequently,
e2j ≤ R < e2(j+1) and j ≤ log r < j + 1.

By applying Lemma 3.3 with dj =
e2j

j2
and mj = n(R) to the points s1, . . . , smj

, we
conclude that there exists a finite collection of closed disks D1, . . . , Dqj , whose radii

have a total sum equal to 2dj, such that if z 6∈ ∪qj
j=1Dj , then there is a permutation

of the points s1, . . . , smj
, say, ŝ1, . . . , ŝmj

, that satisfy

|z − ŝk| >
kdj
mj

,

for k = 1, 2, . . . , mj . Hence, if z 6∈ ∪qj
j=1Dj, then we have

∑

|sk|<R

r

|z − sk|
≤

mj
∑

k=1

rmj

djk
≤ rmj(1 + logmj)

dj
≤ rj2n(R)(1 + log n(R))

e2j

≤ C(log r)2n(r2) logn(r2)

r
.(3.9)

Next, we estimate the linear measure of the exceptional sets arising from the
discs in the application of Cartan lemma in the above setting. For each n, let us
define

En := {|z| : z ∈ ∪qn
k=1Dk such that e2n ≤ |z| ≤ e2(n+1)}.

It is clear that |En| ≤ 4dn = 4e2n/n2 and that

(3.10)

ˆ

En

1

t
dt ≤

ˆ

En

1

e2n
dt ≤ 4

n2
.
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If we denote E = ∪∞
n En, then the logarithmic measure of E can be deduced from

(3.10) as
ˆ

E

1

t
dt ≤

∞
∑

n=1

ˆ

En

1

t
dt ≤ 4

∞
∑

n=1

1

n2
< ∞.

Further, for any sufficiently large |z| with |z| 6∈ E, there is a j such that |z| ∈
[e2j , e2(j+1)) \ Ej . Therefore, z 6∈

⋃qj
k=1Dk and (3.9) holds. Thus the proof of the

lemma is complete. �

Proof of Theorem 2.1. By using Lemma 3.4 with φ(r) = r and Lemma 3.5, we
obtain

log
f(qz)

f(z)
= (q − 1)z

f ′(z)

f(z)
+O

( |q − 1|2m(r2)

r2

)

+O

( |q − 1|2n(r2)
r2

)

+O

(

(log r)2n(r2) log n(r2)

r

)

+O(1),(3.11)

for all sufficiently large r outside a set E of finite logarithmic measure.
Since f is of finite logarithmic order ρ, i.e.,

ρ = lim sup
r→∞

log+ T (r, f)

log log r
< 1/2,

there is an ǫ0 > 0 such that ρ < 2ρ+ 3ǫ0 < 1. Thus, we have T (r, f) < rρ+ǫ0 for all
large r. Consequently,

m(r2) ≤ T (r2, f) ≤ r2ρ+2ǫ0 , n(r2) ≤ r2ρ+2ǫ0,

for all sufficiently large r. Moreover, we have

m(r2)

r2
≤ 1

r
= o(1),

n(r2)

r2
≤ 1

r
= o(1)

and

(log r)2n(r2) logn(r2)

r
≤ (log r)3r2ρ+3ǫ0(2ρ+ 2ǫ0)

r1+ǫ0
≤ (log r)3(2ρ+ 2ǫ0)

rǫ0
= o(1),

as r goes to infinity. It follows from (3.11) that Theorem 2.1 is completely proved. �

Proof of Theorem 2.2. Let

f(z) = cos
√
z =

e
√
zi + e−

√
zi

2
.

Then f is an entire function of order 1/2. Let q be any complex number. For any
x ∈ R+, there is z such that

√
z = −√

xi and, as x → +∞,

log
f(qz)

f(z)
= log

e
√
qx + e−

√
qx

e
√
x + e−

√
x

= (
√
q − 1)

√
x+ log(1 + o(1));

and

(q − 1)z
f ′(z)

f(z)
=

(q − 1)
√
x

2

e
√
x − e−

√
x

e
√
x + e−

√
x
=

q − 1

2

√
x(1 + o(1)).

Let q ∈ C. Suppose f satisfies (2.1) in Theorem 2.1. Then we have

(
√
q − 1)

√
x+ log(1 + o(1)) =

q − 1

2

√
x(1 + o(1)) +O(1).

Dividing both sides by
√
x and letting x go to infinity, we obtain

√
q − 1 =

q − 1

2
=

(
√
q + 1)(

√
q − 1)

2
.
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The above equality holds if and only if
√
q = 1 if and only if q = 1. Thus the theorem

is proved. �

To prove our q-difference analogy of the Wiman–Valiron theorem, we need the
classical Wiman–Valiron theorem as follows.

Lemma 3.6. [9, Theorem 30] and [3, Theorem 12] Let f(z) be a transcendental
entire function and F ⊂ R

+ a set of finite logarithmic measure. Then for any
0 < δ < 1/4 and any z with |z| = r 6∈ F satisfying

|f(z)| > M(r, f)ν(r, f)δ−1/4,

we have
f (m)(z)

f(z)
=

(

ν(r, f)

z

)m

(1 + o(1)).

Remark. It is clear from the statement of the theorem that the set F only
depends on f .

Proof of Theorem 2.3. By using Theorem 2.1 and Lemma 3.6, we obtain that

f(qmz)

f(z)
= e(q

m−1)
zf ′(z)
f(z)

+O(1) = e(q
m−1)ν(r,f)(1+o(1))+O(1),

which completes the proof. �
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