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Abstract. Given a quasisymmetric homeomorphism, we introduce the concept of quasisym-

metric exponent and explore its relations to other conformal invariants. As a consequence, we

establish a necessary and sufficient condition on the equivalence of the dilatation and the maximal

dilatation of a quasisymmetric homeomorphism by using the quasisymmetric exponent. A classifi-

cation on the elements of the universal Teichmüller space is obtained by using this necessary and

sufficient condition.

1. Introduction

Throughout this paper we let R denote the real line, R its one point compacti-
fication R ∪ {∞} and H the upper half plane in R2 = R×R. A (sense preserving)
homeomorphism h from R onto itself is called quasisymmetric if there exists a con-
stant M such that

M−1 ≤
h(x+ t)− h(x)

h(x)− h(x− t)
≤M

for all numbers x ∈ R and t > 0. The above inequality is often called Ahlfors’ M-
condition. It is well known that h is quasisymmetric if and only if it is the boundary
value of a quasiconformal mapping of H onto itself. Furthermore, h is linear if and
only if it is the boundary value of a conformal (Möbius) map of H. In other words, a
homeomorphism h is quasisymmetric if and only if it has a quasiconformal extension
to the upper half plane. This extendability induces the fact that the collection of all
quasisymmetric homeomorphisms of R onto itself form a group. This feature makes
the notion of quasisymmetry very useful in the theory of Riemann surfaces as well
as in the study of one dimensional complex dynamical systems.

In order to quantify the quasisymmetry of a homeomorphism, several conformal
invariants have been introduced. It has been an interesting and important problem
for more than fifty years to investigate the relationship between the dilatationMh and
maximal dilatation Kh (see definitions below) of a quasisymmetric homeomorphism
h of the real line. From the conformal geometry point of view, the dilatation Mh

measures how much a given quasisymmetric homeomorphism changes the extremal
distance between continua on the real line R, while the maximal dilatation Kh mea-
sures how much an extremal quasiconformal extension of the given quasisymmetric
homeomorphism changes the extremal distance between continua in the upper half
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plane. It was conjectured, informally since the 1960’s, that Mh = Kh for any home-
omorphism. However, Anderson and Hinkkanen (see [3]) disproved this conjecture
by constructing a concrete example of a family of affine mappings of some parallelo-
grams. Thus, a natural question to ask is under what conditions the equality holds.
After Anderson and Hinkkanen’s work, many concepts and methods were introduced
to investigate the relation between these two quantities. This paper is also devoted
to this endeavor.

1.1. Dilatations Mh and Kh. Given a quasisymmetric homeomorphism h,
in order to quantify its quasisymmetry (or to measure how far it is from being con-
formal), we define several conformal invariants (called dilatations) for h and study
their relations. These dilatations, in one way or the other, measure how much a
homeomorphism or its extensions distort the moduli of certain curve families.

For a curve family Γ in the plane, its (conformal) modulus, denoted by mod(Γ),
is defined as

mod(Γ) = inf

ˆ

R2

ρ2 dm

where the infimum is taken over the set, denoted by adm(Γ), of all non-negative Borel
measurable functions ρ : R2 → R such that

´

γ
ρ ds ≥ 1 for every locally rectifiable

curve γ in Γ. The extremal length λ(Γ) of a curve family Γ is defined as λ(Γ) =
1/mod(Γ). The most frequently studied curve family is the one that joins two disjoint
continua A and B in a domain D, and its modulus is denoted by mod(A,B;D). We
refer the reader to [1] and [2] for basic definitions and properties about the modulus
and extremal length.

Given an orientation preserving (quasisymmetric) homeomorphism h of R onto
itself, there are two important constants associated with h. The first one, denoted
by Mh, is called the dilatation of h and is defined as

Mh = sup
mod(h(A), h(B);H)

mod(A,B;H)
,

where the supremum is taken over all pairs of disjoint nondegenerate continua A and
B on the real line. Another one, denoted by Kh, is called the maximal dilatation of
h. Let QC(h) be the class of all quasiconformal mappings f of the closed upper half
plane H = H ∪R onto itself with boundary value h. The maximal dilatation Kh is
defined as

Kh = inf{K(f) : f ∈ QC(h)},

where K(f) is the maximal dilatation of a quasiconformal mapping f ∈ QC(h) and
can be defined as

K(f) = sup
mod(f(Γ))

mod(Γ)
,

where the supremum is taken over all curve families Γ in H such that mod(f(Γ)) and
mod(Γ) are not simultaneously zero or infinity. Clearly, it follows from the definitions
that Mh−1 =Mh ≥ 1 and that Kh−1 = Kh ≥ 1. It is also easy to observe that Mh =
Kh = 1 if and only if h is linear (or the boundary value of a Möbius transformation).
A quasiconformal extension f of h onto H is called extremal if K(f) = Kh. It is well
known that there always exists at least one extremal mapping in the class QC(h)
(see [19, 20]). Thus, for a given quasisymmetric homeomorphism h, its maximal
dilatation Kh is just the maximal dilatation of an extremal quasiconformal extension
of h. This justifies the terminology and notation used here for the quantity Kh.
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We want to point out that, in some of the existing literature, the quantity Mh

defined above is called maximal dilatation of h and denoted by Kh or K0(h), while
the quantity Kh defined above has been denoted by K∗

h or K∗(h). The purpose of
introducing the new names and new notation here is to give more intuitive terms
and notation for these quantities. One should also note that the dilatation Mh can
be defined in terms of moduli of quadrilaterals with domain H and vertices on the
real line (see [3] and [24]).

1.2. Boundary dilatation. A quasisymmetric homeomorphism h from R onto
itself also determines another constant which is called the boundary dilatation of h
(see [21] and [22]). The local boundary dilatation of h at a point ζ ∈ R is defined as:

Hh(ζ) = inf
f
{K(f) : f is a QC extension of h in a neighborhood of ζ},

where the infimum is taken over all possible quasiconformal extensions f of h to
neighborhoods of ζ . The boundary dilatation of h is then defined as

Hh = sup
ζ∈R

Hh(ζ).

