
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 41, 2016, 253–263

COMPLEX GEODESICS,
THEIR BOUNDARY REGULARITY, AND
A HARDY–LITTLEWOOD-TYPE LEMMA

Gautam Bharali

Indian Institute of Science, Department of Mathematics
Bangalore 560012, India; bharali@math.iisc.ernet.in

Abstract. We begin by giving an example of a smoothly bounded convex domain that has

complex geodesics that do not extend continuously up to ∂D. This example suggests that continuity

at the boundary of the complex geodesics of a convex domain Ω ⋐ C
n, n ≥ 2, is affected by the

extent to which ∂Ω curves or bends at each boundary point. We provide a sufficient condition to this

effect (on C1-smoothly bounded convex domains), which admits domains having boundary points at

which the boundary is infinitely flat. Along the way, we establish a Hardy–Littlewood-type lemma

that might be of independent interest.

1. Introduction

Let Ω be a bounded domain in C
n and let D denote the open unit disc centered

at 0 ∈ C. A holomorphic map f : D → Ω is called a complex geodesic of Ω if
it is an isometry for the Kobayashi distances on D and Ω (since Ω is bounded,
the Kobayashi pseudodistance on Ω is a true distance). These objects provide the
primary motivation for this work. Along the way, we prove a result in one complex
variable that arose from our need for a type of Hardy–Littlewood lemma on D. Since
the latter topic is familiar to a large number of readers, we defer its discussion to
Section 2.

A fundamental theorem about the existence of complex geodesics is the following
result:

Result 1.1. (Lempert, [11]) Let Ω be a bounded strictly convex domain in C
n

with C3-smooth boundary.

(a) Given any two distinct points z1, z2 ∈ Ω, there exists a complex geodesic of
Ω whose image contains z1 and z2.

(b) If, furthermore, Ω is strongly convex, then every complex geodesic f : D → Ω
extends to a map of class C1(D).

A domain Ω is said to be strictly convex if for any two points z1, z2 ∈ Ω the open
segment {tz1 + (1 − t)z2 : 0 < t < 1} ⊂ Ω. The strongly convex domains form a
proper subclass of the class of strictly convex domains: a convex domain Ω is said to
be strongly convex if it has a C2-smooth boundary and the second fundamental form
of ∂Ω is strictly positive definite.

The analogue of part (a) of Result 1.1 for all convex domains in general was
established by Royden and Wong [13]. The Royden–Wong extension of Lempert’s
theorem does not, however, make any assertions about the boundary regularity of
complex geodesics.
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One cannot, in general, expect the complex geodesics of a convex domain to
extend even continuously up to ∂D. To see this, consider the polydisc D

n, n ≥ 2: it
is easy to see that f = (f1, . . . , fn) : D → D

n is a complex geodesic if and only if at
least one of f1, . . . , fn is an automorphism of D. By choosing any one map among
f1, . . . , fn to be such that it does not extend continuously up to ∂D, we see that
complex geodesics do not, in general, extend continuously up to ∂D. This example
might lead one to suspect that the non-smoothness of ∂Ω is the chief reason that a
complex geodesic does not extend continuously up to ∂D. However, non-smoothness
of ∂Ω is not the relevant issue, as the following example shows:

Example 1.2. An example of a bounded convex domain with C∞-smooth bound-
ary having complex geodesics that do not extend continuously to ∂D.

Consider a complex geodesic of D2, f = (f1, f2), where f1 is an automorphism
of D and f2 is a bounded holomorphic function with |f2| < 1/2 that does not extend
continuously up to ∂D. Let Ω be any convex domain having C∞-smooth boundary
such that D×D(0; 1/2) ⊂ Ω  D

2. KG will denote the Kobayashi distance on the
domain G and p the Poincaré metric. Then:

p(ζ1, ζ2) = KD2(f(ζ1), f(ζ2)) ≤ KΩ(f(ζ1), f(ζ2)) ≤ p(ζ1, ζ2) ∀ζ1, ζ2 ∈ D.

