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Abstract. Given a metric space (X, d) and a finite set of continuous functions f1, f2, . . . , fN :

X → X , we provide a sufficient condition to find a metric δ on X , equivalent with d, and a

comparison function ψ such that the functions fi : (X, δ) → (X, δ) are ψ-contractions. If the metric

space (X, d) is complete, the same condition assures the existence of a unique fixed point of the

function F : K(X) → K(X) given by F(C) =
⋃N

i=1
fi(C) for each C ∈ K(X), where K(X) denotes

the family of non-empty and compact subsets of X .

1. Introduction

Given a bounded complete metric space (X, d) and a contraction f : X → X,
the Picard–Banach–Caccioppoli principle implies that f has a unique fixed point x0
and

⋂∞
n=1 f

n(X) = {x0}. As this equality has a topological character, the following
question is natural: Let X be a compact metrizable topological space and f : X →
X a continuous function having the property that there exists x0 ∈ X such that
⋂∞

n=1 f
n(X) = {x0}. It is possible to find a metric δ on X generating the given

topology of X such that f is contraction with respect to δ? Janoš (see [6]) gave an
affirmative answer to this question. See also [3] for a similar result.

Along the same lines of research, Leader (see [9]), providing a generalization of
Janoš’s result, proved that a continuous function f on a metric space (X, d) is a
contraction with fixed point x0 ∈ X under some metric δ on X equivalent to d if
and only if every orbit (fn(x))n∈N converges to x0 and the convergence is uniform
on some neighborhood of x0.

The natural generalization of the above limit condition for an iterated function
system was introduced by Kieninger (see [8]) under the name of point-fibred iterated
function systems.

Atkins, Barnsley, Vince and Wilson (see [1]) provided a generalization of the
results proved by Janoš and Leader (see also [10]) by giving a characterization of
hyperbolic affine iterated function systems defined on R

m.
In order to provide a topological generalization of the notion of attractor of an

iterated function system consisting of contractions Kameyama introduced the concept
of self-similar system and asked the following fundamental question (see [7]): Given
a topological self-similar system (K, {fi}i∈{1,2,...,N}), does there exist a metric on K
compatible to the topology such that all the functions fi are contractions? Such a
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metric is called a self-similar metric. Kameyama provided a topological self-similar
set which does not admit a self-similar metric and, on the other hand, he proved that
every totally disconnected self-similar set and every non-recurrent finitely ramified
self-similar set have a self-similar metric. In [12], we modified Kameyama’s question
by weakening the requirement that the functions in the topological self-similar system
be contractions to requiring that they be ϕ-contractions. More precisely we gave an
affirmative answer to the following question: given a topological self-similar system
(K, (fi)i∈{1,2,...,N}) does there exist a metric δ on K which is compatible with the
original topology and a comparison function ϕ such that fi : (K, δ) → (K, δ) is ϕ-
contraction for each i ∈ {1, 2, . . . , N}? In [13] we obtained a generalization of the
above mentioned affirmative answer to modified Kameyama’s question studying the
case of a possibly infinite family of functions (fi)i∈I . For related results see [2].

Let (X, d) be a metric space, N ∈ N and fi : X → X, i ∈ {1, 2, . . . , N}, contin-
uous functions. Inspired by the notions of locally uniformly contractive fixed point
(see [10]), point-fibred iterated function system (see [1]) and uniformly point-fibred
iterated function system (see [11]), in the present paper we provide a sufficient con-
dition (referred to as Condition C) on the set of functions {f1, f2, . . . , fN} in order
to find a metric δ on X, equivalent with d, and a comparison function ψ such that
the functions fi : (X, δ) → (X, δ) are ψ-contractions. The Condition C is fulfilled if
the functions f1, f2, . . . , fN are ψ-contractions.

This goal is achieved in the following four steps.

Step 1. Condition C allows us to define a compact subset K of X such that
K =

⋃N

i=1 fi(K).

Step 2. We construct a metric ρ on X, equivalent with d, such that ρ(fi(x), fi(y))
≤ ρ(x, y) for each x, y ∈ X and each i ∈ {1, 2, . . . , N}.

Step 3. We construct a metric
∼
ρ onX, equivalent with ρ (so with d), a comparison

function ϕ and an open set U such that K ⊆ U and the functions fi : (U,
∼
ρ) → (X,

∼
ρ)

are ϕ-contractions.

Step 4. We construct a metric δ on X (actually a family of metrics), equivalent
with d, and a comparison function ψ such that the functions fi : (X, δ) → (X, δ) are
ψ-contractions.

Condition C proved to be also a sufficient condition for the existence of a unique
fixed point of the function F : K(X) → K(X) given by F(C) =

⋃N

i=1 fi(C) for each
C ∈ K(X), where K(X) denotes the family of non-empty and compact subsets of X.
Actually the above mentioned fixed point is K.

2. Preliminaries

Definition 2.1. (Comparison function) A function ϕ : [0,∞) → [0,∞) is called
a comparison function if it has the following properties:

(i) ϕ is increasing (i.e. t1 < t2 ⇒ ϕ(t1) ≤ ϕ(t2) for each t1, t2 ≥ 0);
(ii) ϕ(t) < t for any t > 0;
(iii) ϕ is right-continuous.