It is easy to see that Hh−1 = Hh. Also, as Fehlmann (see [8]) pointed out, the
supremum in the above definition is achieved, that is,

Hh = max
ζ∈R

Hh(ζ).

1.3. Relations among the dilatations. Obviously, the above defined con-
stants associated with a quasisymmetric homeomorphism h are all invariant under
Möbius transformations, and hence are often referred to as conformal invariants. It
is easy to see that they satisfy the following inequalities.

Hh ≤ Kh, Mh ≤ Kh.

However, the relationship between Hh and Mh is not clear.
It had been a long standing open question whether the conjectured relation

Mh = Kh always holds for any quasisymmetric homeomorphism, until Anderson and
Hinkkanen [3] constructed an example disproving this conjecture. Later, Wu [24] and
Yang [26] independently established a necessary condition such that Mh = Kh. In
order to state their result, we need the following definitions.

A point ζ ∈ R is called a substantial boundary point of h if Hh(ζ) = Kh, meaning
that h cannot be extended to any neighborhood of ζ without reaching the global
maximal dilatation Kh. A quasisymmetric homeomorphism h of R onto itself is said
to be induced by an affine mapping if it is the restriction to R of a map of the form
φ2 ◦ AK ◦ φ1, where AK(x + iy) = x + iKy is an affine map, while φ1 and φ2 are
conformal mappings from a rectangle {x + iy : 0 < x < a, 0 < y < b} and its image
{u + iv : 0 < u < a, 0 < v < Kb} under AK onto H, respectively. The necessary
condition for Mh = Kh established by Wu (see [24]) and Yang (see [26]) can be stated
as follows.

Theorem A. [24, 26] Let h : R → R be a quasisymmetric homeomorphism. If
Mh = Kh, then either h is induced by an affine mapping or Hh = Kh (that is, h has
a substantial boundary point).

In [24] and [26], both authors asked whether the necessary condition is also
sufficient. Shiga and Tanigawa [18] gave an implicit counterexample by proving the
existence of a homeomorphism h for which Hh = Kh and Mh < Kh. Later, Shen [16]
proved that there exists a family of quasisymmetric homeomorphisms h such that
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Mh < Kh = Hh by analyzing a concrete example constructed by Strebel. From a
totally different perspective, J. Chen and Z. Chen [5] gave a necessary and sufficient
condition for the equality Mh = Kh by using the method of quadratic differentials
and the main inequality (see [15]). This result can be stated as follows.

Theorem B. [5] Let h be a quasisymmetric homeomorphism of R and let f(z)
be an extremal quasiconformal extension of h to the upper half plane H with complex
dilatation µ(z). Then the equality Mh = Kh holds if and only if

sup
Q

Re

¨

H

µ(z)Φ′2
Q(z) dx dy = ‖µ‖∞

where the supremum is taken over all quadrilaterals Q = Q(z1, z2, z3, z4) with H
as its domain and vertices z1, z2, z3, z4 ∈ R and ΦQ(z) maps Q conformally onto a
rectangle

R = {ζ = ξ + iη : 0 ≤ ξ ≤ a, 0 ≤ η ≤ b, ab = 1}.

In a special case, Strebel (see [19]), from a geometric point of view, gave the
following necessary and sufficient condition: if h has no substantial boundary point,
then Mh = Kh if and only if h is induced by an affine mapping.

Therefore, to completely solve the converse problem of Theorem A, one needs
to find a necessary and sufficient condition for Mh = Kh when h has a substantial
boundary point. The main purpose of this paper is to do just that. For this we need
to introduce a key ingredient called quasisymmetric exponent αh (see Section 2 for
definition).

1.4. Summary. One of our main results (Theorem 1) says that for a given
quasisymmetric homeomorphism h of the real line R onto itself, we always have
αh ≤ Hh ≤ Kh and αh ≤ Mh ≤ Kh. That means the quasisymmetric exponent
can serve as a common lower bound for these three different dilatations. Based on
this fundamental result, we give a necessary and sufficient condition (Theorem 2)
for the dilatation of a quasisymmetric homeomorphism to be equal to its maximal
dilatation. That is, Mh = Kh if and only if either αh = Kh or h is induced by an
affine mapping. A classification of elements in the universal Teichmüller space can be
obtained by using this necessary and sufficient condition (Theorem 3). Furthermore,
we also explore some connection between the quasiextremal distance (QED) constant
and the quasisymmetric exponent.

This paper is organized as follows. In Section 2, we introduce the concept of
quasisymmetric exponent αh for a quasisymmetric homeomorphism. In Section 3,
we compare various conformal invariants and show that the quasisymmtric exponent
is the smallest among all of them. Section 4 is devoted to the proof of a necessary and
sufficient condition for the equality Mh = Kh and its corollaries. In Section 5 some
further applications of the main results will be given. One is to establish a relation
between the quasiconformal reflection constant and the quasiextremal distance (or
QED) constant of a Jordan domain in the plane. Another is to give a classification of
all quasisymmetric homeomorphisms and the elements in the universal Teichmüller
space.

2. Quasisymmetric exponent

Recall that quasisymmetric homeomorphisms were introduced by Beurling and
Ahlfors [4] as the boundary values of quasiconformal self mappings of the upper half
plane. They showed that a homeomorphism of R is quasisymmetric if and only
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if it satisfies the well known M-condition. Later, this very important concept was
extended to embeddings in Euclidean spaces and more general metric spaces (see, for
example, [11, 23]). To motivate the concept of quasisymmetric exponent, we recall
the following general definition and basic properties for quasisymmetric maps.

