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Abstract. In this note, we establish characterizations for the homogeneous Besov-type spaces
B;;g(R") and Triebel-Lizorkin-type spaces FquT (R™), introduced by Yang and Yuan, through frac-
tional Hajtasz-type gradients for suitable values of the parameters p, ¢ and 7 when 0 < s < 1, and
through grand Littlewood—Paley-type maximal functions for all admissible values of the parameters.
These characterizations extend the characterizations obtained by Koskela, Yang and Zhou for the
standard homogeneous Besov and Triebel-Lizorkin spaces.

1. Introduction

The main purpose of this note is to establish pointwise characterizations of the
Besov-type and Triebel-Lizorkin-type function spaces, introduced by Yang and Yuan
in [14] and [16], through Hajtasz-type gradients. Characterizations of this type go
back to Hajlasz’s pointwise characterization of the classical Sobolev spaces [6], and
they have found many applications in both the Euclidean setting as well as in the
setting of more general metric measure spaces. The families of function spaces con-
sidered in this paper include the standard Besov and Triebel-Lizorkin spaces as well
as the fractional Morrey—Sobolev spaces for smoothness indices s € (0, 1) as special
cases.

To begin with, we first recall the definitions of the standard (homogeneous)
Triebel-Lizorkin and Besov spaces. For a dimension n € N := {1,2,3,---}, which
shall be fixed throughout the paper, we denote by S(R™) the class of Schwartz func-
tions, i.e. the class of complex-valued C*°(R") functions ¢ for which

Pllsy, = sup (14 |2])"]0"d(2)]
[v|<k, z€R™

is finite for all k, m € Ny := NU{0}; here |y| = |y1|+ -4 || and 07 = 97" - - - O
for all multi-indices v = (1, -+ ,7,) € Ni. The seminorms || - [|s, , induce a locally
convex topology on S(R"). We denote by &’'(R") the class of tempered distributions,
i.e. the class of continuous complex-valued linear functionals on S(R"), and equip
S'(R™) with the topology induced by the mappings f — (f,¢), ¢ € S(R"). For
standard facts about the Schwartz space and tempered distributions, particularly
their Fourier-transforms and convolutions, we refer to e.g. [5].
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Following [3], ¢ and ¢ shall throughout the paper be fixed elements of S(R")
satisfying

supp @, suppt) C {& € R™: 27" < [¢] <2},
2()], [9(€)] = ¢>0 when 3/5 < |¢| < 5/3

and

> PN =1 when & #0.
jEZ
For ¢ € S(R") and j € Z, we write ¢; for the Schwartz function = — 27"¢(2/x).

- Fors € R, 0 <p<ooand 0 < g < oo, the homogeneous Triebel-Lizorkin space
Fy (R") is defined as the class of tempered distributions f for which

e </R > (@) dz) W

JEZ

/]

is finite, with the obvious modification made when ¢ = oco. For s € R, 0 < p < o0
and 0 < ¢ < oo, the homogeneous Besov space B, (R") is defined as the class of
tempered distributions f for which

1/q
. q
By () = (Z (27 lles % Fllomn ) )

JEZ

/]

is finite, with again the obvious modification made when ¢ = oco. It is well known
that after quotienting out the tempered distributions whose Fourier-transforms are
supported at the origin, i.e. the polynomials, Flf,q(R") and B;q(R") become quasi-
Banach spaces, independent of the choice of ¢ in the sense that two admissible choices
induce equivalent quasinorms; see for instance [13].

The following Triebel-Lizorkin-type and Besov-type spaces were introduced by
Yang and Yuan in [14]| and [16]. For s e R, 0 <p < o0, 0<g<ooand 0 <7 <
o0, the homogeneous Triebel-Lizorkin-type space FquT (R™) is defined as the class of
tempered distributions f for which

1 7P/ 1/p
fllpsrmnmy = sup ———— / l <2js<p-*fz>} dz
Iz = 59 1527 \Uswas Z o5 % £(2)]

Jj=

is finite, with the obvious modification when ¢ = co. For s € R, 0 < p < oo,
0<g<ooand0<7 < o0, the homogeneous Besov-type space B;;g(R") is defined
as the class of tempered distributions f for which