The equality above encodes the fact that f is a complex geodesic of D2 while the
first inequality is the distance-decreasing effect of the inclusion that maps Ω →֒ D

2.
Thus, f is a complex geodesic of Ω, but it does not extend continuously up to ∂D.

◭

This example suggests that the property of a convex domain Ω that affects the
boundary behaviour of generic complex geodesics is the flatness of ∂Ω or the extent
to which ∂Ω curves or bends at each boundary point. This notion is supported by
part (b) of Result 1.1. (We emphasize the word “generic” here because even in do-
mains with rough boundaries there may exist points z1 and z2 in special position,
consider D

2 for instance, such that some complex geodesic containing them extends
continuously up to ∂D. We will not address this type of non-generic phenomena
in this work.) Our notion is further supported by a result of Mercer [12, Proposi-
tion 2.9], which states that all complex geodesics of a boundedm-convex domain—see
Definition 2.7 in [12]—extend to maps that are Hölder-continuous on D (where the
Hölder exponent depends on the parameter m).

If a domain Ω is smoothly bounded and m-convex, then for each w ∈ ∂Ω the
(complex) order of contact of the complex line w + Cv, for each v ∈ Hw(∂Ω) :=
Tw(∂Ω)∩iTw(∂Ω), v 6= 0, with ∂Ω at w is at mostm. In contrast, we will show that all
complex geodesics of Ω extend continuously up to ∂D even if there are points w ∈ ∂Ω
at which w + Cv, for some v ∈ Hw(∂Ω), osculates ∂Ω to infinite (complex) order,
provided ∂Ω exhibits some degree of bending in the complex-tangential directions.
To make this precise when ∂Ω is merely C1-smooth requires a little effort. To this
end, we need the following definition. (Henceforth, Bd(a; r) will denote the Euclidean
ball in C

d with centre a and radius r.)

Definition 1.3. Let Ω be a bounded convex domain in C
n, n ≥ 2, with C1-

smooth boundary. Let F : Bn−1(0; r) → R be a smooth function with F (0) = 0 and
DF (0) = 0. We say that F supports Ω from the outside if there exist constants R0 ∈
(0, r) and s0 > 0 such that, for each w ∈ ∂Ω, there exists a unitary transformation
Uw satisfying:

• Uw(Hw(∂Ω)) = {v ∈ C
n : vn = 0}, and
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• Uw(νw) = (0, . . . , 0, i), where νw denotes the inward unit normal vector to ∂Ω
at w,

such that, denoting the C-affine map v 7−→ Uw(v − w) as Uw, we have

Uw(Ω) ∩Bn−1(0;R0)× ((−s0, s0) + i(−s0, s0))

⊂ {z = (z′, zn) ∈ Bn−1(0;R0)× ((−s0, s0) + i(−s0, s0)) : Im(zn) ≥ F (z′)}.

Perhaps the most familiar examples of functions on [0,∞) that vanish to infinite
order at 0 are the functions Ψα, α > 0, defined as follows:

(1.1) Ψα(x) :=

{
e−1/xα , if x > 0,

0, if x = 0.

These functions help us to translate the qualitative notion expressed prior to Defini-
tion 1.3 to give us the following result:

Theorem 1.4. Let Ω be a bounded convex domain in C
n, n ≥ 2, with C1-smooth

boundary. Assume that Ω is supported from the outside by F (z′) := CΨα( ‖z′‖
α)

(writing z = (z′, zn) for each z ∈ C
n) for some C > 0 and some α ∈ (0, 1). Then,

every complex geodesic of Ω extends continuously up to ∂D.

Remark 1.5. Note that a domain that satisfies the hypothesis of Theorem 1.4
need not be strictly convex. For such a domain Ω, it is possible for ∂Ω to contain
line segments that point along the complex-normal direction at each of the boundary
points through which they pass.

Remark 1.6. The condition in Theorem 1.4 might seem at first a bit artificial.
However, readers familiar with the analysis of the boundary geometry of a domain
around points that are not of finite type know that there exists no classification of the

local normal forms for ∂Ω, at infinite-type points in ∂Ω, analogous to even the very
general notion due to Catlin [1]. When ∂Ω contains points at which it is infinitely flat
and yet ∂Ω is assumed to have low regularity globally, a way to model ∂Ω is through
objects such as the one in Definition 1.3. Even then, choices need to be made. We
have chosen the functions in (1.1) to underlie the functions supporting Ω because
these are the most well-known functions that vanish to infinite order.