Note that the quasisymmetry of a homeomorphism of R is traditionally defined
by using Ahlfors’ M-condition. In the general metric space setting, following Tukia
and Väisälä [23], an embedding h : X → Y (in metric spaces) is called quasisymmetric
(or QS), if there is a homeomorphism η : [0,∞) → [0,∞) such that

|c− b|

|b− a|
≤ t =⇒

|h(c)− h(b)|

|h(b)− h(a)|
≤ η(t)

for all distinct points a, b, c ∈ X and for all t > 0. In this case we also say f is
η-QS. As proved by Tukia and Väisälä [23], these two definitions are equivalent in
R. From the definition of η-QS, h is quasisymmetric if it distorts relative distances
by a bounded amount controlled by the distortion function η. It is well known that,
in the Euclidean space setting, one can always take the distortion function in the
following special form (see [11, 23]):

η(t) = Cmax{tλ, t1/λ},

where C ≥ 1 and λ ≥ 1 are constants depending only on the quasisymmetric data of
h (namely, the original distortion function).

Thus, to quantify the quasisymmetry of a quasisymmetric homeomorphism, it is
natural for us to introduce the concept of quasisymmetric exponent as follows.

Definition 1. Suppose h is a quasisymmetric homeomorphism of R onto itself.
For any given x ∈ R, the local quasisymmetric exponent of h at x, denoted by αh(x),
is defined as

αh(x) = inf λ,

where the infimum is taken over all exponent λ ≥ 1 such that there exist constant
M and a neighborhood N of x with the property that

|c− b|

|b− a|
≤ t =⇒

|h(c)− h(b)|

|h(b)− h(a)|
≤M max{tλ, t

1

λ}

for all distinct triples a, b, c ∈ N . Furthermore, the quasisymmetric exponent of h is
defined as

αh = sup
x∈R

αh(x).

Note that, like the other constants with respect to a quasisymmetric homeomor-
phism h, the quasisymmetric exponents αh(x) and αh are also invariant under Möbius
transformations. In this paper, we establish some fundamental relations among these
constants.

Before proceeding to the main results, we want to point out one major advantage
of the quasisymmetric exponent. It is local and easy to estimate without using
quasiconformal extensions or moduli of curve families. As a result, many existing
counterexamples are easy consequences of our main results.

3. Comparison between the quasisymmetric exponent and dilatations

In this section, we will focus on establishing some fundamental relations among
the four constants αh, Hh,Mh and Kh for any given quasisymmetric homeomorphism
h. In particular, we show that the quasisymmetric exponent αh is the smallest among
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these invariants. The common ground for such comparisons lies in the fact, which
will be established here, that these constants dictate the change of cross-ratios under
h in a similar fashion.

3.1. The Teichmüller function Ψ(t). To estimate the moduli of certain
curve families, the Teichmüller function Ψ(t) associated with the Teichmüller ring
plays an important role. Here we state its definition and some basic properties.
More details can be found in [1]. Recall that for any domain D and two disjoint
nondegenerate continua A and B in D, we let mod(A,B;D) denote the conformal
modulus of the curve family joining A and B in D. The Teichmüller function Ψ(t)
(t > 0) is determined by

mod([−1, 0], [t,∞];C) =
2π

lnΨ(t)
,

where [a, b] denotes the line segment joining a and b. It is well known that Ψ(t) is
strictly increasing and that

lim
t→∞

Ψ(t)

t
= 16, lim

t→∞

lnΨ(t)

ln t
= 1, lim

t→0

2π

lnΨ(t)
= ∞.

These limits will be used frequently without mentioning in this paper.

3.2. Change of cross-ratios under h. In order to compare the quasisymmetric
exponent with the dilatations Mh and Hh, we need the following preliminary results
which are also interesting on their own. They exhibit how these constants dictate
the change of cross-ratios under a homeomorphism. In what follows, we let h be a
quasisymmetric homeomorphism of R. For any point a ∈ R its image under h will
be denoted by a′. The cross-ratio of four distinct points a, b, c, d ∈ R is defined as

[a, b, c, d] =
|c− b||d− a|

|b− a||d− c|
.

Conventionally, we shall always pass to subsequences if necessary to make the limits
involved exist (finite or infinite).

Lemma 1. Let h be a quasisymmetric homeomorphism of R and let an < bn < cn
be sequences of points in R all converging to the origin with τn = |cn−bn|/|bn−an| →
∞ or 0 as n→ ∞. Then, for τ ′n = |c′n − b′n|/|b

′

n − a′n|, we have

(1)
1

αh
≤ lim

n→∞

ln τn
ln τ ′n

≤ αh

and

(2)
1

Hh
≤ lim

n→∞

ln τn
ln τ ′n

≤ Hh,
1

Mh
≤ lim

n→∞

ln τn
ln τ ′n

≤Mh.

Proof. Since the constants αh, Hh,Mh are defined from totally different perspec-
tives, these inequalities need to be treated differently as well. For the proof of (1),
by considering 1/τn if needed, we may assume that τn = |cn − bn|/|bn − an| → ∞.
For a fixed ε > 0, by the definition of αh, there exists a constant M <∞ such that

1

τ ′n
≤ M

(

1

τn

)
1

α
h
+ε
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for sufficiently large n. Thus it follows that

lim
n→∞

ln τn
ln τ ′n

≤ lim
n→∞

ln 1
τn

lnM + 1
αh+ε

ln 1
τn

= αh + ε.

On the other hand,

τ ′n ≤Mταh+ε
n =⇒ lim

n→∞

ln τ ′n
ln τn

≤ αh + ε.

Thus, letting ε→ 0 yields the desired inequalities for αh.
For the proof of the inequalities for Hh, first assume that τn → 0. Choose a

sequence dn → 0 such that

lim
n→∞

∣

∣

∣

∣

dn − an
dn − cn

∣

∣

∣

∣

= 1, lim
n→∞

|dn|

max{|an|, |bn|, |cn|}
= ∞.