1/q
1 o q
/] Byr(mn) —  Sup W (Z <2J ||<Pj * f“LP(B@,T@))) )

zeR™, l€Z >t

is finite, with again the obvious modification when ¢ = oco. Again, these spaces
become quasinormed spaces after quotienting out the polynomials. Actually, in the
definitions of [14] and [16], the supremum is taken over dyadic cubes instead of balls
with dyadic radii, but it is quite easy to see that the above definitions yield equivalent
quasinorms. It is also known that these spaces are independent of the choice of ¢ (|16,
Corollary 3.1]) and that they are quasi-Banach spaces (|11, Proposition 2.2] and the
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references therein). Here are a couple examples of how these spaces coincide! with
other well-known function spaces:
. }:7;7;? (R") = F;’.Q(Rn) and B5Y(R") = B3 (R") for all admissible parameters.
o F;’ql/p(R") = I, (R") for all admissible parameters; in particular Flgél/p(R")
= BMO(R").
s 11 i :
® Bus "(R") = N5, (R") for 0 < u < p < oo and s € R, where N¥

b,u,00 p,u,q(Rn)
stands for the homogeneous Besov-Morrey space, i.e. the Besov-type space

based on the Morrey space MF?(R"™) instead of LP(R™), introduced in [9] and

[10].
s i1 A

e Fy "(R") =&, ,(R") for 0 <u <p<oo,0<q<ooands € R, where
é";%q(R") stands for the homogeneous Triebel-Lizorkin-Morrey space, i.e. the
Triebel-Lizorkin-type space based on the Morrey space MP(R™) instead of
LP(R™).

Co,i—2 L. .
e For 0 < a < min(l,§), the space F,,> "(R") coincides with the space
Q.(R™) introduced in [2].
e For % < 17 < oo and all admissible values of p, ¢ and s,

. sn(r—3)

Bo VR,

. stn(r—1)

(1) F5T(R™) = Fropo »(R") and BT (R")

Recall that for s > 0, FCfO,OO(R”) and BSOM(R”) both coincide with the ho-
mogeneous Holder—Zygmund space of order s; see e.g. |5, Theorem 6.3.6] and
[3, Section 5.

We refer to e.g. [11] and [17] for the definitions of the spaces Fjo’q(R"), BMO(R™),
£ (R, N5, (R") and Q,(R™) (which we shall not need in the sequel) and to

[f77,7qPropositi%n’q1 and Theorem 2| as well as the references therein for details about
the above coincidences. We also refer to [11] for a detailed discussion of the history
of the spaces in question.

Inspired by [8], we now define function spaces analogous to F;’g (R™) and B;:g(R")
through Hajtasz-type gradients. If u : R" — C is a (Lebesgue-)measurable function
and 0 < s < oo, D*(u) stands for the class of all fractional s-Hajlasz gradients of u,
i.e. the class of sequences ¢ = (9k )kez of measurable functions g;: R™ — [0, o] for
which there exists a set £ C R"™ of measure zero such that, for all k € Z,

u(z) —u(y)| <[z —yl* (ge(z) + 9r(y))

whenever z, y € R"\E and 27%7! < |z —y| < 27F.
For 0 < p < 00,0 <¢g<00,0<s<o0and <7 < o0, wedefine M7 (R") as
the class of measurable functions v such that

1 p/a 1/p
sor e = inf R S g(2)7)  d
[l vz oy FeDs (w) me;}}%d 1Bz, 20 /B(Me) ( 9x(2) ) 2

k>¢

Here and in the sequel, X =Y for function spaces X and Y means that they embed continuously
into each other.
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is finite, and for 0 < p < 00,0 < g < 00,0 < s <ooand 0 <7 < oo, we define
Ny T(R™) as the class of measurable functions u such that

1/q
N R T inf =~ sup |B(z, 29| (Z 196170 132,2-1) )

lul
€D*(u) zeRn, LeZ ot
is finite, with the obvious modifications for ¢ = oo in both cases. M;; (R™) and
le;; (R™) become quasinormed spaces after quotienting out the functions that are
constant almost everywhere. For 7 = 0, they coincide with the spaces le,q(R”) and
Ng’q(R") introduced in [8]. Note that analogous function spaces could well be defined
on any metric measure space instead of just R"™; see [8] and [4] for the case 7 = 0.
~ Our main result is the following pointwise characterization of the elements of
Fyr(R") and By7(R™) for s € (0,1) which generalizes the result obtained for 7 =0
in |8, Theorem 3.2].
: n 1
Theorem 1.1. ' (i) For s E'(O, 1),p € (;5,0), q € (5,00 and 7 € [0, ; +
1—s S,T n\ _ 18,7 n :
=), we have M>7(R") = F;7(R") with equivalent quasinorms.
(ii) For s € (0,1), p € (45, 0), ¢ € (0,00] and T € [0,1—19 + %), we have
le;; (R™) = B;:g(R") with equivalent quasinorms.