What can one say if the convex domain given is supported from the outside by
CΨα(‖·‖) and α ≥ 1? This is a subtle question, but see Remark 1.7 below. In working
with the latter functions, α = 1 usually marks a transition-point for methods that
work well for 0 < α < 1. For illustrations of this, see, for instance, [4, Section 3], [6,
Section 3] or [5].

The key quantitative ingredient in the proof of Theorem 1.4 is a simple extension
of one of the Hardy–Littlewood lemmas to holomorphic functions on D whose deriva-
tives have rather rapid growth. This extension leads to a characterization (which is
unrelated to Theorem 1.4, but may be of independent interest) of a class of holomor-
phic functions that is strictly larger than every class of holomorphic functions on D

having a Hölder-continuous extension to ∂D. We discuss these matters in the next
section. The proof of Theorem 1.4 will be given in Section 3.

Remark 1.7. A few months after this paper was written, Zimmer showed,
among other things, that if Ω is a C-strictly convex domain having C1,α-smooth
boundary, then every complex geodesic of Ω extends continuously up to ∂D [14,
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Corollary 1.8]. The domains in our Theorem 1.4 are, in Zimmer’s terminology, C-
strictly convex, although [14, Corollary 1.8] addresses only those domains in Theo-
rem 1.4 that have C1,α-smooth boundaries. However, a C-strictly convex Ω admits
points p ∈ ∂Ω at which ∂Ω can be flat to any extent without containing a germ of a
complex line at p. Zimmer’s proof uses ingredients very different from those alluded
to above. The constraint that ∂Ω be C1,α-smooth arises from one of those ingredients.

2. A Hardy–Littlewood-type lemma

The phrase “Hardy–Littlewood-type lemma” refers in the present context to any
type of result that, given a function f ∈ O(D):

(a) tells us, based on the growth of |f ′(ζ)| in terms of dist(ζ, ∂D), whether f
extends continuously up to ∂D, and

(b) if possible, characterizes the extension of f to ∂D in terms of its modulus of
continuity.

We shall present here a result of this type. Our result arises from the following
proposition, which is central to proving Theorem 1.4. Some notation: given an
interval E ⊂ R, L1(E) will denote the L

1-class with respect to the Lebesgue measure
on E.

Proposition 2.1. Let Φ: [0, r0) → [0,+∞] be a function of class L
1([0, r0)) for

some r0 ∈ (0, 1). Let f ∈ O(D) and assume that

|f ′(reiθ)| ≤ Φ(1 − r) ∀r : 1− r0 < r < 1 and ∀θ ∈ R.

Then, f extends continuously to ∂D.

The proof of this statement is simple, and we shall skip some elementary details.
The condition on f ′ implies, owing to the dominated convergence theorem, that the
limit

(2.1) f •(eiθ) := lim
r→1−

f(reiθ) = f(0) + lim
r→1−

eiθ
ˆ r

0

f ′(seiθ) ds

exists for each θ ∈ R, and that this limit is uniform in θ. This, together with the fact
that, for a fixed R ∈ (0, 1), we can make |f(Reiθ1) − f(Reiθ2)| as small as we wish
by taking θ1 and θ2 sufficiently close to each other, implies that f • ∈ C(∂D). The
usual Poisson-integral argument establishes that f •(eiθ) is the continuous extension
of f to eiθ ∈ ∂D.

To proceed further, we must recall a definition. Given a function g : ∂D −→ C,
we define the modulus of continuity of g by

ωg(δ) := sup
|θ−φ|≤δ

|g(eiθ)− g(eiφ)|, 0 ≤ δ ≤ π.

This concept can be defined in a much more general setting, but we shall restrict
ourselves to C-valued functions on ∂D. Clearly

(2.2) g ∈ C(∂D;C) ⇐⇒ lim
δ→0+

ωg(δ) = 0.

