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Abstract. Let dL and dT denote, respectively, the length spectrum metric and the Teichmüller

metric on the Teichmüller space T (S0) of a Riemann surface S0. Wolpert showed that dL(τ, τ
∗) ≤

dT (τ, τ
∗) for any two points τ and τ∗ in T (S0). If S0 is a hyperbolic Riemann surface with non-

elementary Fuchsian group, then there are two sequences {τn} and {τ∗
n
} of points in T (S0) such that

dL(τn, τ
∗
n
) → 0 as n → ∞, but dT (τn, τ

∗
n
) ≥ b for some positive constant b and any n. This property

was proved in [11] for any hyperbolic compact Riemann surface and in [13] for any hyperbolic one

with non-elementary Fuchsian group. It is further shown in [13] that the two sequences can be

modified to keep dL(τn, τ
∗
n
) → 0 but have dT (τn, τ

∗
n
) → ∞ as n → ∞. For all these results, each τ∗

n

is constructed from a Riemann surface τn by taking a number of Dehn twists (full twists) along a

closed curve on τn. When τ∗n is constructed from τn through a Dehn twist, one can use the maximal

dilatation of a quasiconformal self map of τn to control and compare dL(τn, τ
∗
n) and dT (τn, τ

∗
n). But

when τ∗
n

is constructed from τn in a similar pattern but with partial twist, the method of using a

self map of τn to control and compare dL(τn, τ
∗
n
) and dT (τn, τ

∗
n
) fails. In this paper, we show how to

control and compare dL(τ, τ
∗) and dT (τ, τ

∗) under such partial twists, which enables us to obtain

continuous versions of the results of [11] and [13] by using partial twists to connect the points τ∗n .

1. Introduction

Let S0 be a Riemann surface. A marked Riemann surface is a pair (S, f) with
f : S0 → S being a quasiconformal mapping. Two pairs (S1, f1) and (S2, f2) are
equivalent if there exists a conformal mapping c : S1 → S2 such that c◦f1 is homotopic
to f2. The Teichmüller space T (S0) is the set of equivalence classes [S, f ].

The Teichmüller metric on T (S0) is defined by

(1.1) dT ([S1, f1], [S2, f2]) = inf
f
logK(f),

where f ranges over all quasiconformal mappings between S1 and S2 homotopic to
f2 ◦ f

−1
1 and K(f) represents the maximal dilatation of f .

We consider another metric on T (S0), called the length spectrum metric. Let S
be a Riemann surface of the same type as S0. A simple closed curve on S is said to be
essential if it is neither homotopic to a point nor to a puncture and nor to a boundary
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component. Let ΣS be the collection of simple closed curves on S containing one and
exactly one representative from each homotopy class of essential curves. For each
γ ∈ ΣS, let lS(γ) denote the length of the shortest curve in the homotopy class of γ
in the hyperbolic metric. The length spectrum metric is defined by

(1.2) dL([S1, f1], [S2, f2]) = log sup
γ∈ΣS1

{
lS2

(f2 ◦ f
−1
1 (γ))

lS1
(γ)

,
lS1

(γ)

lS2
(f2 ◦ f

−1
1 (γ))

}
.

This metric was introduced and studied by Sorvali [17] in 1972. In 1975, Sorvali
[18] proved that the Teichmüller metric dT and the length spectrum metric dL are
metrically equivalent on the Teichmüller space of a torus and posed a question as to
whether or not this is true in general. A related question is whether or not these two
metrics induce the same topology on Teichmüller space.

A well known result by Wolpert (see [1]) states that if f : S1 → S2 is a quasicon-
formal mapping, then

lS2
(f(γ))

lS1
(γ)

≤ K(f)

for all γ ∈ ΣS1
. This inequality implies that

(1.3) dL(τ1, τ2) ≤ dT (τ1, τ2) for any τ1, τ2 ∈ T (S0).

Thus Sorvali’s question is to study whether or not there exists a positive constant C
such that

(1.4) dT (τ1, τ2) ≤ CdL(τ1, τ2) for any τ1, τ2 ∈ T (S0),

or even weaker, whether or not the identity map

(1.5) id : (T (S0), dL) → (T (S0), dT )

is continuous.
In 1986, Li [10] showed that the identity map is continuous if S0 is a compact

Riemann surface. This result was later generalized by Liu in [12] to the case where
S0 is a Riemann surface of type (g,m, n), where g, m and n are the genus, number
of punctures and number of ideal boundaries, respectively, with 6g−6+m+3n > 0.
Then it follows that these two metrics are topologically equivalent on the Teichmüller
space T (S0). Furthermore, in 2003 Li [11] proved that these two metrics are not
metrically equivalent on the Teichmüller space of a compact Riemann surface of
genus g ≥ 2. In order to prove this, he first constructed a sequence {τn = [Sn, fn]}
of points in T (S0) such that Sn contains a closed curve βn with limn→∞ lSn

(βn) = 0.
Then, by taking [1/lSn

(βn)] number of Dehn twists along each βn, he obtained another
sequence {τ ∗n} of points in T (S0) such that dT (τn, τ

∗
n) ≥ d > 0 for n sufficiently large.

