A SUFFICIENT CONDITION FOR A FINITE FAMILY OF CONTINUOUS FUNCTIONS TO BE TRANSFORMED INTO ψ-CONTRACTIONS

Radu Miculescu and Alexandru Mihail
Bucharest University, Faculty of Mathematics and Computer Science
Str. Academiei 14, 010014 Bucharest, Romania; miculesc@yahoo.com
University Politehnica of Bucharest, 313 Splaiul Independenţei, Bucharest, 060042, Romania and Bucharest University, Faculty of Mathematics and Computer Science
Str. Academiei 14, 010014 Bucharest, Romania; mihail alex@yahoo.com

Abstract

Given a metric space (X, d) and a finite set of continuous functions $f_{1}, f_{2}, \ldots, f_{N}$: $X \rightarrow X$, we provide a sufficient condition to find a metric δ on X, equivalent with d, and a comparison function ψ such that the functions $f_{i}:(X, \delta) \rightarrow(X, \delta)$ are ψ-contractions. If the metric space (X, d) is complete, the same condition assures the existence of a unique fixed point of the function $F: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ given by $\mathcal{F}(C)=\bigcup_{i=1}^{N} f_{i}(C)$ for each $C \in \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the family of non-empty and compact subsets of X.

1. Introduction

Given a bounded complete metric space (X, d) and a contraction $f: X \rightarrow X$, the Picard-Banach-Caccioppoli principle implies that f has a unique fixed point x_{0} and $\bigcap_{n=1}^{\infty} f^{n}(X)=\left\{x_{0}\right\}$. As this equality has a topological character, the following question is natural: Let X be a compact metrizable topological space and $f: X \rightarrow$ X a continuous function having the property that there exists $x_{0} \in X$ such that $\bigcap_{n=1}^{\infty} f^{n}(X)=\left\{x_{0}\right\}$. It is possible to find a metric δ on X generating the given topology of X such that f is contraction with respect to δ ? Janoš (see [6]) gave an affirmative answer to this question. See also [3] for a similar result.

Along the same lines of research, Leader (see [9]), providing a generalization of Janoš's result, proved that a continuous function f on a metric space (X, d) is a contraction with fixed point $x_{0} \in X$ under some metric δ on X equivalent to d if and only if every orbit $\left(f^{n}(x)\right)_{n \in \mathbf{N}}$ converges to x_{0} and the convergence is uniform on some neighborhood of x_{0}.

The natural generalization of the above limit condition for an iterated function system was introduced by Kieninger (see [8]) under the name of point-fibred iterated function systems.

Atkins, Barnsley, Vince and Wilson (see [1]) provided a generalization of the results proved by Janoš and Leader (see also [10]) by giving a characterization of hyperbolic affine iterated function systems defined on \mathbf{R}^{m}.

In order to provide a topological generalization of the notion of attractor of an iterated function system consisting of contractions Kameyama introduced the concept of self-similar system and asked the following fundamental question (see [7]): Given a topological self-similar system $\left(K,\left\{f_{i}\right\}_{i \in\{1,2, \ldots, N\}}\right)$, does there exist a metric on K compatible to the topology such that all the functions f_{i} are contractions? Such a

[^0]metric is called a self-similar metric. Kameyama provided a topological self-similar set which does not admit a self-similar metric and, on the other hand, he proved that every totally disconnected self-similar set and every non-recurrent finitely ramified self-similar set have a self-similar metric. In [12], we modified Kameyama's question by weakening the requirement that the functions in the topological self-similar system be contractions to requiring that they be φ-contractions. More precisely we gave an affirmative answer to the following question: given a topological self-similar system $\left(K,\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ does there exist a metric δ on K which is compatible with the original topology and a comparison function φ such that $f_{i}:(K, \delta) \rightarrow(K, \delta)$ is φ contraction for each $i \in\{1,2, \ldots, N\}$? In [13] we obtained a generalization of the above mentioned affirmative answer to modified Kameyama's question studying the case of a possibly infinite family of functions $\left(f_{i}\right)_{i \in I}$. For related results see [2].

Let (X, d) be a metric space, $N \in \mathbf{N}$ and $f_{i}: X \rightarrow X, i \in\{1,2, \ldots, N\}$, continuous functions. Inspired by the notions of locally uniformly contractive fixed point (see [10]), point-fibred iterated function system (see [1]) and uniformly point-fibred iterated function system (see [11]), in the present paper we provide a sufficient condition (referred to as Condition C) on the set of functions $\left\{f_{1}, f_{2}, \ldots, f_{N}\right\}$ in order to find a metric δ on X, equivalent with d, and a comparison function ψ such that the functions $f_{i}:(X, \delta) \rightarrow(X, \delta)$ are ψ-contractions. The Condition C is fulfilled if the functions $f_{1}, f_{2}, \ldots, f_{N}$ are ψ-contractions.

This goal is achieved in the following four steps.
Step 1. Condition C allows us to define a compact subset K of X such that $K=\bigcup_{i=1}^{N} f_{i}(K)$.

Step 2. We construct a metric ρ on X, equivalent with d, such that $\rho\left(f_{i}(x), f_{i}(y)\right)$ $\leq \rho(x, y)$ for each $x, y \in X$ and each $i \in\{1,2, \ldots, N\}$.

Step 3. We construct a metric $\tilde{\rho}$ on X, equivalent with ρ (so with d), a comparison function φ and an open set U such that $K \subseteq U$ and the functions $f_{i}:(U, \tilde{\rho}) \rightarrow(X, \tilde{\rho})$ are φ-contractions.

Step 4. We construct a metric δ on X (actually a family of metrics), equivalent with d, and a comparison function ψ such that the functions $f_{i}:(X, \delta) \rightarrow(X, \delta)$ are ψ-contractions.

Condition C proved to be also a sufficient condition for the existence of a unique fixed point of the function $\mathcal{F}: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ given by $\mathcal{F}(C)=\bigcup_{i=1}^{N} f_{i}(C)$ for each $C \in \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the family of non-empty and compact subsets of X. Actually the above mentioned fixed point is K.