The classical Hardy–Littlewood lemma characterizes, in terms of the growth of
f ′, functions f ∈ O(D) that extend continuously up to ∂D such that ωf•(δ) = Cδα,
C > 0 and 0 < α ≤ 1, i.e., such that the boundary-value of f belongs to a Hölder class
on ∂D. In this section, given f ∈ O(D), f • will denote the radial boundary-value of
f (whenever it exists).
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Since very little is assumed about the function Φ in Proposition 2.1, character-
izing the boundary-values f • of the functions f mentioned therein is probably not
tractable. But it does raise a natural question: is there such a characterization of a
class that:

1) includes, for instance, functions for which ωf•(δ) = (log(1/δ))−1 for δ close to
0; or

2) at least includes the case ωf•(δ) = e−α(log(1/δ))1−ε , 0 < ε < 1, for δ close to
0 ?

Observe: when ε is close to 0 and 0 < α < 1, the values of the latter function are
very close to δα for δ ≤ 1, unless δ is extremely small. Yet, if there are any functions
f ∈ O(D) for which (2) is true, then f • would be rougher than any Hölder-continuous
function.

In the recent literature, we have been introduced to classes of functions—defined
by their moduli of continuity—that are not as rough as the boundary-values given by
Proposition 2.1 but are considerably less regular than the Hölder-continuous func-
tions: see, for instance, [3] by Dyakonov, or [10] by Kuusi–Mingione. The next
definition describes a continuity class in the style of the latter paper, but which is
large enough to include functions having the modulus of continuity described in (2).

Definition 2.2. Let g ∈ C(∂D;C). We say that g is log-Dini continuous if ωg,
the modulus of continuity of g, satisfies

(2.3)

ˆ 1

0

(log(1/x))n
ωg(x)

x
dx <∞ for n = 0, 1, 2, . . . .

We are now in a position to state the main theorem of this section.

Theorem 2.3. Let f ∈ O(D). The function f extends to a continuous function
on D such that f(ei·) is log-Dini continuous if and only if there exists a positive
non-increasing function Φ: [0, r0) −→ [0,+∞], for some r0 ∈ (0, 1), such that:

(a) (log(1/·))nΦ is of class L
1([0, r0)) for each n ∈ N; and

(b) |f ′(reiθ)| ≤ Φ(1− r) for all r ∈ (1− r0, 1) and for every θ ∈ R.

Furthermore, whenever this happens, ωf•(δ) is dominated by 3
( ´ δ

0
Φ(x) dx

)
for 0 ≤

δ < r0.

Proof. We first assume the existence of a Φ for which (a) and (b) hold true. From
the paragraph following the statement of Proposition 2.1, we have that f extends to
a continuous function on ∂D. We shall continue to denote this extension by f and
set f • := f |∂D. We shall now deduce some information about ωf• .

To this end, fix θ1, θ2 ∈ R such that, for the moment, 0 < θ2 − θ1 < π. Let
γr, ρ : [0, 1] → D be a path from reiθ1 to reiθ2 whose image comprises the radial
segments [reiθ1 , ρeiθ1 ] and [ρeiθ2 , reiθ2], where 1 − r0 < ρ < r < 1, and the (shorter)
arc of the circle {z ∈ C : |z| = ρ} from ρeiθ1 to ρeiθ2 . Owing to the holomorphicity
of f ′, and the existence of the limits in (2.1), we have

f(eiθ2)− f(eiθ1) = lim
r→1−

ˆ

γr,ρ
f ′(z) dz

for any ρ as above. (A point about notation: each integral below of the form
´ b

a
, a <

b ∈ R, that involves a non-negative function denotes the standard (hence unoriented)
Lebesgue integral on the interval [a, b].) Thus
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|f(eiθ2)− f(eiθ1)| ≤ 2

ˆ 1

ρ

Φ(1 − s) ds+

ˆ θ2

θ1

Φ(1 − ρ) dθ.