Note that if 0 < s < 1 and 7 > 1/p+ (1 — s)/n, then s+ n(r —1/p) > 1, so in
view of (1) we do not expect that the range of 7 in the theorem could be improved.
The theorem follows from Theorems 1.2 and 1.3 below, which are of independent
interest and whose setting we shall explain next. . .

Inspired by [7] and [8], we define “grand” counterparts of F;;7(R") and B,7(R").
For all N € NoU {—1}, and m, | € Ny, let

.Aév,m = {¢ e S(R"): / 27¢(z) dr = 0 when |y| < N and [|¢][sy, 1. < 1} ,

where the moment condition is interpreted to be void when N = —1. For s € R,
0<p<o00,0<qg<o00,0<7<ocand N, mand [ as above, we define the grand
Triebel-Lizorkin-type space Al mF;f 7(R") as the class of tempered distributions f

for which
» 1
’ dz)

is finite, with the obvious modification for ¢ = co. For s € R, 0 < p < o0, 0 <
q<00,0<7<o00and N, mand [ as above, we define the grand Besov-type space
Al NmB; 7(R") as the class of tempered distributions f for which
1
q q
LP(B(z,2— )) )

is finite, where the supremum is taken pointwise and the obvious modification is
made for ¢ = co. The two quantities defined above are quasinorms when N = —1,
and when N € Ny, they become quasinorms after quotienting out the polynomials
with degree at most N. We obviously have ANmFIfg( ") o= Ay, pq(Rn) and

1 s, | i oy

1 / { , ‘
= Ssup = <2ys sup . )
z€R", (€Z ‘B(LL’, 2—5)‘7' ( B(z2-) Z el ‘¢] f( )‘

N,m

sup *f\‘

z€R", (EZ pedl .

. |
. = TR oO—0\ |7 ‘]S
Illas, ey = S0 Te (% <2
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A§v7mB;;2(R") = .AlN,mB;,q(R") for all admissible parameters, where AlN,mF;q(R")
and A§V7mBI§7q(R”) are the grand Triebel-Lizorkin and grand Besov spaces defined in
[7] and [8]. The following result extends [8, Theorem 3.1].

Theorem 1.2. (i) Let 0 < p < 00,0 < ¢ < 00, s € Rand J =n/min(1,p,q).
If the integers N > —1, m > 0 and | > 0 satisfy

(2) N +1>max(s,J —n—s) and m >max(J,n+ N +1),

then F57(R") = Ay, Far(R") for all T € [0, 1].

(i) Let 0 < p < 00,0 < ¢ <00, s € Rand J = n/min(l,p). If the integers
N > —1,m >0 andl > 0 are related by (2), then By7(R") = Al Bir(R")
for all 7 € [0, 7].

(iii) The results of (i) and (ii) actually hold for all T € [0, 1—19 + 5-), where

e=min(2(N+1-s),m—J,2(N+1+n+s—J))>0.

The proof of the theorem is presented in section 2. We also have the following
result which generalizes the analogous results for 7 = 0 obtained in [8, Theorem 3.2].

Theorem 1.3. Suppose that s € (0,1) andm >n+1ors=1andm >n+ 2.

(i) For p € (%=,00), ¢ € (H=, ], T € [O,;—i—%) and | € Ny, we have

n+s’? n+s?

rs, T n\ _ Al 8, T n . . .
M7 (R") = Ay, Fyi7 (R") with equivalent quasinorms.

0,m~ p,q

(ii) Forp € (3, 00], ¢ € (0,00], 7 € [0, ; ++-*) and | € Ny, we have NoT(R™) =

n+s’?

A&mB;:;(R") with equivalent quasinorms.