Definition 2.2. (ϕ-contraction) Let (X, d) be a metric space and a function
ϕ : [0,∞) → [0,∞). A function f : X → X is called a ϕ-contraction if

d(f(x), f(y)) ≤ ϕ(d(x, y)),

for all x, y ∈ X.
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In the following N denotes the natural numbers, N
∗= N \ {0} and N

∗
n =

{1, 2, . . . , n}, where n ∈ N
∗. Given two sets A and B, by BA we mean the set

of functions from A to B. By Λ(B) we mean the set BN
∗

and by Λn(B) we mean the
set BN

∗
n . The elements of Λ(B) = BN

∗
are written as words ω = ω1ω2 . . . ωmωm+1 . . .

and the elements of Λn(B) = BN
∗
n are written as words ω = ω1ω2 . . . ωn (n—which

is the length of ω—is denoted by |ω|). Hence Λ(B) is the set of infinite words with
letters from the alphabet B and Λn(B) is the set of words of length n with letters
from the alphabet B. By Λ∗(B) we denote the set of all finite words, i.e. Λ∗(B) =
⋃

n∈N∗ Λn(B) ∪ {λ}, where λ is the empty word. If ω = ω1ω2 . . . ωmωm+1 . . . ∈ Λ(B)
or if ω = ω1ω2 . . . ωn ∈ Λn(B), where m,n ∈ N

∗, n ≥ m, then the word ω1ω2 . . . ωm is
denoted by [ω]m. For two words α ∈ Λn(B) and β ∈ Λm(B) or β ∈ Λ(B), by αβ we
mean the concatenation of the words α and β, i.e. αβ = α1α2 . . . αnβ1β2 . . . βm and
respectively αβ = α1α2 . . . αnβ1β2 . . . βmβm+1 . . .. For fi : X → X, i ∈ B, we denote
IdX by fλ and fα1 ◦ fα2 ◦ . . . ◦ fαm

by fα1α2...αm
for each α1, α2, . . . , αm ∈ B.

For a nonvoid set I, on Λ(I) = (I)N
∗
, we consider the metric dΛ(α, β) =

∞
∑

k=1

1− δβk
αk

3k
, where δyx =

{

1, if x = y,

0, if x 6= y.

Remark 2.1. The convergence in the complete metric space (Λ(I), dΛ) is the
convergence on components.

Definition 2.3. (Iterated function system) Given a metric space (X, d), an
iterated function system is a pair S = ((X, d), (fi)i∈{1,2,...,N}), where fi : X → X is
continuous for each i ∈ {1, 2, . . . , N}.

Definition 2.4. (ϕ-contractive iterated function system) Given a comparison
function ϕ : [0,∞) → [0,∞), an iterated function system S = ((X, d), (fi)i∈{1,2,...,N})
is called ϕ-contractive if fi is ϕ-contraction for each i ∈ {1, 2, . . . , N}.

Definition 2.5. (ϕ-hyperbolic iterated function system). Given a comparison
function ϕ : [0,∞) → [0,∞), an iterated function system S = ((X, d), (fi)i∈{1,2,...,N})
is called ϕ-hyperbolic if there exists a metric δ on X, equivalent to d, such that the
iterated function system ((X, δ), (fi)i∈{1,2,...,N}) is ϕ-contractive.

Theorem 2.1. (see Theorem 3.11 from [14]) Given a comparison function
ϕ : [0,∞) → [0,∞) and a complete metric space (X, d), for each ϕ-contractive it-
erated function system S = ((X, d), (fi)i∈{1,2,...,N}) there exists a unique non-empty

compact subset A(S) of X such that A(S) =
⋃N

i=1 fi(A(S)).

3. The result

Definition 3.1. Let us consider a metric space (X, d), the continuous functions
f1, . . . , fN : X → X and a function π : Λ → X, where Λ = Λ({1, 2, . . . , N}). We say
that the condition C (for the metric d) is fulfilled if

∀x∈X ∃εx>0 ∀δ>0 ∃nx,εx,δ∈N ∀n∈N, n≥nx,εx,δ
∀ω∈Λ ∀y∈B(x,εx) d(f[ω]n(y), π(ω)) < δ.

In other words, Condition C says that for each x ∈ X there exists εx > 0 such
that

lim
n→∞

f[ω]n(y) = π(ω)

uniformly with respect to y ∈ B(x, εx) and ω ∈ Λ.
In the sequel, for the sake of simplicity, we denote π(ω) by πω.
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Remark 3.1. Condition C is fulfilled if there exists a comparison function ψ
such that the functions f1, f2, . . . , fN : (X, d) → (X, d) are ψ -contractions, where
(X, d) is a complete metric space.

Indeed, if F : B(X) → B(X) is given by F(B) =
⋃N

i=1 fi(B) for each B ∈ B(X),
where B(X) denotes the family of all non-empty bounded closed subsets of X, then
there exists a unique A(S) ∈ B(X) such that

F(A(S)) = A(S)

and moreover
lim
n→∞

h(F [n](Y ), A(S)) = 0,

for each Y ∈ B(X), where h is the Hausdorff–Pompeiu metric (see [4], Theorem 2.5).
Therefore the set Z = A(S) ∪

(
⋃

n∈NF [n](Y )
)

is bounded. For each x ∈ Z, ω ∈ Λ
and n ∈ N, with the notation f[ω]n(Z) = Z[ω]n, we have

d(f[ω]n(x), πω) ≤ diam(Z[ω]n) ≤ ψ[n](diam(Z)),

where {πω} =
⋂

n∈N f[ω]n(A(S)) (see [5]). Hence, as limn→∞ ψ[n](diam(Z)) = 0 (see
[11], Remark 3.4), we obtain that

lim
n→∞

f[ω]n(y) = πω

uniformly with respect to y ∈ Y and ω ∈ Λ. Thus the Condition C is valid.

The following result is a kind of reverse of Remark 3.1.