Let us write I(x) :=
´ x

0
Φ(s) ds. From the last inequality, we can see that our

temporary restriction on (θ1, θ2) does not matter, and we have

|f(eiθ2)− f(eiθ1)| ≤ 2I(1− ρ) + |θ2 − θ1|Φ(1− ρ)

≤

(
2 +

|θ2 − θ1|

1− ρ

)
I(1− ρ) ∀θ1, θ2 : |θ2 − θ1| ≤ π.(2.4)

The second inequality follows from the fact that Φ is non-increasing. Let us define

̟(δ) :=

{
3I(δ), if 0 ≤ δ < r0,

2 sup |f •|, if r0 ≤ δ ≤ π.

We shall make a choice for the free parameter ρ in (2.4) based on (θ1, θ2). Taking
ρ = 1− |θ2 − θ1| whenever 0 < |θ2 − θ1| < r0, we see that

(2.5) |f(eiθ2)− f(eiθ1)| ≤ ̟(|θ2 − θ1|) ∀θ1, θ2 : |θ2 − θ1| ≤ π.

It is evident from (2.5) that ̟ is a majorant of ωf• .
From this last statement, it follows that to establish that f • is log-Dini continu-

ous, it suffices to establish the inequality in (2.3) with

• ωg replaced by ̟, and
• the integral over the interval [0, 1] replaced by an integral over the interval
[0, R] for some small R > 0 (since the integrand in (2.3) is unbounded only
as x→ 0+).

Let us fix some R such that 0 < R < r0. By Tonelli’s theorem, we have:

1

3

ˆ R

0

(log(1/x))n
̟(x)

x
dx =

ˆ R

0

ˆ x

0

(log(1/x))n
Φ(s)

x
ds dx

=

ˆ R

0

[
ˆ R

s

(log(1/x))n

x
dx

]
Φ(s) ds

=
1

n+ 1

ˆ R

0

[
(log(1/s))n+1 − (log(1/R))n+1

]
Φ(s) ds <∞

for each n ∈ N. The last assertion is just the condition (a). From our remarks above,
it follows that f • is log-Dini continuous.

Conversely, let us assume that f extends to a continuous function on D and that
f • is log-Dini continuous. Then, for any reiφ ∈ D, taking φ ∈ (−π, π], the Cauchy
integral theorem gives us

f ′(reiφ) =
1

2π

ˆ π

−π

f(eiθ)

(eiθ − reiφ)2
eiθ dθ =

1

2π

ˆ π

−π

f(eiθ)− f(eiφ)

(eiθ − reiφ)2
eiθ dθ.

Setting τ := θ − φ, whence |f(eiθ) − f(eiφ)| transforms to |f(ei(φ+τ)) − f(eiφ)|, we
have

|f ′(reiφ)| ≤
1

π

ˆ π

0

ωf•(τ)

r2 − 2r cos τ + 1
dτ ≡ Φ(1− r).

We would be done if we could find some smallR > 0 such that
´ R

0
(log(1/x))nΦ(x) dx <

∞ for each n ∈ N.
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Note that

r2 − 2r cos τ + 1 = (1− r)2 + 4r sin2(τ/2) ≥ (1− r)2 + 4r(τ/π)2

≥ (1− r)2 + (τ/π)2 ∀r ∈ (1/4, 1), ∀τ ∈ [0, π].

Thus, if we fix R ∈ (0, 3/4) and set x := (1 − r), then it suffices to establish the
convergence of the following integrals:

In :=
1

π

ˆ R

0

(log(1/x))n
[
ˆ π

0

ωf•(τ)

x2 + (τ/π)2
dτ

]
dx, n ∈ N.

Fix a δ ∈ (0, R) and let In(δ) denote the integral over [δ, R] of the integrand on the
right-hand side above. Making the change of variable y := τ/πx in the inner integral,
we get

In(δ) =

ˆ R

δ

(log(1/x))n

x

[
ˆ 1/x

0

ωf•(πxy)

1 + y2
dy

]
dx

≤

ˆ R

δ

(log(1/x))n
ωf•(x)

x

[
ˆ 1/x

0

1 + πy

1 + y2
dy

]
dx

≤ C

ˆ R

δ

(log(1/x))n
ωf•(x)

x

[
1 + log(1/x)

]
dx,(2.6)

where C > 0 is a constant that does not depend on x, n or δ. The first inequality
above follows from the standard inequality ωf•(λx) ≤ (λ + 1)ωf•(x) for all λ ≥ 0
(and sufficiently small that ωf•(λx) makes sense); see [2, Chapter 2, § 6]. Since f • is
log-Dini continuous, the integrands in (2.6) are, in fact, of class L

1([0, R]) for each
n ∈ N. Thus, it follows from the above estimate that In <∞ for each n ∈ N.