2. Preliminaries

Definition 2.1. (Comparison function) A function $\varphi:[0, \infty) \rightarrow[0, \infty)$ is called a comparison function if it has the following properties:
(i) φ is increasing (i.e. $t_{1}<t_{2} \Rightarrow \varphi\left(t_{1}\right) \leq \varphi\left(t_{2}\right)$ for each $t_{1}, t_{2} \geq 0$);
(ii) $\varphi(t)<t$ for any $t>0$;
(iii) φ is right-continuous.

Definition 2.2. (φ-contraction) Let (X, d) be a metric space and a function $\varphi:[0, \infty) \rightarrow[0, \infty)$. A function $f: X \rightarrow X$ is called a φ-contraction if

$$
d(f(x), f(y)) \leq \varphi(d(x, y)),
$$

for all $x, y \in X$.

In the following \mathbf{N} denotes the natural numbers, $\mathbf{N}^{*}=\mathbf{N} \backslash\{0\}$ and $\mathbf{N}_{n}^{*}=$ $\{1,2, \ldots, n\}$, where $n \in \mathbf{N}^{*}$. Given two sets A and B, by B^{A} we mean the set of functions from A to B. By $\Lambda(B)$ we mean the set $B^{\mathbf{N}^{*}}$ and by $\Lambda_{n}(B)$ we mean the set $B^{\mathbf{N}_{n}^{*}}$. The elements of $\Lambda(B)=B^{\mathbf{N}^{*}}$ are written as words $\omega=\omega_{1} \omega_{2} \ldots \omega_{m} \omega_{m+1} \ldots$ and the elements of $\Lambda_{n}(B)=B^{\mathbf{N}_{n}^{*}}$ are written as words $\omega=\omega_{1} \omega_{2} \ldots \omega_{n}$ (n-which is the length of ω-is denoted by $|\omega|$. Hence $\Lambda(B)$ is the set of infinite words with letters from the alphabet B and $\Lambda_{n}(B)$ is the set of words of length n with letters from the alphabet B. By $\Lambda^{*}(B)$ we denote the set of all finite words, i.e. $\Lambda^{*}(B)=$ $\bigcup_{n \in \mathbf{N}^{*}} \Lambda_{n}(B) \cup\{\lambda\}$, where λ is the empty word. If $\omega=\omega_{1} \omega_{2} \ldots \omega_{m} \omega_{m+1} \ldots \in \Lambda(B)$ or if $\omega=\omega_{1} \omega_{2} \ldots \omega_{n} \in \Lambda_{n}(B)$, where $m, n \in \mathbf{N}^{*}, n \geq m$, then the word $\omega_{1} \omega_{2} \ldots \omega_{m}$ is denoted by $[\omega]_{m}$. For two words $\alpha \in \Lambda_{n}(B)$ and $\beta \in \Lambda_{m}(B)$ or $\beta \in \Lambda(B)$, by $\alpha \beta$ we mean the concatenation of the words α and β, i.e. $\alpha \beta=\alpha_{1} \alpha_{2} \ldots \alpha_{n} \beta_{1} \beta_{2} \ldots \beta_{m}$ and respectively $\alpha \beta=\alpha_{1} \alpha_{2} \ldots \alpha_{n} \beta_{1} \beta_{2} \ldots \beta_{m} \beta_{m+1} \ldots$. For $f_{i}: X \rightarrow X, i \in B$, we denote Id_{X} by f_{λ} and $f_{\alpha_{1}} \circ f_{\alpha_{2}} \circ \ldots \circ f_{\alpha_{m}}$ by $f_{\alpha_{1} \alpha_{2} \ldots \alpha_{m}}$ for each $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in B$.

For a nonvoid set I, on $\Lambda(I)=(I)^{\mathbf{N}^{*}}$, we consider the metric $d_{\Lambda}(\alpha, \beta)=$ $\sum_{k=1}^{\infty} \frac{1-\delta_{\alpha_{k}}^{\beta_{k}}}{3^{k}}$, where $\delta_{x}^{y}= \begin{cases}1, & \text { if } x=y, \\ 0, & \text { if } x \neq y .\end{cases}$

Remark 2.1. The convergence in the complete metric space $\left(\Lambda(I), d_{\Lambda}\right)$ is the convergence on components.

Definition 2.3. (Iterated function system) Given a metric space (X, d), an iterated function system is a pair $\mathcal{S}=\left((X, d),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$, where $f_{i}: X \rightarrow X$ is continuous for each $i \in\{1,2, \ldots, N\}$.

Definition 2.4. (φ-contractive iterated function system) Given a comparison function $\varphi:[0, \infty) \rightarrow[0, \infty)$, an iterated function system $\mathcal{S}=\left((X, d),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ is called φ-contractive if f_{i} is φ-contraction for each $i \in\{1,2, \ldots, N\}$.

Definition 2.5. (φ-hyperbolic iterated function system). Given a comparison function $\varphi:[0, \infty) \rightarrow[0, \infty)$, an iterated function system $\mathcal{S}=\left((X, d),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ is called φ-hyperbolic if there exists a metric δ on X, equivalent to d, such that the iterated function system $\left((X, \delta),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ is φ-contractive.

Theorem 2.1. (see Theorem 3.11 from [14]) Given a comparison function $\varphi:[0, \infty) \rightarrow[0, \infty)$ and a complete metric space (X, d), for each φ-contractive iterated function system $\mathcal{S}=\left((X, d),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ there exists a unique non-empty compact subset $A(\mathcal{S})$ of X such that $A(\mathcal{S})=\bigcup_{i=1}^{N} f_{i}(A(\mathcal{S}))$.