1

The proof of this is presented in section 3.

Previously, the Besov-type and Triebel-Lizorkin type spaces have been charac-
terized through difference integrals (see e.g. [1] where the non-homogeneous versions
of the spaces are treated) and through Peetre-type maximal functions as well as local
means in [15]. We refer to [11] for a variety of other characterizations.

We end this section with some notation conventions. We write |A| for the n-di-
mensional Lebesgue measure of a measurable set A, and f, f or f4 for |[A[! [, f(z) dx
whenever the latter quantity is well-defined. For two non-negative functions f and
g with the same domain, we write f < g if f < Cg for some positive and finite
constant C', usually independent of some paramters; f ~ g means that f < ¢ and
g < f. For real numbers x and y, we may write x A y for min(x,y). For a dyadic
cube Q =279 (k+[0,1]"), j € Z, k € Z", we let £(Q) = 277 and 2 = 277k. For a
ball B of R", we denote by AB, A > 0, the ball cocentric with B with radius A times
the radius of B.

We write P(R") for the vector space of polynomials in R" and Py (R") for the
vector space of polynomials with degree at most N when N € Ng; when N < 0,
we let Py(R"™) := {0}. We shall frequently abuse notation by writing FquT (R™) for
both the class of tempered distributions f such that || f[[zsr gy is finite as well as
the function space {f € S'(R")/P(R"): || f|lps7®») < 0o}, and similarly for other

spaces defined in this section as well. When talking about FIf;qT (R™) and B;:;(R")
in the same sentence with some indicated parameter range, it is understood that the
possibility p = oo is excluded in the case of F;7(R"), and similarly for the other
pairs of spaces defined in this section.
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2. Proof of Theorem 1.2

The argument below modifies the proof of [8, Theorem 3.1]; we have left out
some details that carry over unchanged.

Proof of Theorem 1.2. (i) First, if a tempered distribution f belongs to

AlemFIf;qT(R"), then || fll por @y S ||fHA§V fo ey < 00 since our fixed ¢ is a constant

multiple of an element of Aly . In this sense we have Aév,mF;f,’qT (R™) C F;’g (R™).

Conversely, if a tempered distribution f belongs to szqT (R™), it is shown in the
proof of [16, Lemma 4.2] that

107 (W) % @55 )l oy S 27 OH/P=omm)] ]

for all integers j and multi-indices ~, so the discussion in [3, pp. 153-155] applies: if

Fpig(Rm)

7] > s+nT—n/p, then 3, |07 (%@ * f)|| L @mn) < 00, so there exists polynomials
Pr)gen in P (R™) with L = |s +n7 —n/p| and a polynomial P such that
f

j=—K

with convergence in &’'(R™); here the polynomial Py is unique modulo Pr(R™) in the
sense that if @, @ (Pj)gen and P} are, for i € {1,2}, two choices of admissible
functions as above, then P}l) —P}2) € Pr(R"). Furthermore, L < s+§5 < N+1, and
it is easily checked that for fi, fo € F;7(R"), (fi + Pp) — (f2+ Py,) is an element of
Pn(R™) if and only if f; — f, is a polynomial. The rule f — f+ Py =: fthus yields
a well-defined, linear and injective mapping from the function space F;7(R") into
S'(R™)/Pn(R™). The plan now is to show that this mapping actually takes F57(R")
continuously into Al F57(R™).

N,m* p,q
Since m > n + N + 1, by the proof of |7, Theorem 1.2] we have

3) TS (ZaQRwRQ\@erQ(z)
(Q=2-1 \ R

for all ¢ € Alem, z € R™ and j € Z, with the implied constant independent of these
parameters. Here the outer sum is taken over all dyadic cubes ) of R™ with side

length 277 and the inner sum over all dyadic cubes R of R"; tg denotes (f, {ﬂ;) with
VYr(z) = 27"/ %) (x — 2) for all dyadic cubes R with side length 27%; and

(4) agr = 9—li=jl(n/2+N+1) (1 + 2min(i,j)|xQ _ $R|)_m

for all cubes @ and R with side lengths 277 and 27 respectively. The cubes @ in (3)
are pairwise disjoint, so for any dyadic cube P with side length 27¢ we have

(s

j=t

[]Z20 5 (Seontnl) tervaa)]