The final assertion of the theorem has already been established in the argument
leading from the inequality (2.4) to the inequality (2.5). �

One may ask whether there are any functions f in the class O(D)∩C(D) beyond
those already described by the classical Hardy–Littlewood lemma for which ωf• is as
in the above theorem. We address this question by the following:

Example 2.4. There exist functions f ∈ O(D) ∩ C(D) such that f • is log-Dini
continuous but belongs to no Hölder class.

Pick a function ψ ∈ C(∂D;R) such that

ωψ(δ) = exp
(
−C(log(1/δ))1−ε

)
for δ close to 0,

where C > 0 and 0 < ε < 1, and ψ is not in any Hölder class. It is an elementary
exercise to show that

(2.7)

ˆ 1

0

(log(1/x))n
e−C(log(1/x))1−ε

x
dx <∞ for n = 0, 1, 2, . . . .

Let ψ̃ denote the conjugate function of ψ. Then, by the Privalov–Zygmund estimate,
there exists a constant K > 0 such that

(2.8) ωψ̃(δ) ≤ K

[
ˆ δ

0

ωψ(x)

x
dx+ δ

ˆ π

δ

ωψ(x)

x2
dx

]
.

This calls for a somewhat careful estimation of the two integrals above. First, by
decomposing (0, δ] as (0, δ] = ∪∞

j=0[2
−(j+1)δ, 2−jδ] (by (2.7), the integral of ωψ(x)/x
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over (0, δ] is the same as the integral over [0, δ]), we have

ˆ δ

0

e−C(log(1/x))1−ε

x
dx ≤

∞∑

j=0

exp

{
−C

(
log

(
2j

δ

))1−ε
}
.

≤
∞∑

j=0

exp
[
−2−εC

(
(j log 2)1−ε + (log(1/δ))1−ε

) ]

= K ′ exp
(
−2−εC(log(1/δ)1−ε

)
for δ close to 0.(2.9)

The second inequality above arises from the fact that, close to 0, ωψ is a concave
function. Let R > 0 be such that ωψ is concave on [0, R]. Then, since ωψ(0) = 0,
x 7−→ ωψ(x)/x is a decreasing function on [0, R]. Using this fact, we get the crude,
but adequate, estimate

(2.10) δ

ˆ π

δ

e−C(log(1/x))1−ε

x2
dx ≤ log

(
R

δ

)
e−C(log(1/δ))1−ε +O(δ).

It is easy to see directly from the estimate (2.8) that limδ→0+ ωψ̃(δ) = 0. Thus,

we conclude from (2.2) that ψ̃ ∈ C(∂D; R). Then, by definition, (ψ + iψ̃) is the
boundary value of a function Ψ ∈ O(D) ∩ C(D). Now (2.7), taken together with the
estimates (2.9) and (2.10), implies that Ψ• is log-Dini continuous. However, since
ψ = (ReΨ)• was chosen so that it does not belong to any Hölder class, Ψ• is not in
any Hölder class either. ◭

Remark 2.5. With more intensive analysis, one can show that the holomorphic
functions constructed in Example 2.4 are such that the modulus of continuity of f •

is O(ωψ). That (2.9) can be improved is not hard to see: one uses a better lower
bound for (log(2j) + log(1/δ))1−ε in the step preceding (2.9). The estimate (2.10) is
rather crude. It can be improved as desired, but this requires some effort. Since this
is not the main thrust of the present section, we shall not elaborate any further on
the last point.

3. The proof of Theorem 1.4

We now return to several complex variables. We begin by presenting some nota-
tion. If Ω is a bounded domain in C

n, z ∈ Ω and v ∈ C
n \ {0}, then

dΩ(z) := the Euclidean distance of z from ∂Ω,

rΩ(z; v) := the radius of the largest complex-affine closed disc, centered at z

and tangent to v, that is contained in Ω.