3. The result

Definition 3.1. Let us consider a metric space (X, d), the continuous functions $f_{1}, \ldots, f_{N}: X \rightarrow X$ and a function $\pi: \Lambda \rightarrow X$, where $\Lambda=\Lambda(\{1,2, \ldots, N\})$. We say that the condition C (for the metric d) is fulfilled if

$$
\forall_{x \in X} \exists_{\varepsilon_{x}>0} \forall_{\delta>0} \exists_{n_{x, \varepsilon_{x}, \delta \in} \in \mathbf{N}} \forall_{n \in \mathbf{N},} n \geq n_{x, \varepsilon_{x}, \delta} \forall_{\omega \in \Lambda} \forall_{y \in B\left(x, \varepsilon_{x}\right)} d\left(f_{[\omega]_{n}}(y), \pi(\omega)\right)<\delta .
$$

In other words, Condition C says that for each $x \in X$ there exists $\varepsilon_{x}>0$ such that

$$
\lim _{n \rightarrow \infty} f_{[\omega]_{n}}(y)=\pi(\omega)
$$

uniformly with respect to $y \in B\left(x, \varepsilon_{x}\right)$ and $\omega \in \Lambda$.
In the sequel, for the sake of simplicity, we denote $\pi(\omega)$ by π_{ω}.

Remark 3.1. Condition C is fulfilled if there exists a comparison function ψ such that the functions $f_{1}, f_{2}, \ldots, f_{N}:(X, d) \rightarrow(X, d)$ are ψ-contractions, where (X, d) is a complete metric space.

Indeed, if $\mathcal{F}: \mathcal{B}(X) \rightarrow \mathcal{B}(X)$ is given by $\mathcal{F}(B)=\overline{\bigcup_{i=1}^{N} f_{i}(B)}$ for each $B \in \mathcal{B}(X)$, where $\mathcal{B}(X)$ denotes the family of all non-empty bounded closed subsets of X, then there exists a unique $A(\mathcal{S}) \in \mathcal{B}(X)$ such that

$$
\mathcal{F}(A(\mathcal{S}))=A(\mathcal{S})
$$

and moreover

$$
\lim _{n \rightarrow \infty} h\left(\mathcal{F}^{[n]}(Y), A(\mathcal{S})\right)=0
$$

for each $Y \in \mathcal{B}(X)$, where h is the Hausdorff-Pompeiu metric (see [4], Theorem 2.5). Therefore the set $Z=A(\mathcal{S}) \cup\left(\bigcup_{n \in \mathbf{N}} \mathcal{F}^{[n]}(Y)\right)$ is bounded. For each $x \in Z, \omega \in \Lambda$ and $n \in \mathbf{N}$, with the notation $f_{[\omega]_{n}}(Z)=Z_{[\omega]_{n}}$, we have

$$
d\left(f_{[\omega]_{n}}(x), \pi_{\omega}\right) \leq \operatorname{diam}\left(Z_{[\omega]_{n}}\right) \leq \psi^{[n]}(\operatorname{diam}(Z)),
$$

where $\left\{\pi_{\omega}\right\}=\bigcap_{n \in \mathbf{N}} f_{[\omega]_{n}}(A(\mathcal{S}))$ (see [5]). Hence, as $\lim _{n \rightarrow \infty} \psi^{[n]}(\operatorname{diam}(Z))=0$ (see [11], Remark 3.4), we obtain that

$$
\lim _{n \rightarrow \infty} f_{[\omega]_{n}}(y)=\pi_{\omega}
$$

uniformly with respect to $y \in Y$ and $\omega \in \Lambda$. Thus the Condition C is valid.
The following result is a kind of reverse of Remark 3.1.
Theorem 3.1. Let us consider (X, d) a metric space, the continuous functions $f_{1}, \ldots, f_{N}: X \rightarrow X$ and a function $\pi: \Lambda \rightarrow X$, where $\Lambda=\Lambda(\{1,2, \ldots, N\})$, such that the condition C (for the metric d) is fulfilled. Then there exist a comparison function $\psi:[0, \infty) \rightarrow[0, \infty)$ and a metric δ on X, equivalent with d, such that $f_{i}:(X, \delta) \rightarrow(X, \delta)$ is ψ-contraction for each $i \in\{1,2, \ldots, N\}$ (i.e.

$$
\delta\left(f_{i}(x), f_{i}(y)\right) \leq \psi(\delta(x, y))
$$

for each $x, y \in X$). Moreover, if the metric space (X, d) is complete, then (X, δ) is complete.

Proof. Our rather long proof is divided into 12 facts. The final of the justification of such a fact is marked by

Fact 1. (A metric ρ, equivalent with d, making the functions f_{i} nonexpansive) There exists a metric ρ on X, equivalent with d, such that

$$
\rho\left(f_{i}(x), f_{i}(y)\right) \leq \rho(x, y)
$$

for each $i \in\{1,2, \ldots, N\}$ and each $x, y \in X$. Consequently we have

$$
\rho\left(f_{\omega}(x), f_{\omega}(y)\right) \leq \rho(x, y)
$$

for each $x, y \in X$ and each $\omega \in \Lambda^{*}$.
Justification of Fact 1. Let us define the function $\rho: X \times X \rightarrow[0, \infty]$ by

$$
\rho(x, y)=\sup _{\omega \in \Lambda^{*}} d\left(f_{\omega}(x), f_{\omega}(y)\right),
$$

for each $x, y \in X$. According to the hypothesis, for given $x, y \in X$, there exists $n_{1} \in \mathbf{N}$ such that the inequalities $d\left(f_{[\omega]_{n}}(x), \pi_{\omega}\right)<1$ and $d\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)<1$ are valid for each $n \in \mathbf{N}, n \geq n_{1}$ and $\omega \in \Lambda$. Therefore $d\left(f_{[\omega]_{n}}(x), f_{[\omega]_{n}}(y)\right) \leq d\left(f_{[\omega]_{n}}(x), \pi_{\omega}\right)+$ $d\left(\pi_{\omega}, f_{[\omega]_{n}}(y)\right) \leq 1+1=2$ for every $n \in \mathbf{N}, n \geq n_{1}$ and every $\omega \in \Lambda^{*}$ such that $|\omega|>$
n_{1}. As the set $\left\{\omega \in \Lambda^{*}| | \omega \mid \leq n_{1}\right\}$ is finite, we conclude that $\sup _{\omega \in \Lambda^{*}} d\left(f_{\omega}(x), f_{\omega}(y)\right)$ is finite. Hence $\rho: X \times X \rightarrow[0, \infty)$.