For example, it is easy to verify that the sequence

dn =
√

max{|an|, |bn|, |cn|}

has the desired properties. Let d′n = h(dn). Since h is a quasisymmetric homeomor-
phism with h(0) = 0, it follows that

lim
n→∞

d′n = 0, lim
n→∞

|d′n|

max{|a′n|, |b
′

n|, |c
′

n|}
= ∞.

Furthermore, by quasisymmetry again,

lim
n→∞

∣

∣

∣

∣

cn − an
dn − cn

∣

∣

∣

∣

= 0 =⇒ lim
n→∞

∣

∣

∣

∣

c′n − a′n
d′n − c′n

∣

∣

∣

∣

= 0.

Thus, it follows that

lim
n→∞

∣

∣

∣

∣

d′n − a′n
d′n − c′n

∣

∣

∣

∣

= 1.

We shall derive the desired inequalities in (2) by using various modulus estimates. To
this end, we denote the line segments [an, bn] and [cn, dn] by An and Bn, respectively,
and their images under h by A′

n and B′

n, respectively.
By the definition of the boundary dilatation Hh, for any fixed ε > 0, there

exists a neighborhood U of 0 in the complex plane, such that h has a quasiconformal
extension f in U whose maximal dilatation in U is less than or equal to Hh + ε. Let
U ′ = f(U). By the quasi-invariance of modulus, it follows that

(3)
1

Hh + ε
≤

mod(A′

n, B
′

n;U
′)

mod(An, Bn;U)
≤ Hh + ε.

Fix a circular ring A(0; r, R) = {z : 0 < r < |z| < R} in U . Since an, bn, cn, dn → 0
as n→ ∞, for sufficiently large n, each curve joining An and Bn in C either stays in
U or contains a subarc that joins the circles |z| = r and |z| = R in A(0; r, R). Thus,
using some basic properties of the modulus, one can derive that

mod(An, Bn;U) ≤ mod(An, Bn;C) ≤ mod(An, Bn;U) +
2π

ln R
r

.

Since

mod(An, Bn;C) =
2π

lnΨ
(

τn

∣

∣

∣

dn−an
dn−cn

∣

∣

∣

) → ∞
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as n→ ∞, it follows that

lim
n→∞

mod(An, Bn;C)

mod(An, Bn;U)
= 1.

Similarly, we have

lim
n→∞

mod(A′

n, B
′

n;C)

mod(A′

n, B
′

n;U
′)
= 1.

Therefore, by considering the Teichmüller ring whose complementary components
are An and Bn and its conjugate ring, it follows that

lim
n→∞

mod(A′

n, B
′

n;U
′)

mod(An, Bn;U)
= lim

n→∞

mod(A′

n, B
′

n;C)

mod(An, Bn;C)
= lim

n→∞

2π/ lnΨ( 1
τn
)

2π/ lnΨ( 1
τ ′n
)
= lim

n→∞

ln 1
τ ′n

ln 1
τn

.

This together with (3) yields that

1

Hh + ε
≤ lim

n→∞

ln τn
ln τ ′n

≤ Hh + ε,

and the first part of (2) follows by letting ε → 0.
Next assume that τn → ∞. In this case, we let

τ̃n =
1

τn
=

|an − bn|

|cn − bn|
.

Then τ̃n → 0. With An and Bn being replaced by An = [−dn, an] and Bn = [bn, cn],
respectively, the above argument shows that

1

Hh + ε
≤ lim

n→∞

ln τ̃n
ln τ̃ ′n

≤ Hh + ε,

which also yields the desired inequalities by letting ε → 0.
Finally, we prove the inequalities for Mh in (2). Similar to the proof of the

inequalities for Hh above, we only need to consider the case when τn → 0. For
this, we choose the same sequence {dn}, and let An = [an, bn], Bn = [cn, dn], d

′

n =
h(dn), A

′

n = h(An) and B′

n = h(Bn). Using some basic properties of the Teichmüller
ring and Teichmüller function mentioned above, one deduces that

lim
n→∞

mod(A′

n, B
′

n;C)

mod(An, Bn;C)
= lim

n→∞

2π/ lnΨ( 1
τn
)

2π/ lnΨ( 1
τ ′n
)
= lim

n→∞

ln 1
τ ′n

ln 1
τn

.

On the other hand, by definition of the dilatation Mh, it follows that

1

Mh
≤

mod(A′

n, B
′

n;C)

mod(An, Bn;C)
≤Mh.

Therefore

1

Mh
≤ lim

n→∞

ln 1
τ ′n

ln 1
τn

≤ Mh.

This completes the proof of Lemma 1. �

Note that τn can be thought of as the cross-ratio [an, bn, cn,∞] with the fourth
point at ∞. The next result shows how the constants αh, Hh and Mh control the
change of the cross-ratio of four finite points all converging to the origin.
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Lemma 2. Let h be a quasisymmetric homeomorphism of R and let an <
bn < cn < dn be sequences of points in R all converging to the origin with tn =
[an, bn, cn, dn] → ∞ or 0 as n→ ∞. Then, for t′n = [a′n, b

′

n, c
′

n, d
′

n], we have

1

αh
≤ lim

n→∞

ln tn
ln t′n

≤ αh.

Furthermore, as in Lemma 1, the same inequalities hold with αh being replaced by
Hh or Mh.

Proof. Without loss of generality, we may assume tn → ∞. By switching the roles
of [an, bn] and [cn, dn] if needed, we may further assume that rn = |bn − an|/|dn − cn|
is bounded. Then

(4) tn =
|cn − bn||dn − an|

|bn − an||dn − cn|
= τn(1 + rn + σn),

where

τn =
|cn − bn|

|bn − an|
, σn =

|cn − bn|

|dn − cn|
= rnτn.