On the other hand, since lSn
(βn) → 0, it follows from the Collar Lemma [7] that the

effect of that number of Dehn twists on the hyperbolic length of any curve crossing
βn becomes smaller and smaller as n approaching ∞. This means dL(τn, τ

∗
n) → 0 as

n→ ∞.
Liu, Sun and Wei [13] generalized and improved Li’s result to the Teichmüller

space of any hyperbolic Riemann surface with non-elementary Fuchsian group by
finding two sequences {τn} and {τ ∗n} such that dT (τn, τ

∗
n) → ∞ but dL(τn, τ

∗
n) → 0 as

n→ ∞. Their construction follows Li’s idea but uses more Dehn twists to obtain the
sequence {τ ∗n}. In their constructions, each τ ∗n can be represented by a quasiconformal
mapping from Sn onto itself, which comes from cutting Sn along βn and then gluing
the two copies of βn back after twisting one of the two copies three hundred and
sixty degrees enough times. This feature makes it feasible to estimate the length
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spectrum distance between τn and τ ∗n by using ratios of the lengths of closed curves
and their images under a homeomorphism defined on the same Riemann surface. This
convenience of representing τ ∗n is lost when a partial twist is performed to construct
a new point in T (S0). In this case, the new point has to be represented by maps
between two Riemann surfaces with different hyperbolic metrics. In this paper, we
first show how to control the length spectrum distance between two points τ and τ ∗

in T (S0) when τ ∗ is constructed through a partial twist along a closed geodesic β on
τ . The points τn are connected by a nice curve in T (S0). Now we use continuously
changed partial twists along closed geodesics on the points on the nice curve to obtain
another continuous curve in T (S0) to connect the points τ ∗n and in the meantime we
have the properties of τn and τ ∗n in [11] and [13] preserved for the points on the two
curves. More precisely, we prove the following theorem.

Theorem 1. Let S0 be a hyperbolic Riemann surface with non-elementary Fuch-

sian group. Then there exist three curves α(t), α∗(t) and α̂(t), 0 ≤ t < 1, in T (S0)
having the following properties.

(1) limt→1 dT (α(t), α
∗(t)) = ∞, but limt→1 dL(α(t), α

∗(t)) = 0.
(2) There exist M,m > 0 such that m ≤ dT (α(t), α̂(t)) ≤ M for all t, but

limt→1 dL(α(t), α̂(t)) = 0.

Moreover, the curve α can be chosen to be a Teichmüller geodesic ray.

Our theorem can be viewed as continuous versions of the main results of [11] and
[13].

Remark 1. In 2003, Shiga [16] studied the relation between the length spectrum
metrc and the Teichmüller metric on Riemann surfaces S0 of infinite type. He showed
that if S0 has a sequence of closed geodesics with lengths approaching 0, then one
of the sequences in the result of Liu, Sun and Wei [13] can be reduced to a point.
That is, in the Teichmüller space T (S0) of such a Riemann surface S0 there is a
sequence of points {τn}

∞
n=0 such that dL(τn, τ0) → 0 but dT (τn, τ0) → ∞ as n → ∞,

where τ0 is the base point of T (S0). This result implies that the topologies defined
by the two metrics are not equivalent. It also raises a problem on how to connect the
points {τn}

∞
n=1 by a continuous curve in T (S0) such that Shiga’s result continues to

hold on the curve. Since Shiga’s construction of the points τn, n ≥ 1, involves with
different amounts of Dehn twists around infinitely many different closed geodesics,
the technique developed in this paper doesn’t seem enough to solve the problem.

Acknowledgement. Both authors wish to thank the referees for their comments,
suggestions and corrections of typos. Especially, they are grateful to one of them for
the suggestion to generalize our result from a hyperbolic Riemann surface of finite
topological type to any hyperbolic Riemann surface with non-elementary Fuchsian
group, which leads to the current version of the paper. They also wish to thank
Professors Frederick Gardiner and Linda Keen for inspiring discussions.

2. Earthquakes

Earthquakes were introduced by Thurston in [21] to measure the difference be-
tween two conformal structures on a surface or two points in the Teichmüller space
of a Riemann surface. For background on earthquake maps and their relations with
quasisymmetric circle homeomorphisms, we refer to [3, 4, 5, 15].
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A lamination L on D is a collection of hyperbolic geodesics that foliates a closed
subset of D. The geodesics in L are called leaves, whereas the connected compo-
nents of D \ L are called gaps. The strata of the lamination L consists of gaps and

leaves. A generalized left earthquake map Ẽ : D → D supported on L is a possibly
discontinuous injective map which is an isometry on each stratum of L. Even more,
for any two strata A 6= B, the comparison isometry

(2.1) Comp(A,B) = (Ẽ|A)
−1 ◦ (Ẽ|B)

is a hyperbolic translation whose axis weakly separates A and B and which translates
B to the left as viewed from A.

If in addition the map Ẽ is surjective, we call it a left earthquake map.
Thurston [21] showed that each left earthquake map Ẽ : D → D extends to a

map defined on D ∪ S
1. The extension is continuous at each point of S1 and Ẽ|S1 is

a homeomorphism. Conversely, every circle homeomorphism can be realized in this
way.