Theorem 3.1. Let us consider (X, d) a metric space, the continuous functions
f1, . . . , fN : X → X and a function π : Λ → X, where Λ = Λ({1, 2, . . . , N}), such
that the condition C (for the metric d) is fulfilled. Then there exist a comparison
function ψ : [0,∞) → [0,∞) and a metric δ on X, equivalent with d, such that
fi : (X, δ) → (X, δ) is ψ-contraction for each i ∈ {1, 2, . . . , N} (i.e.

δ(fi(x), fi(y)) ≤ ψ(δ(x, y))

for each x, y ∈ X). Moreover, if the metric space (X, d) is complete, then (X, δ) is
complete.

Proof. Our rather long proof is divided into 12 facts. The final of the justification
of such a fact is marked by �.

Fact 1. (A metric ρ, equivalent with d, making the functions fi nonexpansive)
There exists a metric ρ on X, equivalent with d, such that

ρ(fi(x), fi(y)) ≤ ρ(x, y)

for each i ∈ {1, 2, . . . , N} and each x, y ∈ X. Consequently we have

ρ(fω(x), fω(y)) ≤ ρ(x, y)

for each x, y ∈ X and each ω ∈ Λ∗.

Justification of Fact 1. Let us define the function ρ : X ×X → [0,∞] by

ρ(x, y) = sup
ω∈Λ∗

d(fω(x), fω(y)),

for each x, y ∈ X. According to the hypothesis, for given x, y ∈ X, there exists
n1 ∈ N such that the inequalities d(f[ω]n(x), πω) < 1 and d(f[ω]n(y), πω) < 1 are valid
for each n ∈ N, n ≥ n1 and ω ∈ Λ. Therefore d(f[ω]n(x), f[ω]n(y)) ≤ d(f[ω]n(x), πω) +
d(πω, f[ω]n(y)) ≤ 1+1 = 2 for every n ∈ N, n ≥ n1 and every ω ∈ Λ∗ such that |ω| >
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n1. As the set {ω ∈ Λ∗ | |ω| ≤ n1} is finite, we conclude that supω∈Λ∗ d(fω(x), fω(y))
is finite. Hence ρ : X ×X → [0,∞).

It is clear that:

i) ρ(x, y) = 0 if and only if x = y (since d(x, y) = d(fλ(x), fλ(y)) ≤ ρ(x, y));
ii) ρ(x, y) = ρ(y, x);
iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y),

for each x, y, z ∈ X. Therefore ρ is a metric.
We have

(1.1) ρ(fi(x), fi(y)) ≤ ρ(x, y),

for each x, y ∈ X and each i ∈ {1, 2, . . . , N}. Indeed, since

d(fω(fi(x)), fω(fi(y))) ≤ ρ(x, y)

for each x, y ∈ X, ω ∈ Λ∗ and i ∈ {1, 2, . . . , N}, we obtain that

sup
ω∈Λ∗

d(fω(fi(x)), fω(fi(y))) ≤ ρ(x, y),

i.e.

ρ(fi(x), fi(y)) ≤ ρ(x, y),

for each x, y ∈ X and each i ∈ {1, 2, . . . , N}.
As we have seen

d(x, y) ≤ ρ(x, y),

for each x, y ∈ X.

(∗) Therefore if (xn)n∈N is a sequence of elements from X and l ∈ X such that
lim
n→∞

ρ(xn, l) = 0, then lim
n→∞

d(xn, l) = 0.

(∗∗) Now we prove that if (xn)n∈N is a sequence of elements from X and l ∈ X
such that lim

n→∞
d(xn, l) = 0, then lim

n→∞
ρ(xn, l) = 0.

Indeed, let us note that according to the hypothesis there exists εl > 0 having
the property that for each ε > 0 there exists mε,εl ∈ N such that the inequality

(1.2) d(f[ω]m(x), πω) <
ε

2

is valid for each m ∈ N, m ≥ mε,εl, ω ∈ Λ and x ∈ B(l, εl). Let us fix ε > 0. Since
the set of continuous functions {fω | ω ∈ Λ∗ and |ω| < mε,εl} is finite, we infer that
there exists n1

ε ∈ N such that the inequality

(1.3) d(fω(xn), fω(l)) < ε

is valid for each n ∈ N, n ≥ n1
ε and each ω ∈ Λ∗ such that |ω| < mε,εl. Since

limn→∞ d(xn, l) = 0, there exists n2
ε ∈ N such that xn ∈ B(l, εl) for each n ∈ N,

n ≥ n2
ε. For ω ∈ Λ∗ having the property that |ω| ≥ mε,εl, ω = ω1ω2 . . . ωm, where

m ∈ N, m ≥ mε,εl, considering ω
′
= ω1ω2 . . . ωmωmωm . . . ωm . . . ∈ Λ, we have

[ω
′
]m = ω, so, according to (1.2), we have d(fω(xn), πω′ ) < ε

2
for each n ∈ N, n ≥ n2

ε

and d(fω(l), πω′ ) < ε
2
. Thus

(1.4) d(fω(xn), fω(l)) ≤ d(fω(xn), πω′ ) + d(πω′ , fω(l)) <
ε

2
+
ε

2
= ε

is valid for each n ∈ N, n ≥ n2
ε and each ω ∈ Λ∗ with |ω| ≥ mε,εl. From (1.3) and

(1.4) we conclude that there exists nε = max{n1
ε, n

2
ε} ∈ N such that

d(fω(xn), fω(l)) < ε
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for each n ∈ N, n ≥ nε and each ω ∈ Λ∗, i.e. there exists nε ∈ N such that

ρ(xn, l) = sup
ω∈Λ∗

d(fω(xn), fω(l)) ≤ ε

for each n ∈ N, n ≥ nε. Therefore limn→∞ ρ(xn, l) = 0.
From (∗) and (∗∗) we conclude that d and ρ are equivalent. �

Now let us consider the set K = π(Λ) = {πω | ω ∈ Λ}.