>t Q=277 \ R

1/p

S

1
1P|
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([ [ o St o] )

Qcp
S H (Z aQR|tR|)
R

where f >7(R") stands for the space of sequences (bg)q of complex numbers, indexed
by the dyadlc cubes of R", such that

Y

Qll fpg (R™)

1/p

1 —s/n—1/2 qp/q
I a)alljzzme = sup 5 Z(|@| bolve(@)'| dz)

QCP

where the supremum is taken over all dyadic cubes P of R" is finite. From (4) it is
easy to check that for € > 0 as in the statement of part (iii), we have

1@\’ rg—wal N\ [UQNT ()T
o= (m) (1 ’ max(e@),e(ﬁ’))) o (m) | (@)
for all dyadic cubes @) and R, i.e. that the operator
(bg)q — (Z CLQRbR)
R Q

is e-almost diagonal on ”(R“) [16, Definition 4.1]. Now 7 < = —l— ~, so according
to [16, Theorem 4.1], the operator described above is bounded on f;,;(Rn)- Also,
by [16, Theorem 3.1], the operator u ((u,¢Q>)Q is bounded from F;;;(R") to

'If”qT (R™). Combining these results with the estimates above yields

1L, 5 || (2 cenln
R

i.e. the mapping described above is a continuous embedding of FIf;qT (R™) into
Al mF; T(R"). '

(i) We have A mB; 7(R™) C By7(R") in the same sense as above. Conversely, if
a tempered distribution f belongs to By 7(R"), again by the proof of [16 Lemma 4.2]
and [3, pp. 153-155] it suffices to show that ||f||Az

(i), is controlled by a constant times || f]|

S lte)e

forq (R™)

foa

(R™)

Q

BT (R where f is as in part
p

BT (R Usmg (3), one can check that

TP (o)
R

where b;;(R”) stands for the space of sequences (bg)q of complex numbers, indexed
by the dyadic cubes of R", such that

oo 1/p
1 . q]P/a
iR = SUP B 2 { > (e ] ’

J=jp - QCP, £(Q)=2"7

Y

by (R™)

Q

I(b@)e
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where the supremum is taken over all dyadic cubes P of R™ and jp = —log, ((P), is
finite. Combining this estimate with [16, Theorems 4.1 and 3.1] as above then yields

||f||A§V7mB§j;(Rn) S/ By T (R™)"
(iii) This is contained in the arguments above. O

3. Proof of Theorem 1.3

We now turn to the identification of the Hajtasz-type spaces with the spaces
defined through grand maximal functions. We shall need the following Sobolev-type
embedding, which is a special case of |8, Lemma 2.3].

Lemma 3.1. Let s € (0,1] and 0 < € < ¢ < s. Then there exists a positive
constant C' such that for all z € R", k € Z, measurable functions v and ¢ € D*(u),

inf ][ uly) —cldy < 027+ 3 27967 <][ 95(y) ™ dy)
c€CJB(z,2-F) Z Bleaht1)

k=2

n-4e

n

To talk about the identification of the spaces of measurable functions defined
through Hajtasz gradients and the spaces of tempered distributions defined through
grand maximal functions, we need the following basic lemma. The techniques of the
proof are similar to the ones employed in [7, Theorem 1.1] and [8, Theorem 3.2].

Lemma 3.2. (i) Let u € M;’;(R") oru € N;;;(R") with s € (0,1], p €
(-2, 0], ¢ € (0,00] and 7 > 0. Then u defines a tempered distribution in

n+s’

the sense that for all functions ¢ € S(R"), u¢ is integrable and

[ o] < cwlsls,.

for some integer N depending onn, s, p and T.

(ii) Suppose that f € S'(R") belongs to Alo,mFIfg(R”) or .Alova;:g(R") with
s € (0,00), p € (45,00, ¢ € (0,00], 7 € [0,00) and I, m € Ny. Then f
coincides with a locally integrable function in the sense that there exists a

function f € L\ (R") such that

loc

(f.o0)= [ fo
e

for all p € S(R™) with compact support.