Theorem 2. (Thurston) Let h be an orientation-preserving homeomorphism of

the unit circle S
1. Then there exists a lamination L and a left earthquake map

Ẽ : D → D along the leaves in L such that Ẽ|S1 = h. The lamination is uniquely

determined by h. Moreover, h determines the isometries of Ẽ on all gaps, and for

any leaf L in L, two possibly different isometries on L only differ by a hyperbolic

isometry with axis L and translation length between 0 and the limit value of the

translation lengths of the comparison maps for E on the two sides of L.

Each generalized earthquake map Ẽ : D → D along the leaves in L induces a
transverse measure σ, called an earthquake measure on L. The measure σ quantifies
the amount of relative shearing along the lamination of the earthquake map.

The following result is due to Thurston [21]. A proof is given in [3].

Theorem 3. (Thurston) Let σ be a transverse measure defined on a lamination

L. Then there exists a generalized earthquake map Ẽ : D → D supported on L such

that σ is the induced earthquake measure by Ẽ. Moreover, up to post-composition

by a hyperbolic isometry, σ determines the isometries of Ẽ on all gaps, and for any

leaf L in L, two possible isometries on L only differ by a hyperbolic isometry with

axis L and translation length between 0 and the measure σ(L) of L.

In order to determine whether or not a generalized earthquake map is indeed
an earthquake map we need to introduce the concept of the Thurston norm of an
earthquake measure (σ,L).

Let L be a lamination with a transverse measure σ. The Thurston norm of σ is
defined to be

(2.2) ‖σ‖Th = sup σ(α),

where the supremum is taken over all closed geodesic segments α of length 1 that are
transverse to the lamination.

We say that σ is Thurston bounded if ‖σ‖Th is finite. An earthquake map is
called Thurston bounded if the induced earthquake measure is Thurston bounded.

Thurston [21] outlined the proofs of the following two theorems. Three different
complete proofs are given in [3, 4, 15].

Theorem 4. (Thurston) Let L be a lamination with a transverse measure σ. If σ

is Thurston bounded, then there exists a left earthquake map Ẽ : D → D supported
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on L such that σ is the induced earthquake measure by Ẽ. Moreover, up to post-

composition by a hyperbolic isometry, σ determines the isometries of Ẽ on all gaps,

and for any leaf L in L, two possible isometries on L only differ by a hyperbolic

isometry with axis L and translation length between 0 and the measure σ(L) of L.

Theorem 5. (Thurston) Let h be an orientation-preserving circle homeomor-

phism, and let σh be the earthquake measure induced by a left earthquake map Ẽ

with Ẽ|S1 = h. Then σh is Thurston bounded if and only if h is quasisymmetric.

For situations handled in this paper, we are only interested in discrete lamina-
tions, i.e., laminations consisting of countably many hyperbolic geodesics without any
accumulation in D. From now on, we assume that this is the case. We now construct
generalized earthquakes for these types of laminations with transverse measures.

Let L be a discrete lamination. Two gaps are called neighbors if there is a
geodesic in L, called the separating geodesic, that belongs to the boundary of both
gaps. Given any two gaps A and B, there exists a unique minimal chain of gaps
A0 = A, A1, A2, . . . , An+1 = B such that Ai and Ai+1 are neighbors. In this sense,
the pattern of neighboring gaps determined by L is a tree.

Let σ be a measure on a lamination L. That is, σ assigns a positive number,
called a weight, to each element of L. Fix a gap A of the lamination L and define

Ẽ|A = Id. Let B be any other gap and let A0 = A,A1, . . . , An+1 = B be the minimal
chain of neighboring gaps between A and B. For each i = 1, 2, . . . , n+1, let Ti be the
hyperbolic translation whose axis is the separating geodesic Li between Ai−1 and Ai

and that translates Ai to the left by a distance λi, where λi is the weight of Li. Define

Ẽ|B = T1◦T2◦· · ·◦Tn+1. Since any two gaps are connected by a unique minimal chain
of neighboring gaps, this construction gives a map defined on the whole hyperbolic
plane. Of course, this construction depends on the gap A, nonetheless, any two maps
constructed in this way differ only by pre-composition by a conformal isometry of D.
It is easy to see that this map is injective and that the comparison isometry satisfies

condition (2.1), however, Ẽ might not be surjective.
A Thurston bounded earthquake map is a quasi-isometry on D with respect to the

hyperbolic metric. The Thurston norm of the earthquake measure is a quantifier of
the quasi-isometry. On the other hand, the cross-ratio distortion norm is a quantifier
of the quasisymmetry of the boundary homeomorphism determined by the earthquake
map. Now we introduce the definition of the cross-ratio distortion norm and we give
its quantitative relationship with the Thurston norm of the measure.

Let h be an orientation-preserving homeomorphism of the unit circle S
1. The

cross-ratio distortion norm ‖h‖cr of h is defined as

(2.3) ‖h‖cr = sup
Q

∣∣∣∣log
cr(h(Q))

cr(Q)

∣∣∣∣ ,

where the supremum is taken over all quadruples Q = {a, b, c, d} of four points
arranged in counter-clockwise order on the unit circle with cr(Q) = 1, and where

(2.4) cr(Q) =
(b− a)(d− c)

(c− b)(d− a)
.