Fact 2. (The properties of K)

i) K is compact.

ii) K =
⋃N

i=1 fi(K).

Justification of Fact 2. i) We are going to prove that the function π : Λ → X
is continuous. Indeed, let us consider a fixed ω ∈ Λ and an arbitrary sequence
(ωn)n∈N of elements of Λ such that limn→∞ ωn = ω. For a fixed element x0 ∈ X,
according to the hypothesis, for each ε > 0 there exists nε ∈ N such that the
inequality d(f[ω′ ]n

(x0), πω′ ) < ε
2

is valid for each n ∈ N, n ≥ nε and each ω
′
∈ Λ.

As convergence in (Λ, dΛ) is convergence on components and {1, 2, . . . , N} is finite,
there exists mε ∈ N such that [ωn]nε

= [ω]nε
for each n ∈ N, n ≥ mε. Therefore, for

n ∈ N, n ≥ mε, we have

d(πωn
, πω) ≤ d(f[ωn]nε

(x0), πωn
) + d(f[ω]nε

(x0), πω) <
ε

2
+
ε

2
= ε,

i.e. limn→∞ πωn
= πω. Since (Λ, dΛ) is a compact metric space (as a product of

compact spaces), π(Λ) = K is compact.
ii) Let us note that

(2.1) fi(πω) = πiω

for each i ∈ {1, 2, . . . , N} and each ω ∈ Λ. Indeed, for a fixed x ∈ X, by taking into
account the continuity of fi, we have

fi(πω) = fi

(

lim
n→∞

f[ω]n(x)
)

= lim
n→∞

fi(f[ω]n(x)) = lim
n→∞

f[iω]n(x) = πiω.

Therefore fi(K) ⊆ K for each i ∈ {1, 2, . . . , N} and consequently

(2.2)
N
⋃

i=1

fi(K) ⊆ K.

If ω = ω1ω2 . . . ωmωm+1 . . ., with the notation ω
′
= ω2 . . . ωmωm+1 . . ., we have

πω = πω1ω
′
(2.1)
= fω1(πω′ ) ∈ fω1(K) ⊆

⋃N

i=1 fi(K), so

(2.3) K ⊆
N
⋃

i=1

fi(K).

From (2.2) and (2.3) we obtain that K =
⋃N

i=1 fi(K). �

Fact 3. (If Condition C is valid for d, then it is also valid for ρ) The condition
C is also valid for ρ.

Justification of Fact 3. According to the hypothesis, we have

∀x∈X ∃εx>0 ∀δ>0 ∃nx,εx,δ∈N ∀n∈N, n≥nx,εx,δ
∀ω∈Λ ∀y∈B(x,εx) d(f[ω]n(y), πω) <

δ

2
,

so
∀x∈X ∃εx>0 ∀δ>0 ∃nx,εx,δ∈N ∀n∈N, n≥nx,εx,δ

∀ω∈Λ ∀v∈Λ∗ ∀y∈B(x,εx)
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d(f[vω]|v|+n
(y), πvω) <

δ

2
,

since |v|+ n ≥ n ≥ nx,εx,δ.
Taking into account that, based on (2.1), the inequality d(f[vω]|v|+n

(y), πvω) <
δ
2

can be rewritten as d(fv(f[ω]n(y)), fv(πω)) <
δ
2
, we get that

∀x∈X ∃εx>0 ∀δ>0 ∃nx,εx,δ∈N ∀n∈N, n≥nx,εx,δ
∀ω∈Λ ∀y∈B(x,εx)

ρ(f[ω]n(y), πω) = sup
v∈Λ∗

d(fv(f[ω]n(y)), fv(πω)) ≤
δ

2
< δ,

i.e. Condition C is valid for ρ. �

Fact 4. (The construction of the open set U) There exists an open set U such
that K ⊆ U and for each δ > 0 there exists nδ ∈ N such that the inequality

ρ(f[ω]n(y), πω) < δ

is valid for each n ∈ N, n ≥ nδ, ω ∈ Λ and y ∈ U .

Justification of Fact 4. SinceK is compact, there exist p ∈ N and πω1 , πω2 , . . . , πωp

such that
K ⊆ B(πω1 , επω1

) ∪ B(πω2 , επω2
) ∪ · · · ∪B(πωp

, επωp
),

where επω1
, επω2

, . . . , επωp
are given by the Condition C. Let us denote by U the

open set B(πω1 , επω1
) ∪ B(πω2 , επω2

) ∪ · · · ∪ B(πωp
, επωp

). Now we can choose nδ =
max{nπω1 ,επω1

,δ, nπω2 ,επω2
,δ, . . . , nπωp,επωp

,δ} since for each y ∈ U there exists j0 ∈

{1, 2, . . . , p} such that y ∈ B(πωj0
, επωj0

), so, according to Fact 3, ρ(f[ω]n(y), πω) < δ
for each n ∈ N, n ≥ nδ, ω ∈ Λ. �

Let (an)n∈N be a bounded strictly increasing sequence of positive real numbers
such that: α) a0 > 1; β) a1

a0
≤ 2; γ) (an+1

an
)n∈N is strictly decreasing and let us denote

by l the limit of the sequence (an)n∈N (for example, we can take an =
∏n

k=0(1+x
k+1),

where x ∈ (0, 1)). Let us also consider (bk)k∈N a sequence of positive real numbers
such that bk

4
< bk+1 <

bk
2

for each k ∈ N. It is clear that (bk)k∈N is decreasing and
that its limit is 0.