It is clear that:
i) $\rho(x, y)=0$ if and only if $x=y$ (since $\left.d(x, y)=d\left(f_{\lambda}(x), f_{\lambda}(y)\right) \leq \rho(x, y)\right)$;
ii) $\rho(x, y)=\rho(y, x)$;
iii) $\rho(x, y) \leq \rho(x, z)+\rho(z, y)$,
for each $x, y, z \in X$. Therefore ρ is a metric.
We have

$$
\begin{equation*}
\rho\left(f_{i}(x), f_{i}(y)\right) \leq \rho(x, y), \tag{1.1}
\end{equation*}
$$

for each $x, y \in X$ and each $i \in\{1,2, \ldots, N\}$. Indeed, since

$$
d\left(f_{\omega}\left(f_{i}(x)\right), f_{\omega}\left(f_{i}(y)\right)\right) \leq \rho(x, y)
$$

for each $x, y \in X, \omega \in \Lambda^{*}$ and $i \in\{1,2, \ldots, N\}$, we obtain that

$$
\sup _{\omega \in \Lambda^{*}} d\left(f_{\omega}\left(f_{i}(x)\right), f_{\omega}\left(f_{i}(y)\right)\right) \leq \rho(x, y)
$$

i.e.

$$
\rho\left(f_{i}(x), f_{i}(y)\right) \leq \rho(x, y)
$$

for each $x, y \in X$ and each $i \in\{1,2, \ldots, N\}$.
As we have seen

$$
d(x, y) \leq \rho(x, y)
$$

for each $x, y \in X$.
(*) Therefore if $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a sequence of elements from X and $l \in X$ such that $\lim _{n \rightarrow \infty} \rho\left(x_{n}, l\right)=0$, then $\lim _{n \rightarrow \infty} d\left(x_{n}, l\right)=0$.
$(* *)$ Now we prove that if $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a sequence of elements from X and $l \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, l\right)=0$, then $\lim _{n \rightarrow \infty} \rho\left(x_{n}, l\right)=0$.
Indeed, let us note that according to the hypothesis there exists $\varepsilon_{l}>0$ having the property that for each $\varepsilon>0$ there exists $m_{\varepsilon, \varepsilon_{l}} \in \mathbf{N}$ such that the inequality

$$
\begin{equation*}
d\left(f_{[\omega]_{m}}(x), \pi_{\omega}\right)<\frac{\varepsilon}{2} \tag{1.2}
\end{equation*}
$$

is valid for each $m \in \mathbf{N}, m \geq m_{\varepsilon, \varepsilon_{l}}, \omega \in \Lambda$ and $x \in B\left(l, \varepsilon_{l}\right)$. Let us fix $\varepsilon>0$. Since the set of continuous functions $\left\{f_{\omega} \mid \omega \in \Lambda^{*}\right.$ and $\left.|\omega|<m_{\varepsilon, \varepsilon_{l}}\right\}$ is finite, we infer that there exists $n_{\varepsilon}^{1} \in \mathbf{N}$ such that the inequality

$$
\begin{equation*}
d\left(f_{\omega}\left(x_{n}\right), f_{\omega}(l)\right)<\varepsilon \tag{1.3}
\end{equation*}
$$

is valid for each $n \in \mathbf{N}, n \geq n_{\varepsilon}^{1}$ and each $\omega \in \Lambda^{*}$ such that $|\omega|<m_{\varepsilon, \varepsilon_{l}}$. Since $\lim _{n \rightarrow \infty} d\left(x_{n}, l\right)=0$, there exists $n_{\varepsilon}^{2} \in \mathbf{N}$ such that $x_{n} \in B\left(l, \varepsilon_{l}\right)$ for each $n \in \mathbf{N}$, $n \geq n_{\varepsilon}^{2}$. For $\omega \in \Lambda^{*}$ having the property that $|\omega| \geq m_{\varepsilon, \varepsilon_{l}}, \omega=\omega_{1} \omega_{2} \ldots \omega_{m}$, where $m \in \mathbf{N}, m \geq m_{\varepsilon, \varepsilon_{l}}$, considering $\omega^{\prime}=\omega_{1} \omega_{2} \ldots \omega_{m} \omega_{m} \omega_{m} \ldots \omega_{m} \ldots \in \Lambda$, we have $\left[\omega^{\prime}\right]_{m}=\omega$, so, according to (1.2), we have $d\left(f_{\omega}\left(x_{n}\right), \pi_{\omega^{\prime}}\right)<\frac{\varepsilon}{2}$ for each $n \in \mathbf{N}, n \geq n_{\varepsilon}^{2}$ and $d\left(f_{\omega}(l), \pi_{\omega^{\prime}}\right)<\frac{\varepsilon}{2}$. Thus

$$
\begin{equation*}
d\left(f_{\omega}\left(x_{n}\right), f_{\omega}(l)\right) \leq d\left(f_{\omega}\left(x_{n}\right), \pi_{\omega^{\prime}}\right)+d\left(\pi_{\omega^{\prime}}, f_{\omega}(l)\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \tag{1.4}
\end{equation*}
$$

is valid for each $n \in \mathbf{N}, n \geq n_{\varepsilon}^{2}$ and each $\omega \in \Lambda^{*}$ with $|\omega| \geq m_{\varepsilon, \varepsilon_{l}}$. From (1.3) and (1.4) we conclude that there exists $n_{\varepsilon}=\max \left\{n_{\varepsilon}^{1}, n_{\varepsilon}^{2}\right\} \in \mathbf{N}$ such that

$$
d\left(f_{\omega}\left(x_{n}\right), f_{\omega}(l)\right)<\varepsilon
$$

for each $n \in \mathbf{N}, n \geq n_{\varepsilon}$ and each $\omega \in \Lambda^{*}$, i.e. there exists $n_{\varepsilon} \in \mathbf{N}$ such that

$$
\rho\left(x_{n}, l\right)=\sup _{\omega \in \Lambda^{*}} d\left(f_{\omega}\left(x_{n}\right), f_{\omega}(l)\right) \leq \varepsilon
$$

for each $n \in \mathbf{N}, n \geq n_{\varepsilon}$. Therefore $\lim _{n \rightarrow \infty} \rho\left(x_{n}, l\right)=0$.
From $(*)$ and $(* *)$ we conclude that d and ρ are equivalent.
Now let us consider the set $K=\pi(\Lambda)=\left\{\pi_{\omega} \mid \omega \in \Lambda\right\}$.
Fact 2. (The properties of K)
i) K is compact.
ii) $K=\bigcup_{i=1}^{N} f_{i}(K)$.