Theorem 6. (Gardiner–Hu–Lakic) There exists a universal constant C ′ > 0
such that for any measured lamination (L, σ),

(2.5)
1

C ′
‖Ẽ|S1‖cr ≤ ‖σ‖Th ≤ C ′‖Ẽ|S1‖cr.
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The right inequality in the previous theorem was proved by Gardiner, Hu and
Lakic in [3] and the left inequality was proved by Hu in [4].

For any orientation-preserving homeomorphism f of the unit circle S
1, let Φ(f)

be the Douady–Earle extension of f (see [2]) and let Ke(f) be the infimum of max-
imal dilatations of quasiconformal extensions of f . Hu and Muzician [6] proved the
following two theorems.

Theorem 7. (Hu–Muzician) There exists a universal constant C ′′ > 0 such that

for any quasisymmetric circle homeomorphism f ,

(2.6) logK(Φ(f)) ≤ C ′′‖f‖cr.

Theorem 8. (Hu–Muzician) Let f be a quasisymmetric homeomorphism. Then

(2.7) lim
‖f‖cr→∞

‖f‖cr

Ke(f)
≤ π.

The following property is also used in the next section.

Proposition 1. Let {fn} be a sequence of orientation-preserving homeomor-

phisms of the unit circle S
1 such that Ke(fn) → 1 as n→ ∞. Then

‖fn‖cr → 0 as n→ ∞.

Proof. Suppose that the proposition is not true. By passing to a subsequence,
we may assume that there exists ε > 0 such that

(2.8) ‖fn‖cr > ε for all n.

For each n, choose a quadrilateral Qn such that

cr(Qn) = 1 and | log cr(fn(Qn))| > ε.

We may assume, by post-composing and pre-composing by Möbius transforma-
tions, that Qn and fn(Qn) are the quadrilaterals on H with vertices at {−1, 0, 1,∞}
and {xn, 0, 1,∞} respectively. For each n, the conformal modulus Mod(Qn) of Qn is
equal to 1 and

Mod(Qn)

Ke(fn)
≤ Mod(fn(Qn)) ≤ Ke(fn)Mod(Qn).

Using the assumption that Ke(fn) → 1 as n→ ∞, we conclude that Mod(fn(Qn)) →
1 and then xn → −1 as n → ∞. Since cr(fn(Qn)) = −xn, it follows that log cr(fn
(Qn)) → 0 as n→ ∞, contradicting (2.8). �

Remark 2. Using an elliptic integral depending on a parameter and the work
on pp. 59–60 of [9], one can see how ‖fn‖cr depends on Ke(fn) asymptotically when
Ke(fn) → 1 as n→ ∞, from which the previous proposition follows as well.

3. Partial twists on Riemann surfaces

Let β be a simple closed geodesic on a hyperbolic Riemann surface S that is not
homotopic to a boundary component of S. As pointed out in the introduction, the
point created by a Dehn twist along β in T (S) is described by a quasiconformal map
from S onto S, which comes from cutting S along β and then gluing the two copies
of β back after twisting one copy of β three hundred and sixty degrees. The first
goal of this section is to introduce how partial twists (not equal to multiples of 360o)
along β create new points in T (S). This is related to conjugations of the Fuchsian
group representing S by earthquake maps corresponding to partial twists.
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Let π : D → S be the universal covering map, where D denotes the unit disk.
The preimage π−1(β) consists of a union of non intersecting geodesics. By assigning
the weight λ to each one of these geodesics, we obtain a measured lamination (σλ,L)
on D. We can see that the Thurston norm ‖σλ‖Th is finite. Let D > 0 be the
width of a collar neighborhood around β. Given any geodesic segment α of length
1 transversal to the lamination L, σλ(α) = λ if α intersects only one leaf of L; if
α intersects n > 1 leaves of L, then 1 = l(α) ≥ nD/2 and hence σλ(α) ≤ λ

D/2
. In

summary,

(3.1) λ ≤ ‖σλ‖Th ≤ max

{
λ,

λ

D/2

}
.

It follows from Theorems 4 and 5 that any left earthquake map Ẽ : D → D

inducing (σλ,L) is onto and Ẽ|S1 : S1 → S
1 is a quasisymmetric homeomorphism of

the unit circle.
Let G be the Fuchsian group uniformizing S. For each element g ∈ G, ẼgẼ−1

is conformal on every gap of the lamination L. Moreover, it is continuous on D. In

order to prove this, consider a geodesic L′ of the lamination E(L). Since Ẽ−1 is a
right earthquake, along L′ it splits the hyperbolic plane into two half disks and moves
the gap V ′ on one side of L′ to the right with respect to the gap U ′ on the other side
of L′. Because g is an isometry and it maps a leaf of L to another leaf of L, it follows

that g maps Ẽ−1(V ′) and Ẽ−1(U ′) to two adjacent gaps V and U of L separated by

Ẽ−1(L′), which is a leaf L of L. In the meantime, g ◦ Ẽ−1 is also a right earthquake

without changing the comparison along L′. Finally, since Ẽ is a left earthquake and

L ∈ L, it undoes the discontinuity of g ◦ Ẽ−1 along L′. Therefore, for every g ∈ G,
the mapping ẼgẼ−1 is conformal on D and hence it defines an isomorphism between

G and a new Fuchsian group G′ = ẼGẼ−1. Let S ′ = D/G′. The earthquake Ẽ
projects to a quasi-isometry

Eβ,λ : S → S ′,

which is called a left earthquake map of twist or shear λ along β. It is a discontinuous
map as soon as λ 6= 0. In the following, we introduce a quasiconformal map to
represent the same point of Eβ,λ : S → S ′ in the Teichmüller space T (S).