Taking into account Fact 4 and using the method of mathematical induction, we
find a strictly increasing sequence (nk)k∈N of natural numbers such that

ρ(f[ω]n(y), πω) <
bk
16

for each n ∈ N, n ≥ nk, ω ∈ Λ and y ∈ U .
Note that

(1) ρ(f[ω]n(y), f[ω]n(x)) <
bk
8

for each n ∈ N, n ≥ nk, ω ∈ Λ and x, y ∈ U since

ρ(f[ω]n(y), f[ω]n(x)) ≤ ρ(f[ω]n(y), πω) + ρ(πω, f[ω]n(x)) <
bk
16

+
bk
16

=
bk
8
.

We consider the function
∼
ρ : X ×X → [0,∞] given by

∼
ρ(x, y) = sup

ω∈Λ∗
a|ω|ρ(fω(x), fω(y)),

for each x, y ∈ X.

Fact 5. (The properties of
∼
ρ)
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i)

a0ρ(x, y) ≤
∼
ρ(x, y) ≤ lρ(x, y)

for each x, y ∈ X, so
∼
ρ : X×X → [0,∞) and

∼
ρ is a metric which is equivalent

with ρ.
ii)

∼
ρ(fi(x), fi(y)) ≤

∼
ρ(x, y)

for each x, y ∈ X and each i ∈ {1, 2, . . . , N}.
iii)

∼
ρ(fi(x), fi(y)) ≤ max

{

sup
ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)), l
bk
8

}

for each x, y ∈ U , k ∈ N and i ∈ {1, 2, . . . , N}.
iv) The following implication is valid

l
bk
8
<

∼
ρ(fi(x), fi(y)) =⇒

∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

∼
ρ(x, y),

for each x, y ∈ U , k ∈ N and i ∈ {1, 2, . . . , N}.

Justification of Fact 5. i) For each x, y ∈ X, we have

a0ρ(x, y) = a|λ|ρ(fλ(x), fλ(y)) ≤
∼
ρ(x, y)

and, using Fact 1, we get

a|ω|ρ(fω(x), fω(y)) ≤ lρ(x, y)

for each ω ∈ Λ∗, hence
∼
ρ(x, y) ≤ lρ(x, y).

ii) We have

a|ω|ρ(fω(fi(x)), fω(fi(y))) = a|ω|ρ(fωi(x), fωi(y))

≤ a|ωi|ρ(fωi(x), fωi(y)) ≤ sup
ω∈Λ∗

a|ω|ρ(fω(x), fω(y)) =
∼
ρ(x, y)

for each x, y ∈ X, i ∈ {1, 2, . . . , N} and ω ∈ Λ∗, so we get ii).
iii) We have

∼
ρ(fi(x), fi(y)) = sup

ω∈Λ∗
a|ω|ρ(fω(fi(x)), fω(fi(y)))

= max

{

sup
ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)), sup
ω∈Λ∗,|ω|≥nk

a|ω|ρ(fωi(x), fωi(y))

}

(1)

≤ max

{

sup
ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)), l
bk
8

}

.

iv) If l bk
8
<

∼
ρ(fi(x), fi(y)), then

l
bk
8
<

∼
ρ(fi(x), fi(y))

iii)

≤ max

{

sup
ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)), l
bk
8

}

,

so
∼
ρ(fi(x), fi(y)) ≤ sup

ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)).
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Since for each ω ∈ Λ∗ such that |ω| < nk we have

a|ω|ρ(fωi(x), fωi(y)) = a|ωi|ρ(fωi(x), fωi(y))
a|ω|
a|ωi|

<
ank

ank+1

∼
ρ(x, y),

we infer that
sup

ω∈Λ∗,|ω|<nk

a|ω|ρ(fωi(x), fωi(y)) ≤
ank

ank+1

∼
ρ(x, y).

Consequently, we have
∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

∼
ρ(x, y). �

Let us consider (ck)k∈N, where ck = l
ank+1

ank

bk
8
. Note that ck ≤ l bk

4
< lbk+1 for

each k ∈ N. Let us define, for each k ∈ N, the increasing continuous function
ϕk : [0,∞) → [0,∞) given by

ϕk(t) =











ank

ank+1
t, if t ∈ (ck,∞),

l bk
8
, if t ∈ [l bk

8
, ck],

t, if t ∈ [0, l bk
8
).

Fact 6. (fi are ϕk-contractions with respect to
∼
ρ on U) We have

∼
ρ(fi(x), fi(y)) ≤ ϕk(

∼
ρ(x, y))

for each x, y ∈ U , each k ∈ N and each i ∈ {1, 2, . . . , N}.

Justification of Fact 6. For given x, y ∈ U and k ∈ N, we have to consider the
following three cases:

c1)
∼
ρ(x, y) ∈ [0, l bk

8
);

c2)
∼
ρ(x, y) ∈ [l bk

8
, ck];

c3)
∼
ρ(x, y) ∈ (ck,∞).

In case c1) the inequality to be proved becomes
∼
ρ(fi(x), fi(y)) ≤

∼
ρ(x, y)

which is valid taking into account Fact 5, ii).
In case c2) the inequality to be proved becomes

∼
ρ(fi(x), fi(y)) ≤ l

bk
8
.

If this inequality is not true, then

l
bk
8
<

∼
ρ(fi(x), fi(y)),

so, using Fact 5, iv), we get
∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

∼
ρ(x, y),

hence we arrive to the contradiction

l
bk
8
<

∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

ck = l
bk
8
.