Proof. (i) Let |ul| denote either |[ul|y;r gy or [[u|l 57 ®n), Whichever is finite.
Fix € and ¢ such that 0 < ¢ < ¢ < s and . < p. For any z € R", Lemma 3.1
yields

n—+e

n

g l—eldrs wt S 200 (f gway)
ceC B(ZB,I) ?GDS(H) Z B(w’Q) J

=2

< inf 2797 g | 1o (B2
g8l 2 7 ol

S D27l < oo,

j=-2

so u is locally integrable.
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Now write N for the smallest integer strictly greater than max(n,n+s+nr— %)
For any ¢ € S(R™) we then have

L, @@l d < wsonlills <> [ Ju(e)  upon] [6(2)] da

E>1 \BO2k 1
S llson | [ulon + > 27 / u(z) — up,y| do
k>1 B(0,2F)
~ 11615, x |u|B<o,1>+Z2-k<N-">][ u(z) — upo| de
E>1 B(0,2%)

S llso | lulzon +3_ 27" Z ][ o _uB(O,Wx)
k>1 ")

S 1l (elaon + 322V fule) — ungado )
i>0 B(0,2")

As above, the integral in the ith term of the latter sum can be estimated by

n+e
lu(z) — upay| de < inf 2% 9=I(s=¢) <][ g;(y) ™ dy) 7
][B(O,2i) ™~ FeDs(u) j>2i: 9 B(0,2i+1) /
< inf 2 Z 9= |B(O 2707 ”||93HLP(3022+1))
?eDé( ) j>—i—2
S 2Ty T gy | 2T .
Jjz—i—2

Thus,

[ u@)o@)lds < 6, <|u|B<o,1> + 22“"+8+"T—%—N>Huu> ,

i>0
where the quantity inside the latter parentheses is finite because n+s+nr— g —N < 0.
(ii) Let || f|| denote either ||f||A67mF;’,qT(Rn) or ||f||Af)’mB;;g(Rn)a whichever is finite.
Fix a compactly supported ¥ € S(R") such that fRn ¥ = 1. It is well known that

f=0%f+> (901 —0;)*f
j=0

with convergence in §'(R™), so it suffices to show that
Z H J+1 fHLl
j>0

whenever B C R" is a ball with radius 1. For p > 1, this is almost immediate: ©; —9
is a constant multiple of an element of Aj,, so

Z || Jj+1 — Uy f”Ll < 22_]3”2]8 (191 - 19)] * fHLp(B) S 22_]S||f” < Q.
§>0 j=0 j=0
Suppose now that 2= < p < 1. If ¥ € R" and y € B(x,277), j € Ny, then
B(2) == p(z — 2 (x — 1)) is for all ¢ € A} 0.m @ uniform constant multiple of some
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element of Aj,,, and we have ¢;(x) = ¢;(y). Thus,

1/p
sup |y £(2)] S (?[ sup |¢j*11yﬂpdy>
d)E‘AO m B(ZE 273‘) ¢€A6,m

<2__J ‘st sup |¢; * f|
d)E‘AOm

< 2j—"—js—jn7— )
sy S2F IS

Using this estimate in an arbitrary ball B of radius 1 we thus get

DM@ =) % fllxsy S D 100 =95 % FUlE s 101 = 9); % fllf s

Jj=0 §>0
In_ s jnr I=p —ijs
sZ@pﬂJWD 2 |IA11)"
>0
<SPG f) < o,
7>0
since 2(1 —p) —s < (n+s)(1 - 55)—s=0. O

We are now ready to give the proof of Theorem 1.3. The methods are based on
the case p = oo of the proof of [8, Theorem 3.2].

Proof of Theorem 1.3.  We shall first prove (i) and (ii) under the assumption
that s € (0,1) and m > n + 1.

(i) We start by establishing the embedding M”(R“) C Af mF;(;(R”) with the
assumptlon that ¢ < co. To this direction, fix € and ¢ so that 0 < e < € < s and

o < min(p, q).
Let u € M;;(R”), and choose ¢ € D*(u) so that

1 p/a 1/p
Sup N, / ( gkyq) dy < 2wl yysr rany-
A BT e | 2220 el e

Recall that by Lemma 3.2 above, u defines a tempered distribution. Since m > n—+1,

we have
nte
(5)  sup [grru(z)| 270 20D YT ol (][ gy dy)
¢€-A i<k i>5—2 B(z,279%1)