The Douady–Earle extension Φ(Ẽ|S1) : D → D of Ẽ|S1 is a quasiconformal map-

ping. Moreover, Φ(Ẽ|S1) and Ẽ induce the same group isomorphism between G and
G′. This is due to the fact that the Douady–Earle extension of a homeomorphism of
the unit circle is conformally natural; i.e.,

Φ(T1 ◦ f ◦ T2) = T1 ◦ Φ(f) ◦ T2

for any homeomorphism f of the unit circle and any two isometries T1 and T2 of D

(see [2]). Then Φ(Ẽ|S1) projects to a quasiconformal homeomorphism

Φβ,λ : S → S ′,

which we call the Douady–Earle representation of the left earthquake map Eβ,λ : S →
S ′.

Lemma 1. Let g1, g2 be two hyperbolic transformations of the unit disk D with

axes L1, L2 and translation lengths τ(g1), τ(g2) respectively. If L1 intersects L2 at

one point in D, then g3 = g1 ◦ g2 is hyperbolic. Moreover, the translation length

τ(g3) of g3 satisfies

τ(g2)− τ(g1) ≤ τ(g3) ≤ τ(g2) + τ(g1).
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Proof. We label the repelling fixed point of g1 by a and the attracting fixed
point by c, the repelling fixed point of g2 by b and the attracting fixed point by d.
Then L1 connects a to c and L2 connects b to d. Let I be the circular arc between
c and d not containing a and b, and let J be the circular arc between a and b not
containing c and d. See Figure 1 for an illustration. By studying the images of the
endpoints of I or J under g2 and then g1, one can show that the intervals I and J
satisfy (g1 ◦ g2)(I) ⊂ I and J ⊂ (g1 ◦ g2)(J). Therefore, g3 = g1 ◦ g2 has two fixed
points, one in I and another one in J . Then g3 must be a hyperbolic transformation
with axis joining the intervals I and J .

Figure 1. A reference figure for the proof of Lemma 1.

Let p ∈ L1 ∩ L2. Then g−1
2 (p) ∈ L2 and

ρ(g−1
2 (p), g1(p)) ≤ ρ(g−1

2 (p), p) + ρ(p, g1(p)) = τ(g2) + τ(g1),

where ρ(·, ·) denotes the hyperbolic metric on D. Since

τ(g3) = inf
z∈D

ρ(z, g3(z)) ≤ ρ(g−1
2 (p), g1(p)),

it follows that
τ(g3) ≤ τ(g2) + τ(g1).

Applying a similar argument to g2 = g3 ◦ g
−1
1 , we obtain

τ(g2) ≤ τ(g3) + τ(g−1
1 ) = τ(g3) + τ(g1).

Thus
τ(g2)− τ(g1) ≤ τ(g3). �

Theorem 9. Let β be a simple closed geodesic on S, and let

Φβ,λ : S → S ′

be the Douady–Earle representation of a left earthquake map Eβ,λ : S → S ′ of shear

λ along β. Then for any γ ∈ ΣS,

lS(γ)− i(γ, β)λ ≤ lS′(Φβ,λ(γ)) ≤ lS(γ) + i(γ, β)λ,

where i(γ, β) denotes the intersection number between γ and β.

Proof. Let π : D → S be a universal covering map and let G be the Fuchsian
group uniformizing S. Recall that (σλ,L) is a measured lamination with L consisting

of all geodesics in π−1(β) and with the weight of each leaf equal to λ. Let Ẽ : D → D

is a left earthquake on D inducing (σλ,L). Then S ′ is uniformized by G′ = ẼGẼ−1.
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Let g ∈ G such that its axis L projects to γ. Notice that lS(γ) and lS′(Φβ,λ(γ)) are

equal to the translation lengths of g and g′ = ẼgẼ−1, respectively. Let us assume
that γ 6= β and i(γ, β) = 0. Then L intersects none of the geodesics in the lamination

L = π−1(β). Without loss of generality, we may assume that Ẽ|L = id. Thus, for

any point z ∈ L, g(z) ∈ L and hence g′(z) = Ẽ|AgẼ|
−1
A (z) = g(z). By the identity

principle, g′ ≡ g and then they have the same translation length. It follows that

(3.2) lS(γ) = lS′(Φβ,λ(γ)) if γ 6= β and i(γ, β) = 0.