In case c3) the inequality to be proved becomes
∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

∼
ρ(x, y).
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If this inequality is not true, then
ank

ank+1

∼
ρ(x, y) <

∼
ρ(fi(x), fi(y)),

so

l
bk
8

=
ank

ank+1
ck <

ank

ank+1

∼
ρ(x, y) <

∼
ρ(fi(x), fi(y)),

hence, using again Fact 5, iv), we obtain the contradiction

∼
ρ(fi(x), fi(y)) ≤

ank

ank+1

∼
ρ(x, y). �

Let us consider the function ϕ : [0,∞) → [0,∞) given by

ϕ(t) = inf
k∈N

ϕk(t),

for each t ∈ [0,∞).

Fact 7. ϕ is a comparison function.

Justification of Fact 7. Since ϕk is increasing for each k ∈ N, we infer that ϕ is
increasing. For t0 > 0 and ε > 0 such that t0 − ε > 0 there exists kε ∈ N having the
property that l

bkε
4
< t0 − ε, so ck ≤ l bk

4
≤ l

bkε
4
< t0 − ε for each k ∈ N, k > kε. Then

(7.1) ϕ(t) = min

{

min
k∈{0,1,2,...,kε}

ϕk(t),
ankε+1

ankε+1+1
t

}

for each t ∈ (t0 − ε, t0 + ε).
Indeed, for each k ∈ N, k > kε and t ∈ (t0 − ε, t0 + ε) we have ϕk(t) =

ank

ank+1
t, so

taking into account the fact that (an+1

an
)n∈N is decreasing, we infer that infk>kε ϕk(t) =

ankε+1

ankε+1+1
t and therefore

ϕ(t) = inf
k∈N

ϕk(t) = min

{

inf
k∈{0,1,2,...,kε}

ϕk(t), inf
k>kε

ϕk(t)

}

= min

{

min
k∈{0,1,2,...,kε}

ϕk(t),
ankε+1

ankε+1+1

t

}

.

Hence, from (7.1), we get

ϕ(t) < t,

for each t > 0.
In order to conclude that ϕ is a comparison function, it remains to prove that

ϕ is right-continuous. We shall prove that ϕ is continuous. To this end, let us note
that the inequality ϕ(t) < t for each t > 0 assures us that limt>0,t→0 ϕ(t) = 0 = ϕ(0),
so ϕ is continuous at 0. From (7.1), based on the continuity of the functions ϕk and

t→
ankε+1

ankε+1+1
t, we conclude that ϕ is continuous at each t0 > 0. �

Note that from Fact 6 we get

(2)
∼
ρ(fi(x), fi(y)) ≤ ϕ(

∼
ρ(x, y))

for each x, y ∈ U and each i ∈ {1, 2, . . . , N}.
We consider the function n : X → N given by

n(x) = max{n ∈ N | there exists ω ∈ Λn such that fω(x) /∈ U}+ 1,

for each x ∈ X, with the convention that max ∅ = −1.
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Let us remark that n is well defined. Indeed, since K is compact, U is open
and K ⊆ U , there exist η > 0 such that B(K, η) ⊆ U . Taking into account the
hypothesis, for every x ∈ X there exists n1 ∈ N such that d(f[ω]n(x), πω) < η
(i.e. f[ω]n(x) ∈ B(πω, η) ⊆ U ) for each n ∈ N, n ≥ n1 and each ω ∈ Λ. Hence
{n ∈ N |there exists ω ∈ Λn such that fω(x) /∈ U} ⊆ {0, 1, 2, . . . , n1 − 1}.

Note that if n(x) = 0, then fω(x) ∈ U for every ω ∈ Λ∗ (in particular x ∈ U)
and n(fj(x)) = 0 for each j ∈ {1, 2, . . . , N}.

Fact 8. (The properties of n)

i) For each x ∈ X there exists rx > 0 such that

n(y) ≤ n(x)

for each y ∈ B(x, rx).
ii) For each x ∈ X such that n(x) ≥ 1 and each i ∈ {1, 2, . . . , N} we have

n(fi(x)) ≤ n(x)− 1.

Justification of Fact 8. i) There exist r1x > 0 and m ∈ N such that fω(y) ∈ U
for each y ∈ B(x, r1x) and each ω ∈ Λ∗ with |ω| > m. Indeed, since the compact

set K is a subset of the open set U , we infer that infx∈K d(x,X − U)
not
= δ0 > 0 and

{x ∈ X | there exists kx ∈ K such that d(x, kx) < δ0} ⊆ U . Hence, taking into
account condition C, just take r1x = εx and m = nx,εx,δ0 .

Since the set of continuous functions {fω | ω ∈ Λn, n ≤ m} is finite, we infer that
for each x ∈ X having the property that fω(x) ∈ U for each ω ∈ Λn, n ≤ m, there
exists r2x > 0 such that fω(y) ∈ U for each ω ∈ Λn, n ≤ m and each y ∈ B(x, r2x).
Therefore, taking rx = min{r1x, r

2
x}, we have {n ∈ N | fω(x) ∈ U for each ω ∈ Λn} ⊆

{n ∈ N | fω(y) ∈ U for each ω ∈ Λn}, for each y ∈ B(x, rx). In particular, we get
that n(y) ≤ n(x) for each y ∈ B(x, rx).

ii) With the notationm = n(fi(x)), there exists ω0 ∈ Λm−1 such that fω0(fi(x)) =
fω0i(x) /∈ U , so, as ω0i ∈ Λm, we obtain that m ∈ {n ∈ N | there exists ω ∈ Λn

such that fω(x) /∈ U}. Hence m + 1 ≤ max{n ∈ N | there exists ω ∈ Λn such that
fω(x) /∈ U} + 1 = n(x). �

For a given α > 1, we define the functions Dα : X×X → [0,∞) and ρα : X×X →
[0,∞) given by

Dα(x, y) = αn(x,y)∼ρ(x, y)

and

ρα(x, y)

= inf

{

n−1
∑

i=0

Dα(xi, xi+1) | n ∈ N
∗, {x0, x1, . . . , xn−1, xn} ⊆ X, x0 = x and xn = y

}

,

for each x, y ∈ X, where n(x, y) = max{n(x), n(y)}.
As the reader can routinely verify ρα is a pseudometric on X.