Justification of Fact 2. i) We are going to prove that the function $\pi: \Lambda \rightarrow X$ is continuous. Indeed, let us consider a fixed $\omega \in \Lambda$ and an arbitrary sequence $\left(\omega_{n}\right)_{n \in \mathbf{N}}$ of elements of Λ such that $\lim _{n \rightarrow \infty} \omega_{n}=\omega$. For a fixed element $x_{0} \in X$, according to the hypothesis, for each $\varepsilon>0$ there exists $n_{\varepsilon} \in \mathbf{N}$ such that the inequality $d\left(f_{\left[\omega^{\prime}\right]_{n}}\left(x_{0}\right), \pi_{\omega^{\prime}}\right)<\frac{\varepsilon}{2}$ is valid for each $n \in \mathbf{N}, n \geq n_{\varepsilon}$ and each $\omega^{\prime} \in \Lambda$. As convergence in $\left(\Lambda, d_{\Lambda}\right)$ is convergence on components and $\{1,2, \ldots, N\}$ is finite, there exists $m_{\varepsilon} \in \mathbf{N}$ such that $\left[\omega_{n}\right]_{n_{\varepsilon}}=[\omega]_{n_{\varepsilon}}$ for each $n \in \mathbf{N}, n \geq m_{\varepsilon}$. Therefore, for $n \in \mathbf{N}, n \geq m_{\varepsilon}$, we have

$$
d\left(\pi_{\omega_{n}}, \pi_{\omega}\right) \leq d\left(f_{\left[\omega_{n}\right]_{n_{\varepsilon}}}\left(x_{0}\right), \pi_{\omega_{n}}\right)+d\left(f_{[\omega]_{\varepsilon}}\left(x_{0}\right), \pi_{\omega}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,
$$

i.e. $\lim _{n \rightarrow \infty} \pi_{\omega_{n}}=\pi_{\omega}$. Since $\left(\Lambda, d_{\Lambda}\right)$ is a compact metric space (as a product of compact spaces), $\pi(\Lambda)=K$ is compact.
ii) Let us note that

$$
\begin{equation*}
f_{i}\left(\pi_{\omega}\right)=\pi_{i \omega} \tag{2.1}
\end{equation*}
$$

for each $i \in\{1,2, \ldots, N\}$ and each $\omega \in \Lambda$. Indeed, for a fixed $x \in X$, by taking into account the continuity of f_{i}, we have

$$
f_{i}\left(\pi_{\omega}\right)=f_{i}\left(\lim _{n \rightarrow \infty} f_{[\omega]_{n}}(x)\right)=\lim _{n \rightarrow \infty} f_{i}\left(f_{[\omega]_{n}}(x)\right)=\lim _{n \rightarrow \infty} f_{[i \omega]_{n}}(x)=\pi_{i \omega} .
$$

Therefore $f_{i}(K) \subseteq K$ for each $i \in\{1,2, \ldots, N\}$ and consequently

$$
\begin{equation*}
\bigcup_{i=1}^{N} f_{i}(K) \subseteq K \tag{2.2}
\end{equation*}
$$

If $\omega=\omega_{1} \omega_{2} \ldots \omega_{m} \omega_{m+1} \ldots$, with the notation $\omega^{\prime}=\omega_{2} \ldots \omega_{m} \omega_{m+1} \ldots$, we have $\pi_{\omega}=\pi_{\omega_{1} \omega^{\prime}} \stackrel{(2.1)}{=} f_{\omega_{1}}\left(\pi_{\omega^{\prime}}\right) \in f_{\omega_{1}}(K) \subseteq \bigcup_{i=1}^{N} f_{i}(K)$, so

$$
\begin{equation*}
K \subseteq \bigcup_{i=1}^{N} f_{i}(K) \tag{2.3}
\end{equation*}
$$

From (2.2) and (2.3) we obtain that $K=\bigcup_{i=1}^{N} f_{i}(K)$.
Fact 3. (If Condition C is valid for d, then it is also valid for ρ) The condition C is also valid for ρ.

Justification of Fact 3. According to the hypothesis, we have

$$
\forall_{x \in X} \exists_{\varepsilon_{x}>0} \forall_{\delta>0} \exists_{n_{x, \varepsilon_{x}, \delta} \in \mathbf{N}} \forall_{n \in \mathbf{N}, n \geq n_{x, \varepsilon_{x}, \delta}} \forall_{\omega \in \Lambda} \forall_{y \in B\left(x, \varepsilon_{x}\right)} d\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)<\frac{\delta}{2},
$$

so

$$
\forall_{x \in X} \exists_{\varepsilon_{x}>0} \forall_{\delta>0} \exists_{n_{x, \varepsilon_{x}, \delta \in} \in \mathbf{N}} \forall_{n \in \mathbf{N},} n \geq n_{x, \varepsilon_{x}, \delta} \forall_{\omega \in \Lambda} \forall_{v \in \Lambda^{*}} \forall_{y \in B\left(x, \varepsilon_{x}\right)}
$$

$$
d\left(f_{[v \omega]_{|v|+n}}(y), \pi_{v \omega}\right)<\frac{\delta}{2},
$$

since $|v|+n \geq n \geq n_{x, \varepsilon_{x}, \delta}$.
Taking into account that, based on (2.1), the inequality $d\left(f_{[v \omega]_{|v|+n}}(y), \pi_{v \omega}\right)<\frac{\delta}{2}$ can be rewritten as $d\left(f_{v}\left(f_{[\omega]_{n}}(y)\right), f_{v}\left(\pi_{\omega}\right)\right)<\frac{\delta}{2}$, we get that

$$
\begin{aligned}
& \forall_{x \in X} \exists_{\varepsilon_{x}>0} \forall_{\delta>0} \exists_{n_{x, \varepsilon_{x}, \delta} \in \mathbf{N}} \forall_{n \in \mathbf{N}, n \geq n_{x, \varepsilon_{x}, \delta}} \forall_{\omega \in \Lambda} \forall_{y \in B\left(x, \varepsilon_{x}\right)} \\
& \rho\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)=\sup _{v \in \Lambda^{*}} d\left(f_{v}\left(f_{[\omega]_{n}}(y)\right), f_{v}\left(\pi_{\omega}\right)\right) \leq \frac{\delta}{2}<\delta,
\end{aligned}
$$

i.e. Condition C is valid for ρ.