The crux of the proof of Theorem 1.4 is to find an estimate for f ′, where f : D →
Ω is a complex geodesic. One could then try to apply Proposition 2.1 to deduce
continuous extension to ∂D. If we have a reasonably good estimate for the Kobayashi
pseudometric on Ω, where Ω is as in Theorem 1.4, then we can use it to estimate f ′.
This explains the need for the following result of Graham:

Result 3.1. (Graham, [8]) Let Ω be a bounded convex domain in C
n and let

κΩ(z; ·) denote the Kobayashi metric on Ω at the point z ∈ Ω. Then:

‖v‖

2rΩ(z; v)
≤ κΩ(z; v) ≤

‖v‖

rΩ(z; v)
∀z ∈ Ω and ∀v ∈ C

n.
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We must point out that in this section all distances and norms on C
n will be the

Euclidean distance and the Euclidean norm, both denoted by ‖ · ‖.
To carry out the programme sketched above, we will require explicit estimates

on rΩ. This is the role of the following lemma:

Lemma 3.2. Let Ω be as in Theorem 1.4. There exists a compact subset K of
Ω such that for each z ∈ Ω \K,

rΩ(z; v) ≤ 2

[
log

(
C

dΩ(z)

)]−1/α

∀v ∈ C
n \ {0},

where C and α are the constants appearing in Theorem 1.4.

Proof. Define x0 as follows (it is not hard to argue that the set on the right is
finite):

(3.1) x0 := min
[
{C/2} ∪

{
x ∈ (0, C) : x = [log(C/x)]−1/α

}]
.

Let s0 and R0 be as given by Definition 1.3 with F = CΨα(‖ · ‖), and write

M := {z = (z′, zn) ∈ C
n : Im(zn) = CΨα(‖z′‖)}.

We can find a compact subset K of Ω such that whenever z ∈ Ω \K,

• dΩ(z) < min(s0, x0); and
• For any point w(z) ∈ ∂Ω that satisfies dΩ(z) = ‖z − w(z)‖, every complex

line of the form

Uw(z)(z +Cv) (= (0, . . . , 0, i · dΩ(z)) +CUw(z)(v)), v ∈ Hw(z)(∂Ω) \ {0},

intersects M in a circle of radius [ log(C/dΩ(z)) ]
−1/α = (CΨα)

−1(dΩ(z)).

Here Uw(z) is as described in Definition 1.3. For each z ∈ Ω \K, let us fix a w(z) for
the remainder of this proof. The above implies that if z ∈ Ω \K, then

(3.2) rΩ(z; v) ≤

[
log

(
C

dΩ(z)

)]−1/α

∀v ∈ Hw(z)(∂Ω) \ {0}.

Of course, for all such z, we also have

(3.3) rΩ(z; v) = dΩ(z) ∀v ∈ Hw(z)(∂Ω)
⊥ \ {0}.

(The orthogonal complement here is with respect to the standard Hermitian inner
product on C

n.)
Fix a z ∈ Ω \K, consider a general unit vector v ∈ C

n \ {0}, and let θv ∈ R be
such that

eiθvUw(z)v = (eiθv(Uw(z)v)
′,−i|(Uw(z)v)n|) =: V.

Observe that rΩ(z; v) = rΩ(z; e
iθvv). In view of (3.2) and (3.3), we may focus on

those V—writing V = (V ′,−iVn)—such that V ′ 6= 0 and Vn > 0. We view a portion
of ∂Ω around w(z) after the application of the C-affine transformation Uw(z). It
then follows from elementary coordinate geometry that if ρ is a positive number that
satisfies (recall that z is mapped to (0, . . . , 0, i · dΩ(z)) under Uw(z))

(3.4) CΨα(ρ) + ρ
Vn
‖V ′‖

= dΩ(z),

then the set (0, . . . , 0, i · dΩ(z)) +D(0; ρ∗) V intersects M, where

ρ∗ := ρ/‖V ′‖.
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Since

M ⊂ Bn−1(0;R0)× ((−s0, s0) + i(−s0, s0)) \ U
w(z)(Ω),

it easily follows that (0, . . . , 0, i · dΩ(z)) +D(0; ρ∗)V intersects Uw(z)(∂Ω). Hence

(3.5) rΩ(z; v) = rUw(z)(Ω)((0, . . . , 0, i · dΩ(z));V ) ≤ ρ∗.