Fact 9. (The properties of ρα)

i)
∼
ρ(x, y) ≤ ρα(x, y),

for each x, y ∈ X, so ρα is a metric.
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ii)

ρα(x, y) ≤ αn(x,y)∼ρ(x, y),

for each x, y ∈ X.

iii) ρα and
∼
ρ are equivalent.

Justification of Fact 9. i) We have
∼
ρ(x, y) ≤

∑n−1
i=0

∼
ρ(xi, xi+1) ≤

∑n−1
i=0 Dα(xi, xi+1)

for each n ∈ N
∗, xi ∈ X for each i ∈ {0, 1, 2, . . . , n} such that x0 = x and xn = y, so

∼
ρ(x, y) ≤ ρα(x, y) for each x, y ∈ X.

ii) We have ρα(x, y) ≤ Dα(x, y) = αn(x,y)∼ρ(x, y), for each x, y ∈ X.
iii) On the one hand, if (xn)n∈N is a sequence of elements from X and l ∈ X is

such that limn→∞ ρα(xn, l) = 0, then, from i) we get that limn→∞
∼
ρ(xn, l) = 0. On

the other hand, let us consider (xn)n∈N a sequence of elements from X and l ∈ X

such that limn→∞
∼
ρ(xn, l) = 0. Taking into account Fact 8, i), there exists rl > 0

such that n(y) ≤ n(l) for each y having the property that d(y, l) < rl. As
∼
ρ and d

are equivalent, there exists n0 ∈ N such that d(xn, l) < rl, so n(xn) ≤ n(l) for each

n ∈ N, n ≥ n0. Hence, using ii), we get that ρα(xn, l) ≤ αn(xn,l)
∼
ρ(xn, l) ≤ αn(l)∼ρ(xn, l)

for each n ∈ N, n ≥ n0 and consequently limn→∞ ρα(xn, l) = 0. Therefore ρα and
∼
ρ

are equivalent. �

Fact 10. If ϕ1, ϕ2 : [0,∞) → [0,∞) are comparison functions, then the function
ψ : [0,∞) → [0,∞) given by

ψ(t) = sup{ϕ1(t1) + ϕ2(t2) | t1, t2 ∈ [0,∞) and t1 + t2 ≤ t}

for each t ∈ [0,∞), is also a comparison function.

Justification of Fact 10. First let us prove that ψ is increasing. Indeed, if t, u ∈
[0,∞), t < u, then for any t1, t2 ∈ [0,∞) such that t1 + t2 ≤ t, we also have
t1 + t2 ≤ u. Hence ϕ1(t1) + ϕ2(t2) ≤ sup{ϕ1(u1) + ϕ2(u2) | u1, u2 ∈ [0,∞) and
u1 + u2 ≤ u} = ψ(u). Consequently ψ(t) ≤ ψ(u).

Now we prove that ψ(t) < t for each t > 0. Indeed, for each t1, t2 ∈ [0,∞) such
that t1 + t2 ≤ t we have ϕ1(t1) + ϕ2(t2) ≤ t1 + t2 ≤ t, so ψ(t) ≤ t. Hence ψ(t) ≤ t
for each t ∈ [0,∞). For a fixed t > 0 and a fixed decreasing sequence (sn)n∈N of real
numbers converging to 0, for each n ∈ N there exist xn, yn ∈ [0,∞) such that

(∗) xn + yn ≤ t+ sn

and ψ(t + sn) − sn < ϕ1(xn) + ϕ2(yn). By passing to subsequences if necessary, we
may assume that the bounded sequences (xn)n∈N and (yn)n∈N are monotone. If x
is the limit of (xn)n∈N and y is limit of (yn)n∈N, then, by (∗), we get x + y ≤ t.
If (xn)n∈N is increasing, then the bounded sequence (ϕ1(xn))n∈N is also increasing
and limn→∞ ϕ1(xn) ≤ ϕ1(x). If (xn)n∈N is decreasing, as ϕ1 is right continuous,
limn→∞ ϕ1(xn) = ϕ1(x). Hence limn→∞ ϕ1(xn) ≤ ϕ1(x) and in a similar manner we
deduce that limn→∞ ϕ2(yn) ≤ ϕ2(y). Then we have

(∗∗) ψ(t) ≤ lim
n→∞

ψ(t + sn) ≤ lim
n→∞

ϕ1(xn) + ϕ2(yn) + sn ≤ ϕ1(x) + ϕ2(y) ≤ ψ(t).

Thus ψ(t) = ϕ1(x) + ϕ2(y). If x = y = 0, then ψ(t) = 0 < t. If x 6= 0 or y 6= 0, then
ψ(t) = ϕ1(x) + ϕ2(y) < x+ y ≤ t.

Finally, we prove that ψ is right continuous. It is clear that ψ is right continuous
at 0. In order to prove that ψ is right continuous at t > 0 it suffices to prove that for
each decreasing sequence (tn)n∈N of elements from [0,∞) such that limn→∞ tn = t,
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the sequence (ψ(tn))n∈N is convergent and limn→∞ ψ(tn) = ψ(t). This results from
(∗∗). �

According to Fact 10, let us consider the comparison function ψ : [0,∞) → [0,∞)
given by

ψ(t) = sup{ϕ(t1) +
t2
α

| t1, t2 ∈ [0,∞) and t1 + t2 ≤ t}

for each t ∈ [0,∞).