We let t′n, τ
′

n, σ
′

n, r
′

n denote the corresponding quantities as determined by a′n, b
′

n, c
′

n, d
′

n.
Since rn is bounded, by (4) and the assumption that tn → ∞, it follows that

τn → ∞. Thus we only need to consider two cases: σn is bounded or σn → ∞.
If σn is bounded, σ′

n is also bounded due to the quasisymmetry of h. Thus, (4)
implies that

lim
n→∞

ln tn
ln t′n

= lim
n→∞

ln τn
ln τ ′n

,

which, together with Lemma 1 yields the desired inequalities.
Finally, assume that σn → ∞. Then, it follows again from (4) that

tn
τnσn

=
1 + rn + σn

σn
→ 1.

Thus, we have

lim
n→∞

ln tn
ln t′n

= lim
n→∞

ln τn + ln σn
ln τ ′n + ln σ′

n

.

It is easy to see that the desired inequalities follow from this and Lemma 1 applied
to both τn and σn. �

3.3. Comparison of αh with dilatations. Now we are ready to compare the
quasisymmetric exponent αh with the various dilatations Hh, Mh, and Kh of h. The
first result states that the quasisymmetric exponent αh is always a lower bound for
the boundary dilatation Hh.

Proposition 1. For any quasisymmetric homeomorphism h of the real line R
onto itself, αh ≤ Hh.

Proof. By definition of the quasisymmetric exponent αh, it suffices to show that
for each fixed x ∈ R, αh(x) ≤ Hh. By composing with Möbius transformations if
necessary, we may assume that x = 0 and h(0) = 0. Hence we will focus on the proof
of αh(0) ≤ Hh. To this end, we only need to show that, for any given ε > 0, there
exist a neighborhood N of 0 and a constant M <∞ such that

(5)

∣

∣

∣

∣

c− b

b− a

∣

∣

∣

∣

≤ t =⇒

∣

∣

∣

∣

c′ − b′

b′ − a′

∣

∣

∣

∣

≤M max{t
1

H
h
+ε , tHh+ε}
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for any distinct triplets a, b, c ∈ N , where a′, b′, c′ denote the images of a, b, c, respec-
tively.

Suppose (5) is not true. Then there exist a constant ε > 0 and sequences of
points an, bn, cn → 0 as n→ ∞ such that

(6)

∣

∣

∣

c′n−b′n
b′n−a′n

∣

∣

∣

∣

∣

∣

cn−bn
bn−an

∣

∣

∣

1

Hh+ε

→ ∞ and

∣

∣

∣

c′n−b′n
b′n−a′n

∣

∣

∣

∣

∣

∣

cn−bn
bn−an

∣

∣

∣

Hh+ε
→ ∞

as n→ ∞. Let

τn =

∣

∣

∣

∣

cn − bn
bn − an

∣

∣

∣

∣

, τ ′n =

∣

∣

∣

∣

c′n − b′n
b′n − a′n

∣

∣

∣

∣

.

Taking the logarithm in (6) yields

(7)
1

Hh + ε
ln

1

τn
− ln

1

τ ′n
→ ∞ and ln τ ′n − (Hh + ε) ln τn → ∞.

In order to derive a contradiction with (7), by passing to subsequences if nec-
essary, we may assume that τn → τ and τ ′n → τ ′. There are three cases to be
considered: 0 < τ <∞, τ = 0 and τ = ∞.

For the case 0 < τ <∞, since h is a quasisymmetric homeomorphism, it follows
that 0 < τ ′ <∞. Thus, letting n→ ∞ in (7) yields a contradiction in this case.

To deal with the case τ = 0 or τ = ∞, we observe that, by replacing τn by 1/τn,
we can assume that an < cn. We shall use Lemma 1 to derive that

(8)
1

Hh

≤ lim
n→∞

ln τn
ln τ ′n

≤ Hh,

which immediately leads to a contradiction with (7). To this end, we need to consider
three possible positions of bn relative to an and cn. First assume that an < bn < cn.
Then (8) follows immediately from Lemma 1.

Next assume that an < cn < bn. Then

τn =
|cn − bn|

|bn − an|
=

1

1 + σ−1
n

,

where

σn =
|bn − cn|

|cn − an|
→ 0

since 1 > τn → 0. Thus it follows that

lim
n→∞

ln τn
ln τ ′n

= lim
n→∞

ln σn
ln σ′

n

.

Applying Lemma 1 to the sequences an < cn < bn (and the corresponding σn), we
obtain (8) as desired.

Finally, assume that bn < an < cn. Using a similar argument as above and
applying Lemma 1 to the sequences bn < an < cn, one can derive inequalities (8).
This completes the proof of Proposition 1. �

The above argument can be modified to establish the following relation between
the quasisymmetric exponent αh and the dilatation Mh for a quasisymmetric home-
omorphism. This is somewhat surprising because αh is a local constant while Mh

measures the global distortion of modulus by h.

Proposition 2. For any quasisymmetric homeomorphism h of the real line R
onto itself, αh ≤Mh
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Proof. The idea and set up are the same as in the proof of Proposition 1. So
we will use exactly the same notation as above and replace the boundary dilatation
Hh by the dilatation Mh of a quasisymmetric homeomorphism. Thus, in the place of
(7), we have

(9)
1

Mh + ε
ln

1

τn
− ln

1

τ ′n
→ ∞ and ln τ ′n − (Mh + ε) ln τn → ∞

as n→ ∞.
Applying the inequalities for Mh established in Lemma 1, the same argument as

in the proof of Proposition 1 yields a contradiction with (9) as desired. �

Combining Propositions 1 and 2, we obtain the following relationship among the
four important conformal invariants αh,Mh, Hh and Kh of a homeomorphism.

Theorem 1. For any quasisymmetric homeomorphism h of the real line R onto
itself, we have

αh ≤ Hh ≤ Kh, αh ≤Mh ≤ Kh.