If γ = β, then a similar argument shows that the equation (3.2) holds.
Assume now that γ 6= β and i(γ, β) = n > 0. Let p be a point in D which

projects to a point in the intersection of γ and β. Since p and g(p) project to the
same point, the geodesic segment [p, g(p)] crosses exactly n+1 lines in the lamination
L, denoted by L1, · · · , Ln+1, and n gaps, denoted by A1, · · · , An. Without loss of

generality, we may assume Ẽ|A0
= id, where A0 is the gap that is separated from A1

by L1. Then

Ẽ|An
= T1 ◦ T2 ◦ . . . ◦ Tn,

where Tk is the hyperbolic transformation with axis Lk and translation length λ.
Notice that g maps an open neighborhood V contained in A0 to a neighborhood
contained in An. Thus,

g′|V = (ẼgẼ−1)|V = (T1 ◦ . . . Tn−1 ◦ Tn ◦ g)|V .

By the identity principle,

g′ = T1 ◦ . . . Tn−1 ◦ Tn ◦ g

on D. It remains to show that the translation lengths τ(g′) and τ(g) of g′ and g
satisfy

τ(g)− nλ ≤ τg′ ≤ τ(g) + nλ.

. . .

J 1

p
g(p)

eiω1

eiω2

eiω3

eiωn

eiωg

eiθ1

eiθ2

eiθ3

eiθn

eiθg

A 0

A 1

A 2

An

An+1

I n

Figure 2. Illustration of a step in the proof of Theorem 9.

Clearly, the axis of g intersects Ln. By Lemma 1, we obtain

τ(g)− τ(Tn) ≤ τ(Tn ◦ g) ≤ τ(g) + τ(Tn).

Now we denote the attracting and repelling fixed points of g by eiθg and eiωg and the
ones of Tk by eiθk and eiωk , k = 1, · · · , n+1. Let Ik be the circular arc on S

1 between
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eiθg and eiθk not containing eiωg and eiωk , k = 2, 3, · · · , n, and let J1 be the one on S
1

between eiωg and eiω1 not containing eiθg and eiθ1 (See Figure 2). Note that g maps L1

to Ln+1. In particular, it maps eiω1 to eiωn+1. It follows that Tn maps g(eiω1) = eiωn+1

to a point closer to eiθn than g(eiω1). On the other hand, g fixes eiωg and then Tn
maps it to a point on the circular arc between eiwg and eiθn not containing eiω1 . We
conclude that (Tn ◦ g)(J1) ⊃ J1. A similar argument shows (Tn ◦ g)(In) ⊂ In. These
imply that Tn ◦ g has a fixed point in In and another one in J1. It follows that the
axis of Tn ◦ g must cross the axis of Tn−1. Using Lemma 1 again, we obtain

τ(Tn ◦ g)− τ(Tn−1) ≤ τ(Tn−1 ◦ Tn ◦ g) ≤ τ(Tn−1) + τ(Tn ◦ g).

Similarly, we can see that Tn−1 ◦ Tn ◦ g(In−1) ⊂ In−1 and Tn−1 ◦ Tn ◦ g(J1) ⊃ J1.
Hence Tn−1 ◦ Tn ◦ g has a fixed point in In−1 and another one in J1. Then the axis
of Tn−1 ◦ Tn ◦ g crosses the one of Tn−2. Lemma 1 can be applied again. Therefore,
inductively, we are able to obtain

τ(g)− nλ = τ(g)−
n∑

k=1

τ(Tk) ≤ τ(g′) ≤ τ(g) +
n∑

k=1

τ(Tk) = τ(g) + nλ.

This means

(3.3) lS(γ)− i(γ, β)λ ≤ lS′(Φβ,λ(γ)) ≤ lS(γ) + i(γ, β)λ.

Combining the equations (3.2) and (3.3), we complete the proof. �

Remark 3. Our approach to prove the previous theorem is analytic. Thanks to
one of the referees for providing the following geometric approach. Let us use the
same notation introduced in the previous proof, but let p be a point on the hyperbolic
plane projecting to a point on γ not equal to any intersection point between γ and
β. Then the geodesic arc [p, g(p)] crosses exactly n geodesic lines Lk, k = 1, 2, · · · , n,
which are lifts of β. Let ak = [p, g(p)] ∩ Lk for k = 1, 2, · · · , n and set a0 = p and

an+1 = g(p). The image Ẽ([p, g(p)]) is a union of geodesic arcs {Ẽ([ak, ak+1])}
n
k=0 in

the hyperbolic plane. Set b−k = Ẽ([ak−1, ak])∩ Ẽ(Lk) and b+k = Ẽ([ak, ak+1])∩ Ẽ(Lk)

for k = 1, 2, · · · , n, where Ẽ also represents the extension to the hyperbolic plane of
the part of Ẽ defined on the gap containing (ak−1, ak) for each k = 1, 2, · · · , n + 1.
Then, by definition, the geodesic arc [b−k , b

+
k ] lies on the line Ẽ(Lk) and has length λ

(Lemma 3.6 of [8]). Therefore, the concatenation

δ =

(
n+1⋃

k=1

Ẽ([ak−1, ak])

)
∪

(
n⋃

k=1

[b−k , b
+
k ]

)

has length lS(β) + nλ. Because Ẽ ◦ g = g′ ◦ Ẽ, the piecewise geodesic path
⋃

k∈Z

(g′)k(Ẽ(δ))

is a cross cut, invariant under the action of g′ and represents a closed curve on S ′

corresponding to β via markings. Thus, the length lS′(β) is at most lS(β) + nλ.