Fact 11. (fi are ψ-contractions with respect to ρα) We have

ρα(fj(x), fj(y)) ≤ ψ(ρα(x, y)),

for each j ∈ {1, 2, . . . , N} and each x, y ∈ X.

Justification of Fact 11. Let us consider x, y ∈ X and ε > 0. From the definition
of ρα, there exist n ∈ N

∗ and {x0, x1, . . . , xn−1, xn} ⊆ X such that x0 = x, xn = y
and

(11.1) ρα(x, y) ≤
n−1
∑

i=0

Dα(xi, xi+1) < ρα(x, y) + ε.

Let us note that if there exist l, k ∈ {0, 1, 2, . . . , n}, l < k such that n(xl) =
n(xk) = 0, then

Dα(xl, xk) = αn(xl,xk)
∼
ρ(xl, xk) =

∼
ρ(xl, xk)

≤
∼
ρ(xl, xl+1) +

∼
ρ(xl+1, xl+2) + . . .+

∼
ρ(xk−1, xk)

≤ Dα(xl, xl+1) +Dα(xl+1, xl+2) + . . .+Dα(xk−1, xk),

so

ρα(x, y)

≤ Dα(x0, x1) + . . .+Dα(xl−1, xl) +Dα(xl, xk) +Dα(xk, xk+1) + . . .+Dα(xn−1, xn)

≤
n−1
∑

i=0

Dα(xi, xi−1) < ρα(x, y) + ε.

Thus, we can assume that the set {x0, x1, . . . , xn−1, xn} contains at most two elements
xi and xj such that n(xi) = n(xj) = 0 and if i 6= j, then |i− j| = 1.

We claim that

ρα(fj(x), fj(y)) ≤ ψ(ρα(x, y) + ε),

for each j ∈ {1, 2, . . . , N}. In order to prove our claim we have to consider two cases:

c1) The set {s | s ∈ {0, 1, 2, . . . , n} and n(xs) = 0} has at most one element.
c2) The set {s | s ∈ {0, 1, 2, . . . , n} and n(xs) = 0} has two elements, denoted by

xl and xl+1, where l ∈ {0, 1, . . . , n− 1}.

In case c1) we have

ρα(fj(x), fj(y)) ≤
n−1
∑

i=0

Dα(fj(xi), fj(xi+1)) =

n−1
∑

i=0

αn(fj(xi),fj(xi+1))∼ρ(fj(xi), fj(xi+1))

Fact 5, ii)

≤
n−1
∑

i=0

αn(fj(xi),fj(xi+1))∼ρ(xi, xi+1)
Fact 8, ii)

≤
n−1
∑

i=0

αn(xi,xi+1)−1∼ρ(xi, xi+1)



64 Radu Miculescu and Alexandru Mihail

=
1

α

n−1
∑

i=0

αn(xi,xi+1)∼ρ(xi, xi+1) =
1

α

n−1
∑

i=0

Dα(xi, xi+1)

(11.1)
<

1

α
(ρα(x, y) + ε) ≤ ψ(ρα(x, y) + ε).

In case c2) we have

ρα(fj(x), fj(y)) ≤
n−1
∑

i=0

Dα(fj(xi), fj(xi+1))

= Dα(fj(xl), fj(xl+1)) +
n−1
∑

i=0,i 6=l

Dα(fj(xi), fj(xi+1))

n(fj(xl))=n(fj(xl+1))=0
=

∼
ρ(fj(xl), fj(xl+1)) +

n−1
∑

i=0,i 6=l

Dα(fj(xi), fj(xi+1))

xl,xl+1∈U,(2),

Fact 5, ii) and Fact 8, ii)

≤ ϕ(
∼
ρ(xl, xl+1)) +

1

α

n−1
∑

i=0,i 6=l

Dα(xi, xi+1)

= ϕ(Dα(xl, xl+1)) +
1

α

n−1
∑

i=0,i 6=l

Dα(xi, xi+1)

≤ ψ(
n−1
∑

i=0

Dα(xi, xi+1))
(11.1)

≤ ψ(ρα(x, y) + ε).

From our claim, taking into account the fact that ψ is right continuous, it follows
that

ρα(fj(x), fj(y)) ≤ ψ(ρα(x, y)),

for each j ∈ {1, 2, . . . , N}. �

Now just take ρα = δ.

Fact 12. If the metric space (X, d) is complete, then (X, δ) is complete.

Justification of Fact 12. If (xn)n∈N is a ρ-Cauchy sequence of elements of X,
then, since d ≤ ρ (see Fact 1), (xn)n∈N is d-Cauchy, so there exists l ∈ X such that
limn→∞ d(xn, l) = 0. As ρ is equivalent with d, we infer that limn→∞ ρ(xn, l) = 0,
hence (X, ρ) is complete. Using a similar way of reasoning, based on Fact 5, i), we

infer that (X,
∼
ρ) is complete and, based on Fact 9, i), that (X, δ) is complete. �

Remark 3.2. The above theorem states the existence of a comparison function
ψ having the property that S = ((X, d), (fi)i∈{1,2,...,N}) is ψ-hyperbolic (since S =
((X, δ), (fi)i∈{1,2,...,N}) is ψ-contractive). Then, according to Theorem 2.1, taking into
account Fact 2 and Fact 12, we infer that A(S) = K.

Consequently, Condition C is a sufficient one for the existence of a unique fixed
point of the function F : K(X) → K(X) given by

F(C) =

N
⋃

i=1

fi(C)

for each C ∈ K(X), where K(X) denotes the family of non-empty and compact
subsets of a complete metric space (X, d).
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