Fact 4. (The construction of the open set U) There exists an open set U such that $K \subseteq U$ and for each $\delta>0$ there exists $n_{\delta} \in \mathbf{N}$ such that the inequality

$$
\rho\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)<\delta
$$

is valid for each $n \in \mathbf{N}, n \geq n_{\delta}, \omega \in \Lambda$ and $y \in U$.
Justification of Fact 4. Since K is compact, there exist $p \in \mathbf{N}$ and $\pi_{\omega_{1}}, \pi_{\omega_{2}}, \ldots, \pi_{\omega_{p}}$ such that

$$
K \subseteq B\left(\pi_{\omega_{1}}, \varepsilon_{\pi_{\omega_{1}}}\right) \cup B\left(\pi_{\omega_{2}}, \varepsilon_{\pi_{\omega_{2}}}\right) \cup \cdots \cup B\left(\pi_{\omega_{p}}, \varepsilon_{\pi_{\omega_{p}}}\right)
$$

where $\varepsilon_{\pi_{\omega_{1}}}, \varepsilon_{\pi_{\omega_{2}}}, \ldots, \varepsilon_{\pi_{\omega_{p}}}$ are given by the Condition C. Let us denote by U the open set $B\left(\pi_{\omega_{1}}, \varepsilon_{\pi_{\omega_{1}}}\right) \cup B\left(\pi_{\omega_{2}}, \varepsilon_{\pi_{\omega_{2}}}\right) \cup \cdots \cup B\left(\pi_{\omega_{p}}, \varepsilon_{\pi_{\omega_{p}}}\right)$. Now we can choose $n_{\delta}=$ $\max \left\{n_{\pi_{\omega_{1}}, \varepsilon_{\pi_{\omega_{1}}}, \delta}, n_{\pi_{\omega_{2}}, \varepsilon_{\omega_{2}}, \delta}, \ldots, n_{\pi_{\omega_{p}}, \varepsilon_{\pi_{\omega_{p}}}, \delta}\right\}$ since for each $y \in U$ there exists $j_{0} \in$ $\{1,2, \ldots, p\}$ such that $y \in B\left(\pi_{\omega_{j_{0}}}, \varepsilon_{\pi_{\omega j_{0}}}\right)$, so, according to Fact $3, \rho\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)<\delta$ for each $n \in \mathbf{N}, n \geq n_{\delta}, \omega \in \Lambda$.

Let $\left(a_{n}\right)_{n \in \mathbf{N}}$ be a bounded strictly increasing sequence of positive real numbers such that: $\left.\left.\alpha) a_{0}>1 ; \beta\right) \frac{a_{1}}{a_{0}} \leq 2 ; \gamma\right)\left(\frac{a_{n+1}}{a_{n}}\right)_{n \in \mathrm{~N}}$ is strictly decreasing and let us denote by l the limit of the sequence $\left(a_{n}\right)_{n \in \mathbf{N}}$ (for example, we can take $a_{n}=\prod_{k=0}^{n}\left(1+x^{k+1}\right)$, where $x \in(0,1)$). Let us also consider $\left(b_{k}\right)_{k \in \mathbf{N}}$ a sequence of positive real numbers such that $\frac{b_{k}}{4}<b_{k+1}<\frac{b_{k}}{2}$ for each $k \in \mathbf{N}$. It is clear that $\left(b_{k}\right)_{k \in \mathbf{N}}$ is decreasing and that its limit is 0 .

Taking into account Fact 4 and using the method of mathematical induction, we find a strictly increasing sequence $\left(n_{k}\right)_{k \in \mathbf{N}}$ of natural numbers such that

$$
\rho\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)<\frac{b_{k}}{16}
$$

for each $n \in \mathbf{N}, n \geq n_{k}, \omega \in \Lambda$ and $y \in U$.
Note that

$$
\begin{equation*}
\rho\left(f_{[\omega]_{n}}(y), f_{[\omega]_{n}}(x)\right)<\frac{b_{k}}{8} \tag{1}
\end{equation*}
$$

for each $n \in \mathbf{N}, n \geq n_{k}, \omega \in \Lambda$ and $x, y \in U$ since

$$
\rho\left(f_{[\omega]_{n}}(y), f_{[\omega]_{n}}(x)\right) \leq \rho\left(f_{[\omega]_{n}}(y), \pi_{\omega}\right)+\rho\left(\pi_{\omega}, f_{[\omega]_{n}}(x)\right)<\frac{b_{k}}{16}+\frac{b_{k}}{16}=\frac{b_{k}}{8} .
$$

We consider the function $\tilde{\rho}: X \times X \rightarrow[0, \infty]$ given by

$$
\tilde{\rho}(x, y)=\sup _{\omega \in \Lambda^{*}} a_{|\omega|} \rho\left(f_{\omega}(x), f_{\omega}(y)\right),
$$

for each $x, y \in X$.
Fact 5. (The properties of $\tilde{\rho}$)
i)

$$
a_{0} \rho(x, y) \leq \tilde{\rho}(x, y) \leq l \rho(x, y)
$$

for each $x, y \in X$, so $\tilde{\rho}: X \times X \rightarrow[0, \infty)$ and $\tilde{\rho}$ is a metric which is equivalent with ρ.
ii)

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \tilde{\rho}(x, y)
$$

for each $x, y \in X$ and each $i \in\{1,2, \ldots, N\}$.
iii)