for all k € Z and z € R", where the implied constant does not depend on these two
parameters; a similar estimate is established in [8, pp. 15-16], but (5) can also be
deduced in a manner similar to the proof of part (i) of Lemma 3.2. We now consider
a ball B := B(x,27%) with ¢ € Z and use the estimate (5) for 2 € B and k > ¢. The
terms of the sum with 7 < ¢ can be estimated as in the proof of Lemma 3.2:

n+te

_n_ " Jn LI
© (f s )" $2F Il S 25 Tl
B(z,2-3+1) P
and since 1—s+%—n7'>0, we get

i(1—€ —i(s—¢€ _n_ " j—J5s j*n_'nT
D 200 Y g )<][ | gi(y)”+€dy) S YT ull g ey

j<t i>j—2 B(z,279+1) <t

f(1—s+2—
S 207 )| o e -
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For the terms with j > £, we have B(z,277%1) C 2B for all z € B, so that

n—4e
7 (F o) " <M (% van) ()%
B(z,2-3+1)

where M is the Hardy—Littlewood maximal function. Combining these estimates,
we have

p
q

1 / |i k a
2% sup ¢y * u(z)|] dz
B /4 <k22£ $eAl .

|B‘ s) Zl s ——nT a
® S g (27 (O g

k>4

1 : ’ ; ’ - n+te 1
+ W/ (Z |i2—k(1—3) Z 2.7(1—6 ) Z 2—2(8—6 )M <gin+e X2B> (Z) :; :| ) dZ.
B

k>0 0<j<k i>j—2

QI3

Since 1 — s > 0, the first quantity can be estimated easily:

|B| —k(l—s L(1—s+2—nT) a ‘
B | 2o 2 (2 i) ) S el gy

k>t

For the second quantity, we exchange the order of summation in the integrand as
follows:

Z [2—k(1—s) Z 9i(1—€) Z Q—i(s—e’)M< 7L+EX2B>( )"ffr

k¢ 1<j<k i>j—2
r q
~ 9—k(1-s) Z 2—’i(8—6/)M (ngEXw) (Z) noke Z 2j(1—5’)]
k>t L i>0—1 < j<min(k,i+2)

n

- —S i(1—s n+e nte
~ gh=)  §7 il >M<9+XB>()H

k>0 L £—1<i<k—2

q
+ 2kls=€) Z 275 A\ (gi"?Xw) (Z)nj’e]

i>k—1

Now using Holder’s inequality when ¢ > 1 and the sub-additivity of ¢t +— t¢ when
< q < 1, the latter quantity can be estimated from above by a constant times

Z [2—k(1—s)(q/\1) Z 9i(1=s)(aA1) Aq (gz”*s X2B> (z)"ff‘l

k>t (—1<i<k—2

n—l—

| ok(s=¢)(an1) Z 9—i(s=¢)(an1) Aq (g"“x B) (z )Tq]

i>k—1

Z M( 7L+5X2B)( )”ffq‘

i>0—1
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Since - p > 1 and "*Eq > 1, the Fefferman-Stein vector valued maximal inequality
thus ylelds

1 —k(1—s j(1—€ —i(s—€’ nte nte N\
|B|Tp/ (Z lQ k(1—s) Z 9i(1-¢) Z 9—ils=€) Aq <9i+ X2B> (2)n } ) dz
B\ k>¢ 0<j<k i>5j—2

ntey
\B|Tp/(ZM<9WX2B> (z>”fq> "

>0-1

P

1 q
< ()4 < P
S (2 0607) s S gy

i>0—1

All in all, taking the supremum over all admissible B in (8) yields
lull 4y, i ry S Null gz oy

i.e..MIf”g(R”) C Al07mFIf7@;(R”). The case ¢ = oo can be handled in a similar but
easier manner.