These estimates will play a crucial role in establishing a necessary and sufficient
condition for the equality Mh = Kh.

4. A necessary and sufficient condition for Mh = Kh

In this section we prove the following main result and derive some corollaries.

Theorem 2. Suppose h is a quasisymmetric homeomorphism of the real line
R onto itself. Then Mh = Kh if and only if αh = Kh or h is induced by an affine
mapping.

As pointed out in the introduction, the converse of Theorem A is not true, that is
the equality Hh = Kh (or existence of a substantial boundary point) is not sufficient
to guarantee that Mh = Kh. By Theorem 2, however, if one replaces the boundary
dilatation Hh by the quasisymmetric exponent αh, then the condition in Theorem A
becomes necessary and sufficient for the equality Mh = Kh.

4.1. Degenerate and non-degenerate cases for Mh. The proof of Theorem
2 involves delicate analysis on how the dilatation Mh is attained. Before proceeding,
we introduce the following terminology. Recall that, for a quasisymmetric homeo-
morphism h of R, the dilatation Mh is defined as

Mh = sup
mod(h(A), h(B);H)

mod(A,B;H)
,

where the supremum is taken over all pairs of disjoint nondegenerate continua A
and B on R. Fix a sequence of pairs An = [an, bn] and Bn = [cn, dn] of disjoint
non-degenerate continua such that

Mh = lim
n→∞

mod(h(An), h(Bn);H)

mod(An, Bn;H)
.

By passing to subsequences, we may assume that An → A and Bn → B. Depending
on the sizes and positions of the limit sets A and B, the following are the only possible
ways in which Mh can be attained.

We say that Mh is attained by non-degenerate continua if the limit sets A and
B are disjoint non-degenerate continua. In this case, by continuity of the modulus,
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there exist a pair of disjoint nondegenerate continua A and B on R such that

Mh =
mod(h(A), h(B);H)

mod(A,B;H)
.

We say that Mh is attained by degenerate continua if one of the limit sets reduces to
a point or A ∩ B 6= ∅. In this case, there are sequences of points an → a, bn → b,
cn → c, dn → d such that

(10) Mh = lim
n→∞

mod([a′n, b
′

n], [c
′

n, d
′

n];H)

mod([an, bn], [cn, dn];H)

and such that at least two of the limit points a, b, c, d coincide, where a′n, b
′

n, c
′

n, d
′

n

are the images of an, bn, cn, dn under h. In the degenerate case, we say it is totally
degenerate if the cross-ratios

tn = [an, bn, cn, dn] =
|cn − bn||dn − an|

|bn − an||dn − cn|
→ 0 or ∞

as n → ∞. We say it is pseudo-degenerate if tn = [an, bn, cn, dn] → t 6= 0,∞ as
n→ ∞. Note that these cases may or may not be mutually exclusive.

4.2. Proof of Theorem 2. For the sufficiency, if αh = Kh, it follows imme-
diately from Theorem 1 that Mh = Kh. If h is induced by an affine mapping, it is
easy to see that Mh = Kh as well because the affine map itself is an extremal QC
extension of h.

For the proof of necessity in Theorem 2, let Mh = Kh. We need to show that
either h is induced by an affine map or αh = Kh. This will be done by analyzing the
three cases on how Mh is attained: non-degenerate case, totally degenerate case, and
pseudo-degenerate case as defined above. In the non-degenerate case and pseudo-
degenerate case, we shall show that h is induced by an affine map. In the totally
degenerate case, we derive that Mh ≤ αh. This together with Theorem 1 and the
equality Mh = Kh yields that αh = Kh as desired.

4.3. Non-degenerate case for Mh. In this case, Mh is attained by non-
degenerate continua, that is, there exist a pair of disjoint nondegenerate continua A
and B on R such that

Mh =
mod(h(A), h(B);H)

mod(A,B;H)
.

Then, by the proof of Theorem A (see [26]), the equality Mh = Kh implies that h is
induced by an affine map.

4.4. Reduction of degenerate case. To treat the totally degenerate case and
pseudo-degenerate case efficiently, we first make a reduction on the general degenerate
case for Mh. Assume that Mh is attained by degenerate continua. Then there are
sequences of points an → a, bn → b, cn → c, dn → d such that (10) holds and that
at least two of the limit points a, b, c, d coincide.

According to the possible positions of the limit points a, b, c, d, there are four
degenerate cases to be considered:

(1) a = b and a, c, d distinct;
(2) a = b, c = d and a 6= c;
(3) a = b = c 6= d;
(4) a = b = c = d.
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However, due to the detailed analysis done in the proof of Theorem A in [26], one
concludes that in all the degenerate cases one can choose sequences an < bn < cn <
dn, all converging to the same point, say the origin, such that (10) holds. Thus, for
the remainder of the proof, we assume that such sequences have been chosen.

4.5. Totally degenerate case. In this case, we have sequences an < bn < cn <
dn, all converging to the origin, such that (10) holds and that

tn = [an, bn, cn, dn] =
|cn − bn||dn − an|

|bn − an||dn − cn|
→ 0 or ∞.

And let t′n = [a′n, b
′

n, c
′

n, d
′

n].
First, assume tn → ∞. In this case, t′n → ∞ as well due to the quasisymmetry

of h. Thus, by Lemma 2, it follows that

Mh = lim
n→∞

mod([a′n, b
′

n], [c
′

n, d
′

n];C)

mod([an, bn], [cn, dn];C)
= lim

n→∞

2π
lnΨ(t′n)

2π
lnΨ(tn)

= lim
n→∞

ln tn
ln t′n

≤ αh.