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \max \left\{\sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right), l \frac{b_{k}}{8}\right\}
$$

for each $x, y \in U, k \in \mathbf{N}$ and $i \in\{1,2, \ldots, N\}$.
iv) The following implication is valid

$$
l \frac{b_{k}}{8}<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \Longrightarrow \tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)
$$

for each $x, y \in U, k \in \mathbf{N}$ and $i \in\{1,2, \ldots, N\}$.
Justification of Fact 5. i) For each $x, y \in X$, we have

$$
a_{0} \rho(x, y)=a_{|\lambda|} \rho\left(f_{\lambda}(x), f_{\lambda}(y)\right) \leq \tilde{\rho}(x, y)
$$

and, using Fact 1 , we get

$$
a_{|\omega|} \rho\left(f_{\omega}(x), f_{\omega}(y)\right) \leq l \rho(x, y)
$$

for each $\omega \in \Lambda^{*}$, hence

$$
\tilde{\rho}(x, y) \leq l \rho(x, y) .
$$

ii) We have

$$
\begin{aligned}
& a_{|\omega|} \rho\left(f_{\omega}\left(f_{i}(x)\right), f_{\omega}\left(f_{i}(y)\right)\right)=a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right) \\
& \leq a_{|\omega i|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right) \leq \sup _{\omega \in \Lambda^{*}} a_{|\omega|} \rho\left(f_{\omega}(x), f_{\omega}(y)\right)=\tilde{\rho}(x, y)
\end{aligned}
$$

for each $x, y \in X, i \in\{1,2, \ldots, N\}$ and $\omega \in \Lambda^{*}$, so we get ii).
iii) We have

$$
\begin{aligned}
& \tilde{\rho}\left(f_{i}(x), f_{i}(y)\right)=\sup _{\omega \in \Lambda^{*}} a_{|\omega|} \rho\left(f_{\omega}\left(f_{i}(x)\right), f_{\omega}\left(f_{i}(y)\right)\right) \\
& =\max \left\{\sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right), \sup _{\omega \in \Lambda^{*},|\omega| \geq n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right)\right\} \\
& \stackrel{(1)}{\leq} \max \left\{\sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right), l \frac{b_{k}}{8}\right\} .
\end{aligned}
$$

iv) If $l \frac{b_{k}}{8}<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right)$, then

$$
l \frac{b_{k}}{8}<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \stackrel{\mathrm{iii})}{\leq} \max \left\{\sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right), l \frac{b_{k}}{8}\right\}
$$

so

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right) .
$$

Since for each $\omega \in \Lambda^{*}$ such that $|\omega|<n_{k}$ we have

$$
a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right)=a_{|\omega i|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right) \frac{a_{|\omega|}}{a_{|\omega i|}}<\frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y),
$$

we infer that

$$
\sup _{\omega \in \Lambda^{*},|\omega|<n_{k}} a_{|\omega|} \rho\left(f_{\omega i}(x), f_{\omega i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y) .
$$

Consequently, we have

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)
$$

Let us consider $\left(c_{k}\right)_{k \in \mathbf{N}}$, where $c_{k}=l \frac{a_{n_{k}+1}}{a_{n_{k}}} \frac{b_{k}}{8}$. Note that $c_{k} \leq l \frac{b_{k}}{4}<l b_{k+1}$ for each $k \in \mathbf{N}$. Let us define, for each $k \in \mathbf{N}$, the increasing continuous function $\varphi_{k}:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\varphi_{k}(t)= \begin{cases}\frac{a_{n_{k}}}{a_{n_{k}}+1} t, & \text { if } t \in\left(c_{k}, \infty\right), \\ l \frac{b_{k}}{8}, & \text { if } t \in\left[l \frac{b_{k}}{8}, c_{k}\right], \\ t, & \text { if } t \in\left[0, l \frac{b_{k}}{8}\right) .\end{cases}
$$

Fact 6. $\left(f_{i}\right.$ are φ_{k}-contractions with respect to $\tilde{\rho}$ on $\left.U\right)$ We have

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \varphi_{k}(\tilde{\rho}(x, y))
$$

for each $x, y \in U$, each $k \in \mathbf{N}$ and each $i \in\{1,2, \ldots, N\}$.
Justification of Fact 6. For given $x, y \in U$ and $k \in \mathbf{N}$, we have to consider the following three cases:
c1) $\tilde{\rho}(x, y) \in\left[0, l \frac{b_{k}}{8}\right)$;
c2) $\tilde{\rho}(x, y) \in\left[l \frac{b_{k}}{8}, c_{k}\right]$;
c3) $\tilde{\rho}(x, y) \in\left(c_{k}, \infty\right)$.
In case $c 1$) the inequality to be proved becomes

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \tilde{\rho}(x, y)
$$

which is valid taking into account Fact 5 , ii).
In case $c 2$) the inequality to be proved becomes

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq l \frac{b_{k}}{8} .
$$

If this inequality is not true, then

$$
l \frac{b_{k}}{8}<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right)
$$

so, using Fact 5, iv), we get

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)
$$

hence we arrive to the contradiction

$$
l \frac{b_{k}}{8}<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} c_{k}=l \frac{b_{k}}{8} .
$$

In case c3) the inequality to be proved becomes

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)
$$

If this inequality is not true, then

$$
\frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right)
$$

so

$$
l \frac{b_{k}}{8}=\frac{a_{n_{k}}}{a_{n_{k}+1}} c_{k}<\frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y)<\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right)
$$

hence, using again Fact 5, iv), we obtain the contradiction

$$
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \frac{a_{n_{k}}}{a_{n_{k}+1}} \tilde{\rho}(x, y) .
$$