4. Proof of main results

Let S be a Riemann surface with corresponding Fuchsian group G and let γ be
an essential simple closed curve on S. A ring domain R on S is a set conformally
equivalent to an annulus {z : a < |z| < 1} in the complex plane, where a is a nonneg-
ative real number uniquely determined by R. The conformal modulus of R is defined
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by Mod(R) = (2π)−1| log a|. A ring domain R is said to be of homotopy type γ if
there exists a simple closed curve γ0 ⊂ R freely homotopic to γ and separating the
boundary components of R. If γ is not homotopic to a puncture then any element
g ∈ G covering γ is hyperbolic and R′

S,γ = H/ < g > is a ring domain that covers S.
It is straightforward to check that Mod(R′

S,γ) = π/lS(γ). Moreover, any ring domain
R in S, of homotopy type γ, can be conformally embedded into R′

S,γ in such a way
that both ring domains have the same homotopy type (see [20] or [14]). Then

(4.1) Mod(R) ≤ Mod(R′
S,γ) =

π

lS(γ)

for any ring domain R in S of homotopy type γ.
Let ϕ be a holomorphic quadratic differential on S. An arc γ is a trajectory of

ϕ if it is a maximal horizontal arc, i.e., if argϕ(z)dz2 = 0 along γ. Every closed
trajectory γ0 of ϕ is embedded in a unique maximal ring domain R0 swept out by
closed trajectories. Two ring domains R0 and R1 associated with γ0 and γ1 are
disjoint or identical.

The quadratic differential ϕ is said to be of closed trajectories if its non closed
trajectories cover a set of measure zero. The associated ring domains of such ϕ divide
S into ring domains swept out by closed trajectories. We say that ϕ is simple if it
has only one associated ring domain.

A set of homotopically non trivial simple closed curves on S is called an admissible
system of simple closed curves provided that they are mutually disjoint and belong
to different homotopy classes. Strebel [20] proved the following theorem.

Theorem 10. (Strebel) Let S be a Riemann surface and {γ1, · · · , γn} an admis-

sible system of simple closed curves on S that are not homotopic to any puncture on

S. Then for arbitrary positive numbers bk, k = 1, 2, · · · , n, there exists a holomorphic

quadratic differential ϕ on S with closed trajectories such that its associated ring do-

mains Rk are of homotopy types γk and heights bk respectively for k = 1, 2, · · · , n.
Furthermore, the quadratic differential ϕ is uniquely determined and has a finite

norm

‖ϕ‖ =
n∑

k=1

b2k/Mk,

where Mk is the modulus of Rk, k = 1, · · · , n.

For each simple closed curve β ∈ ΣS , let ϕβ be the unique simple quadratic
differential with

‖ϕβ‖ =

¨

S

|ϕβ| dx dy = 1

such that its closed trajectories are freely homotopic to β. We will denote the asso-
ciated ring domain of ϕβ by RS,β. Notice that (4.1) implies

(4.2) Mod(RS,β) ≤ Mod(R′
S,β) =

π

lS(β)
.

Let S0 be a hyperbolic Riemann surface that is not an annulus. Let β be a simple
closed geodesic on S0 and ϕβ be the corresponding simple quadratic differential. For

each t ∈ (0, 1), µt = −t
ϕβ

|ϕβ |
defines a Beltrami differential on S0. We use µt to give a

new conformal structure on S0.
For any local parameter z : U → V on S0, let z′ : V → z′(V ) be a quasiconformal

mapping with complex dilatation µt|V . Since µt is a Beltrami differential, the new
parameters z′ give a new complex structure on S0. We will denote the new Riemann
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surface by St. The identity map idt : S0 → St is a Teichmüller mapping with initial
quadratic differential ϕβ and some terminal quadratic differential ψt. The mapping
idt can be expressed as

idt : ζ 7→ ζ ′ =
ζ − tζ

1− t
where ζ and ζ ′ are natural parameters of ϕβ and ψt respectively. It follows that idt
stretches the vertical trajectories of ϕβ by a factor Kt =

1+t
1−t

and leaves the lengths
of the horizontal trajectories invariant. Then the quadratic differential ψt is also
simple and its associated ring domain RSt,β coincides with RS0,β. Nonetheless, the
conformal moduli are different; in fact it is easily seen that

Mod(RSt,β) = KtMod(RS0,β).

Let βt be the geodesic on St homotopic to β, it follows from the above equality
and (4.2) that

(4.3) lSt
(βt) ≤

π

Mod(RSt,β)
=

π

KtMod(RS0,β)

It follows that lSt
(βt) → 0 as t→ 1.

Consider the geodesic ray (in the Teichmüller metric) given by

α(t) = [St, idt], t ∈ [0, 1),

and another continuous path defined by

(4.4) α∗(t) = [S ′
t,Φβt,λt

◦ idt], t ∈ [0, 1),

where λt is a positive parameter continuously depending on t and Φβt,λt
is the

Douady–Earle representation of the left earthquake Eβt,λt
of twist λt along βt. We

show the following theorem.