Now suppose that f € Alo7mF;7@qT (R™). According to Lemma 3.2, f coincides with
a locally integrable function, so fixing a compactly supported ¢ € S(R™) such that
fR" ¥ =1, we have f = lim;_,o, ¥, * f pointwise almost everywhere. In particular, if
x and y are distinct Lebesgue points of f and k € Z satisfies 27%71 < |z — y| < 27,
we have

F(2) = F)| < s f() = Du = f HZ( 9); % F@) + 10 = 9);% ()],

and since both ¥, — ¥ and z — 9¥(z) — 9(z — 2¥[x — y]) are constant multiples of
elements of Aj ., we get

|f(x) = fW)I S o — yl*(ha(2) + hae(y)),
where

hi(x) =2 sup ¢, = f(x)]

>k PEAL m
for all £ € Z and x € R. Thus,
1 p/q 1/p
ullyprrmny S osup ——— hu( dz ,
| ||Mp,q(R ) meR",pZGZ |B(z,2-%)| /B( (; i )

and since for any ¢ € Z and z € R" we have the pointwise estimates

St =32 2 s 2o 102 )

k>£ k>f j>k d)E'AO m
< Z oks(aA1) Z 9—3s(an1) sup 2jsq|¢j * f(x>|q
k>0 ik A
< 2233‘1 sup |¢; * f(2)]%,
St pe Al .

we conclude that
||U||M;;;(Rn) S ||U||Ag,mF;;;(Rn),
ie. A, Fer(RY) C MyT(R™).
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(if) That N37(R") C A}, Bsr(R")
the same estimates as above; here all values ¢ € (0, 00] are permitted because we
only need the L*+"P-boundedness of M, where € € (0, s) satisfies p >

instead

+e’

of the Fefferman-Stein maximal inequality. Let u be a function in le’; (R™) and
7 € D*(u) a fractional s-gradient that yields the quasinorm of u up to a constant
multiple of at most two. Letting B := B(z,27*) for arbitrary x € R" and ¢ € Z,
arguing as in (5), (6) and (7) we have

2" sup |gp xu(z)| S 2_k(1_5)2£(1—8+%—n7)“u’

Ns,‘r R
peA piq (R™)
D 5 0 5 e )
0<j<k i>j—2
—k(1—8)ol(l—s+2 —nt
< 27 Ty | oy

i>0—1

for all £ > ¢ and z € B, which further yields

125 sup- | # [y 5

€ Om
n n+e P
S IB2 O 54270 ST 209 (g7 )
1—1<i<k—2 Lr(B)
nte ||P
_'_2ks €' Z 9~ i(s—€ ( €X2B> n
i>k—1 Lr(B)
B2 ROl
n nte ||P
4 9~ k(1=5)(pA1) Z 9i(1=5)(pA1) || A4 <9FX2B) n
-1<i<k—2 Lr(B)
nte ([P
1 ok(s=¢)(pA1) Z 9=ils=<)(PAD) || Aq (g X2B> n
i>k—1 LP(B)

< |B|7-p2é k)(1— Sp||u|

. T(Rn) + 2—k(1—s)(p/\l) Z 22(1 s)(pA1) ||gl||Lp(gB
1—1<i<k-—2

1 ok(s=<)(pAD) Z 9~ is=eH(PAD) ||gl||LP(2B
i>k—1

Dividing out by | B|™ = |2B|™, taking first the £2/? norm over k > ¢ and then taking
the supremum over all admissible balls B yields

S llul

el 4

0, mBIS?:ZI—(Rn NS T Rn)

ie. N;g(R”) C A mBIS“;(R"). The case p = oo can be handled in a similar but
easler manner.

On the other hand, if f € Aj,, pq(R”) where —— < p < oo, then f is a locally
integrable function and (h)gez is a constant times ¢ an element of D*(f), where the
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functions hy, are as in part (i). For any ball B := B(x,27¢), we have

—T —T10ks 1 —78 1 is
B hnlo) S |BIT20Gm S j2m @G 22| sup |65 £l
]Zk (1)6 0,m

so taking the ¢¢ norm over k > ¢ and then the supremum over all admissible balls B
yields

1 g7 ey S W1y, sz ey
which means that Aj ,, ';:;( ") C N;;(R") The case p = 0o can be handled in a
similar but easier manner.

The case with s € (0,1) and m > n + 1 is thus proven. The case with s = 1
and m > n + 2 can be proven using exactly the same argument, except for the fact
that 1 — s is not positive. To remedy this, we use the assumption that m > n + 2 to
replace (5) with the estimate

sup [¢p xu(z)] S 27329 T gilen) <][

PEA i<k i>j—2 B(z,27941)

n-+e

n

gi(y) e dy)

The above proof can thus be carried out by replacing 1 —s with 2—s where necessary.
We omit the details. U
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