Hence in this case we have Mh ≤ αh ≤ Kh.
Next, assume tn → 0. By considering the conjugate quadrilateral of Q(an, bn, cn,

dn), we obtain that

Mh = lim
n→∞

1/mod([an, bn], [cn, dn];C)

1/mod([a′n, b
′

n], [c
′

n, d
′

n];C)
= lim

n→∞

2π
lnΨ(1/tn)

2π
lnΨ(1/t′n)

.

Appealing to Lemma 2 again yields that

Mh = lim
n→∞

ln(1/t′n)

ln(1/tn)
≤ αh ≤ Kh.

Thus, in the totally degenerate case, we have Mh ≤ αh ≤ Kh. Therefore, the equality
Mh = Kh yields αh = Kh as desired.

4.6. Pseudo-degenerate case. In this case, there exist sequences an < bn <
cn < dn, all converging to the origin, such that (10) holds and that

tn = [an, bn, cn, dn] → t, t′n = [a′n, b
′

n, c
′

n, d
′

n] → t′

as n→ ∞, where the limits t and t′ are finite and positive. Thus it follows that

Mh = lim
n→∞

mod([a′n, b
′

n], [c
′

n, d
′

n];C)

mod([an, bn], [cn, dn];C)
= lim

n→∞

2π
lnΨ(t′n)

2π
lnΨ(tn)

=
lnΨ(t)

lnΨ(t′)
.

We will use a compactness argument to show that there exists a quasisymmetric
homeomorphism g of R such that

Mg =Mh, Kg = Kh

and that Mg is attained by non-degenerate continua.
For this we fix Möbius transformations ϕn and ψn such that

ϕn(an) = −1, ϕn(bn) = 0, ϕn(cn) = tn, ϕn(dn) = ∞

and that

ψn(a
′

n) = −1, ψn(b
′

n) = 0, ψn(c
′

n) = t′n, ψn(d
′

n) = ∞.

For n = 1, 2, . . ., let

gn = ψn ◦ h ◦ ϕ−1
n .
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Then gn fixes −1, 0 and ∞, and gn(tn) = t′n. Furthermore, by the Möbius invariance
of Mh and Kh, it follows that

Mgn =Mh and Kgn = Kh

for any n ≥ 1. Also we have Hgn = Hh. Next, let fn be an extremal quasiconformal
extension of gn to C. Due to the compactness of the family {fn}, we conclude (by
passing to a subsequence if necessary) that fn converges uniformly (in the spherical
metric) to a quasiconformal mapping f . Denote the restriction of f to the real line
by g. Then, g also fixes −1, 0,∞ and g(t) = t′. Moreover, it follows from the uniform
convergence that

Mg = lim
n→∞

Mgn =Mh, Kg = Kh.

This yields that Mg is attained by the non-degenerate continua [−1, 0] and [t,∞].
Now assume that the equalityMh = Kh holds. Then we haveMg = Kg. Applying

the non-degenerate case treated above to the quasisymmetric homeomorphism g, we
conclude that g is induced by an affine map. Hence Hg < Kg. This means that g is a
Strebel point in the universal Teichmüller space (see, for example, [13]). Furthermore,
since the set of Strebel points is open in the universal Teichmüller space (see [13])
and gn = ψn ◦ h ◦ ϕ

−1
n → g, it follows that gn (for large n), and hence h, is a Strebel

point as well. Thus, h does not have a substantial boundary point. Therefore, by
Theorem A, the equality Mh = Kh implies that h is induced by an affine map. This
completes the proof of Theorem 2.

4.7. Remark. The above proof shows that, in the totally degenerate case where
the cross ratio tn = [an, bn, cn, dn] converges to 0 or ∞, we have Mh ≤ αh. Combining
this with Proposition 2, it follows that Mh = αh. This reveals an intimate relation
between the dilatation Mh and quasisymmetric exponent αh of a homeomorphism h.

4.8. Corollaries. We conclude this section by deriving several corollaries from
the above results. Combining Theorem 2 and the proof of Theorem B (or its degen-
erate case considered in [6]), we obtain the following equivalent conditions for the
non-trivial case when h is not induced by an affine map.

Corollary 1. Suppose h is a quasisymmetric homeomorphism of the real line R
onto itself. If h is not induced by affine mapping, then the following conditions are
all equivalent:

(1) αh = Kh.
(2) Mh = Kh.
(3) There exists an extremal quasiconformal extension of h whose complex di-

latation µ satisfies

lim
n→∞

Re
˜

H
µ(z)Φ′2

Qn
(z) dx dy

˜

H
|µ(z)Φ′2

Qn
(z)| dx dy

= ‖µ‖∞

where ΦQn
maps a degenerating topological quadrilateral sequence Qn =

Q(zn1 , z
n
2 , z

n
3 , z

n
4 ) conformally onto a rectangle

Rn = {ζ = ξ + iη : 0 < ξ < 1, 0 < η < bn}.

Next, we illustrate how the above results can be used to determine whether the
two dilatations Mh and Kh are the same for a given homeomorphism h. First we
consider the case when αh = 1. The following Corollary can be derived easily from
Theorem 2.
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Corollary 2. Let h be a quasisymmetric homeomorphism of the real line R
onto itself which is not Möbius and not induced by an affine map. If αh = 1, then
Mh < Kh

This corollary looks simple. But it can be applied to a variety of examples. One
of them is the following well known Strebel example:

h(x) =

{

Kx, x ≥ 0;

x, x < 0

for some K > 1. It is shown that (see [16, 21])

f(z) = K1− 1

π
arg zz

is an extremal quasiconformal extension of h onto H and that

Hh = Kh = 1 +
1

2π2
ln2K +

1

π
lnK

√

1 +
1

4π2 ln2K
.

Using these and some sophisticated calculation, Shen [16] showed that Mh < Kh for
this h. On the other hand, it is easy to see that the quasisymmetric exponent of
the above h is αh = 1. Thus it follows immediately from Theorem 2 (or the above
corollary) that Mh < Kh.