Theorem 11. Let α(t) and α∗(t) be as above. If λt = o(| log lSt
(βt)|) as t → 1,

then

lim
t→1

dL(α(t), α
∗(t)) = 0.

Proof. Suppose γ is a closed geodesic in St. Then Theorem 9 implies

(4.5) lS′

t
(Φβt,λt

(γ)) = lSt
(γ) if i(γ, βt) = 0.

On the other hand, if i(γ, βt) > 0, then Theorem 9 implies

1−
i(γ, βt)o(| log lSt

(βt)|)

lSt
(γ)

≤
lS′

t
(Φβt,λt

(γ))

lSt
(γ)

≤ 1 +
i(γ, βt)o(| log lSt

(βt)|)

lSt
(γ)

.

By inequality (4.3), lSt
(βt) is small when t is close to 1. In this situation, we

know, by the Collar Lemma, that βt has a collar neighborhood of approximate width
Dt ≈ log(16/lSt

(βt)). Then

lSt
(γ) ≥ i(γ, β) log(16/lSt

(βt)).

Thus, if t is close to 1 and i(γ, β) > 0, then

(4.6) 1−
o(| log lSt

(βt)|)

log 16
lSt

(βt)

≤
lS′

t
(Φβt,λt

(γ))

lSt
(γ)

≤ 1 +
o(| log lSt

(βt)|)

log 16
lSt

(βt)

.

By using (4.5) if i(γ, βt) = 0 or (4.6) if i(γ, βt) > 0 and letting t→ 1, we obtain

lim
t→1

dL(α(t), α
∗(t)) = 0. �
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Remark 4. As a Teichmüller geodesic, the curve α(t) leaves any compact subset
of T (S0) under the metric dT as t → 1. It also leaves any compact subset under the
metric dL since lSt

(βt) → 0 as t→ 1; that is,

dL(α(t), α(0)) → ∞ as t → 1.

Using the previous theorem, we obtain

dL(α
∗(t), α(0)) → ∞ as t → 1.

Then the inequality (1.3) implies

dT (α
∗(t), α(0)) → ∞ as t → 1.

Therefore, the curve α∗(t) leaves any compact subset of T (S0) under both dT and dL
metrics as well.

Theorem 12. Let α(t) and α∗(t) be as above.

(1) If λt → ∞ as t→ 1, then limt→1 dT (α(t), α
∗(t)) = ∞.

(2) If there exist two positive constants C1 < C2 such that C1 ≤ λt ≤ C2

for all t, then there exist two positive constants m < M such that m ≤
dT (α(t), α

∗(t)) ≤M for all t.

Proof. Let πt : D → St be the universal covering map and let Gt be the group

uniformizing St. Denote by Ẽt : D → D the left earthquake corresponding to Eβt,λt
.

By inequality (3.1) and Theorem 6, we obtain

‖Ẽt‖cr ≥
1

C ′
‖σλt

‖Th ≥
1

C ′
λt.

If λt → ∞ as t → 1, then the cross-ratio distortion norm approaches ∞ as t → 1.

It follows from Theorem 8 that the maximal dilatation of any extension of Ẽt is
approaching ∞ as t → 1. Since any lift Ft of the extremal quasiconformal map-

ping in the homotopy class of Φβt,λt
satisfies Ft|R = (T ◦ Ẽt)|R for some Möbius

transformation T , it follows that K(Ft) → ∞ as t→ 1. That is,

lim
t→1

dT (α(t), α
∗(t)) = ∞

and the first part of the theorem follows.
Now suppose that λt ≤ C for all t. By inequality (3.1) and Theorem 6, we now

obtain

C ′ max {C2, 2C2/Dt} ≥ C ′‖σλt
‖Th ≥ ‖Ẽt‖cr ≥

1

C ′
‖σλt

‖Th ≥
C1

C ′
> 0,

where as before, Dt ≈ log(16/lSt
(βt)) is the width of a collar neighborhood around

the geodesic βt and Ẽt : D → D is a left earthquake map corresponding to Eβt,λt
.

Since the cross-ratio distortion norm of Ẽt is bounded from above, it follows from

Theorem 7 that there exists a constant M such that Ke(Ẽt) ≤ eM for all t. In
particular

dT (α(t), α
∗(t)) ≤ M for all t.

On the other hand, since the cross-ratio distortion norm of Ẽt is bounded from
below, we know, by Proposition 1, that there exists a constant m > 0 such that

em ≤ Ke(Ẽt) for all t. Thus,

m ≤ dT (α(t), α
∗(t)) for all t. �
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From Theorem 4 in [19], we know that the curve α(t), t ∈ [0, 1), is a Teichmüller
geodesic in T (S0) emanating from the base point. Now let λt be a nonnegative pa-
rameter continuously depending on t ∈ [0, 1) and satisfying that λt = o(| log(lSt

(βt)|)
and λt → ∞ as t → 1. Then we obtain the first part of Theorem 1 by applying
Theorem 11 and the first part of Theorem 12 to the curve α∗(t) given in (4.4). On
the other hand, by letting λt be bounded from above and from below by positive
constants, we obtain the second part of Theorem 1 by using Theorem 11 and the
second part of Theorem 12.
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