By (3.4) and the fact that Ψα is increasing on (0,∞)we get that ρ ≤ [ log(C/dΩ(z)) ]
−1/α.

Therefore,

ρ∗ ≤

[
log

(
C

dΩ(z)

)]−1/α

+ dΩ(z) ≤ 2

[
log

(
C

dΩ(z)

)]−1/α

.

The second inequality follows from the fact that dΩ(z) < min(s0, x0), where x0 is
defined by (3.1). The above inequality, together with (3.5) and the estimates in the
first paragraph of this proof, gives the desired conclusion. �

A key requirement of our proof is to transcribe an estimate for ‖f ′(ζ)‖ (here
f : D → Ω is a complex geodesic) given in terms of κΩ(f(ζ); f

′(ζ))—which is provided
by Graham’s result—into an estimate given in terms of ζ ∈ D. One such tool is an
estimate by Lempert [11, Proposition 12]. However, since our domains of interest
are not strongly convex, we will need an extension of this estimate. This has been
provided by Mercer, and is as follows:

Result 3.3. (Mercer, [12]) Let Ω be a bounded convex domain in C
n and let

f : D → Ω be a complex geodesic. There exists a constant β > 1 and constants
C1, C2 > 0 such that

C1(1− |ζ |) ≤ dΩ(f(ζ)) ≤ C2(1− |ζ |)1/β ∀ζ ∈ D.

We are now in a position to give

The proof of Theorem 1.4. Let f : D → Ω be a complex geodesic. It is easy to
argue that f is a proper map: see [9, Proposition 4.6.3], for instance. Let K be the
compact set given by Lemma 3.2. By the properness of f , there exists a constant
r0 > 0 such that f(ζ) ∈ Ω \K whenever 1− r0 < |ζ | < 1. By Result 3.1

‖f ′(ζ)‖ ≤ 2rΩ(f(ζ); f
′(ζ))κΩ(f(ζ); f

′(ζ)) =
2rΩ(f(ζ); f

′(ζ))

1− |ζ |2
∀ζ ∈ D.

The equality between the second and the third expression is due to the fact that f is
a complex geodesic. For ζ ∈ D such that 1− r0 < |ζ | < 1, it follows from Lemma 3.2
and the above inequality that

‖f ′(ζ)‖ ≤ 4

[
log

(
C

dΩ(f(ζ))

)]−1/α
1

1− |ζ |2
≤ 4

[
log

(
C

dΩ(f(ζ))

)]−1/α
1

1− |ζ |
.

Finally, we invoke Mercer’s estimate, Result 3.3, to get

‖f ′(ζ)‖ ≤ 4

[
log

(
C/C2

(1− |ζ |)1/β

)]−1/α
1

1− |ζ |

≡ K1

[
log

(
K2

1− |ζ |

)]−1/α
1

1− |ζ |
∀ζ : 1− r0 < |ζ | < 1,(3.6)
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where K1 and K2 are appropriate positive constants. Define a function Φ: [0, r0) →
[0,+∞] as follows:

Φ(x) :=

{
K1

x

[
log

(
K2

x

)]−1/α
, if 0 < x < r0,

+∞, if x = 0.

Write f = (f1, . . . , fn). By (3.6), each component satisfies

|f ′
j(ζ)| ≤ Φ(1− |ζ |) ∀ζ : 1− r0 < |ζ | < 1, j = 1, . . . , n.

Given Proposition 2.1, the theorem will follow if we can show that the above Φ is
of class L

1([0, r0)). The convergence of the integral of Φ is a standard example; it
converges precisely when 0 < α < 1. Thus, by our assumption on α, f extends
continuously up to ∂D. �
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