For a wider class of examples, we introduce the concept of locally linear homeo-
morphism.

Definition 2. A homeomorphism h of R onto itself is said to be locally linear if
for any x ∈ R, there exist a left side neighborhood U−(x) and right side neighborhood
U+(x), such that h is a linear function in both U−(x) and U+(x).

Apparently, any piecewise linear homeomorphism is locally linear. In particu-
lar, Strebel’s example is locally linear. It is easy to see that for a locally linear
homeomorphism h, we always have αh = 1. Thus the following result follows.

Corollary 3. If h is a locally linear homeomorphism other than a Möbius map,
then Mh < Kh.

Finally, we consider the other end of the spectrum for αh: αh = Kh. The following
result follows directly from Proposition 1.

Corollary 4. If αh = Kh, then h has a substantial boundary point.

However, as illustrated by the above Strebel example, the converse of this result
is not true. It shows that substantial boundary points can occur even when αh = 1.

5. Applications

We conclude this paper with two more applications of the above results. One is
an attempt to classify elements in the universal Teichmüller space. The other is to
estimate some domain constants.

5.1. Classification of quasisymmetric homeomorphisms. Consider the
set of all quasisymmetric homeomorphisms of R onto itself. Two homeomorphisms
h1 and h2 are called equivalent if there exists some conformal automorphism φ of
the extended complex plane C such that h1 = h2 ◦ φ. The set of equivalent classes
is known as the universal Bers’ Teichmüller space T (see, for example, [14]). By
Earle and Li [7], a quasisymmetric homeomorphism (or its equivalence class) in the
universal Teichmüller space is called a Strebel point if Hh < Kh. Following a result
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of Lakic [13], the set of Strebel points is open and dense in the universal Teichmüller
space T . It is obvious that a quasisymmetric homeomorphism h is not a Strebel
point if and only if it has a substantial boundary point. It is also well known that
(see, for example, [19, 20]) a quasisymmetric homeomorphism h induced by an affine
mapping is a Strebel point.

A classification of all quasisymmetric homeomorphisms can be obtained by using
the above results. By Theorem 1 and Theorem 2, if αh = Kh, then all the four
constants αh, Hh,Mh and Kh are equal. We call a quasisymmetric homeomorphism
having this property an essential quasisymmetric homeomorphism. The following
result follows easily from above discussion.

Theorem 3. Any quasisymmetric homeomorphism h of the real line R onto
itself belongs to one and only one of the following classes.

(1) αh = Kh (that is, h is an essential quasisymmetric homeomorphism);
(2) αh < Kh:

(2.1) Hh = Kh (h has a substantial boundary point).
(2.2) Hh < Kh (h is a Strebel point).

Since Hh < Kh = Mh for any affine map, a quasisymmetric homeomorphism
induced by an affine map is not an essential quasisymmetric homeomorphism and it
belongs to class (2.2). While the Strebel’s example belongs to class (2.1), an essential
quasisymmetric homeomorphism is given by the following example. For any α ≥ 1,
let

h(x) =

{

xα, x ≥ 0;

−|x|α, x < 0.

Then h is a quasisymmetric homeomorphism with quasisymmetric exponent αh = α.
Note that h is the boundary value of the quasiconformal map f(z) = |z|α−1z. Thus
Kh = α and h is an essential quasisymmetric homeomorphism.

5.2. QED constants. For a Jordan domain Ω in the complex plane, consider
the following quasiextremal distance (or QED) constant introduced by Yang [27]:

M(Ω) = sup
mod(A,B;C)

mod(A,B; Ω)
,

where the supremum is taken over all pairs of disjoint continua A andB in Ω such that
mod(A,B;C) and mod(A,B; Ω) are not simultaneously zero or infinity. A domain
Ω is called a QED domain if its QED constant M(Ω) is finite. QED domains were
first introduced by Gehring and Martio (see [9] ) in connection with the theory
of quasiconformal mappings, and later studied by many others (see [12, 27], etc).
Quasi-extremal distance constant reflects the geometric properties of domain Ω and
measures how far Ω is from being a disk. It was proved in [9] that a finitely connected
domain Ω is a QED domain if and only if Ω is a quasicircle domain.

There are two other closely related domain constants. One is the quasiconformal
reflection constant, define as

R(Ω) = inf{K(f) : f is a quasiconformal reflection in ∂Ω}.

The other, called the boundary QED constant, is defined as

Mb(Ω) = sup

{

mod(A,B;C)

mod(A,B; Ω)
: for all pairs A and B in ∂Ω

}

.
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It is well known that [27]

2 ≤ Mb(Ω) ≤M(Ω) ≤ 1 +R(Ω).

The question of when the above equalities hold has attracted many authors’ attention
(see, for example, [10, 17, 25, 28, 29]). The connection between these domain con-
stants and the conformal invariants of a homeomorphism studied above is established
through a homeomorphism induced by a Jordan domain.

For a Jordan domain Ω in the extended complex plane C, let f1 and f2 map Ω and
Ω∗ = C\Ω conformally onto upper half plane H and lower half plane H∗, respectively.
Extending f1 and f2 to the boundary ∂Ω and ∂Ω∗, one can define hΩ = f2 ◦ f

−1
1 |R as

the sewing mapping of the domains Ω and Ω∗. We call hΩ a homeomorphism induced
by Ω. It is easy to see that

R(Ω) = R(Ω∗) = KhΩ

and

Mb(Ω) ≥ 1 +MhΩ
.

Combining this with Theorem 2, we obtain the following sufficient condition for
Mb(Ω) =M(Ω) and M(Ω) = 1 +R(Ω).

Theorem 4. Let hΩ be a homeomorphism of R induced by a Jordan domain Ω.
Then Mb(Ω) =M(Ω) = 1 +R(Ω) if αhΩ

= KhΩ
.

However, whether the condition is necessary remains open.
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