Let us consider the function $\varphi:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\varphi(t)=\inf _{k \in \mathbf{N}} \varphi_{k}(t),
$$

for each $t \in[0, \infty)$.
Fact 7. φ is a comparison function.
Justification of Fact 7. Since φ_{k} is increasing for each $k \in \mathbf{N}$, we infer that φ is increasing. For $t_{0}>0$ and $\varepsilon>0$ such that $t_{0}-\varepsilon>0$ there exists $k_{\varepsilon} \in \mathbf{N}$ having the property that $l \frac{b_{k_{\varepsilon}}}{4}<t_{0}-\varepsilon$, so $c_{k} \leq l \frac{b_{k}}{4} \leq l \frac{b_{k_{\varepsilon}}}{4}<t_{0}-\varepsilon$ for each $k \in \mathbf{N}, k>k_{\varepsilon}$. Then

$$
\begin{equation*}
\varphi(t)=\min \left\{\min _{k \in\left\{0,1,2, \ldots, k_{\varepsilon}\right\}} \varphi_{k}(t), \frac{a_{n_{k_{\varepsilon}+1}}}{a_{n_{k_{\varepsilon}+1}+1}} t\right\} \tag{7.1}
\end{equation*}
$$

for each $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$.
Indeed, for each $k \in \mathbf{N}, k>k_{\varepsilon}$ and $t \in\left(t_{0}-\varepsilon, t_{0}+\varepsilon\right)$ we have $\varphi_{k}(t)=\frac{a_{n_{k}}}{a_{n_{k}+1}} t$, so taking into account the fact that $\left(\frac{a_{n+1}}{a_{n}}\right)_{n \in \mathbf{N}}$ is decreasing, we infer that $\inf _{k>k_{\varepsilon}} \varphi_{k}(t)=$ $\frac{a_{n_{\varepsilon}+1}}{a_{n_{k_{\varepsilon}+1}+1}} t$ and therefore

$$
\begin{aligned}
\varphi(t) & =\inf _{k \in \mathbf{N}} \varphi_{k}(t)=\min \left\{\inf _{k \in\left\{0,1,2, \ldots, k_{\varepsilon}\right\}} \varphi_{k}(t), \inf _{k>k_{\varepsilon}} \varphi_{k}(t)\right\} \\
& =\min \left\{\min _{k \in\left\{0,1,2, \ldots, k_{\varepsilon}\right\}} \varphi_{k}(t), \frac{a_{n_{k_{\varepsilon}+1}}}{a_{n_{k_{\varepsilon}+1}+1}} t\right\} .
\end{aligned}
$$

Hence, from (7.1), we get

$$
\varphi(t)<t
$$

for each $t>0$.
In order to conclude that φ is a comparison function, it remains to prove that φ is right-continuous. We shall prove that φ is continuous. To this end, let us note that the inequality $\varphi(t)<t$ for each $t>0$ assures us that $\lim _{t>0, t \rightarrow 0} \varphi(t)=0=\varphi(0)$, so φ is continuous at 0 . From (7.1), based on the continuity of the functions φ_{k} and $t \rightarrow \frac{a_{n_{k}+1}}{a_{n_{k}+1}+1} t$, we conclude that φ is continuous at each $t_{0}>0$.

Note that from Fact 6 we get

$$
\begin{equation*}
\tilde{\rho}\left(f_{i}(x), f_{i}(y)\right) \leq \varphi(\tilde{\rho}(x, y)) \tag{2}
\end{equation*}
$$

for each $x, y \in U$ and each $i \in\{1,2, \ldots, N\}$.
We consider the function $n: X \rightarrow \mathbf{N}$ given by

$$
n(x)=\max \left\{n \in \mathbf{N} \mid \text { there exists } \omega \in \Lambda_{n} \text { such that } f_{\omega}(x) \notin U\right\}+1,
$$

for each $x \in X$, with the convention that $\max \emptyset=-1$.

Let us remark that n is well defined. Indeed, since K is compact, U is open and $K \subseteq U$, there exist $\eta>0$ such that $B(K, \eta) \subseteq U$. Taking into account the hypothesis, for every $x \in X$ there exists $n_{1} \in \mathbf{N}$ such that $d\left(f_{[\omega]_{n}}(x), \pi_{\omega}\right)<\eta$ (i.e. $f_{[\omega]_{n}}(x) \in B\left(\pi_{\omega}, \eta\right) \subseteq U$) for each $n \in \mathbf{N}, n \geq n_{1}$ and each $\omega \in \Lambda$. Hence $\left\{n \in \mathbf{N} \mid\right.$ there exists $\omega \in \Lambda_{n}$ such that $\left.f_{\omega}(x) \notin U\right\} \subseteq\left\{0,1,2, \ldots, n_{1}-1\right\}$.

Note that if $n(x)=0$, then $f_{\omega}(x) \in U$ for every $\omega \in \Lambda^{*}$ (in particular $x \in U$) and $n\left(f_{j}(x)\right)=0$ for each $j \in\{1,2, \ldots, N\}$.

Fact 8. (The properties of n)
i) For each $x \in X$ there exists $r_{x}>0$ such that

$$
n(y) \leq n(x)
$$

for each $y \in B\left(x, r_{x}\right)$.
ii) For each $x \in X$ such that $n(x) \geq 1$ and each $i \in\{1,2, \ldots, N\}$ we have

$$
n\left(f_{i}(x)\right) \leq n(x)-1
$$

Justification of Fact 8. i) There exist $r_{x}^{1}>0$ and $m \in \mathbf{N}$ such that $f_{\omega}(y) \in U$ for each $y \in B\left(x, r_{x}^{1}\right)$ and each $\omega \in \Lambda^{*}$ with $|\omega|>m$. Indeed, since the compact set K is a subset of the open set U, we infer that $\inf _{x \in K} d(x, X-U) \stackrel{\text { not }}{=} \delta_{0}>0$ and $\left\{x \in X \mid\right.$ there exists $k_{x} \in K$ such that $\left.d\left(x, k_{x}\right)<\delta_{0}\right\} \subseteq U$. Hence, taking into account condition C, just take $r_{x}^{1}=\varepsilon_{x}$ and $m=n_{x, \varepsilon_{x}, \delta_{0}}$.

Since the set of continuous functions $\left\{f_{\omega} \mid \omega \in \Lambda_{n}, n \leq m\right\}$ is finite, we infer that for each $x \in X$ having the property that $f_{\omega}(x) \in U$ for each $\omega \in \Lambda_{n}, n \leq m$, there exists $r_{x}^{2}>0$ such that $f_{\omega}(y) \in U$ for each $\omega \in \Lambda_{n}, n \leq m$ and each $y \in B\left(x, r_{x}^{2}\right)$. Therefore, taking $r_{x}=\min \left\{r_{x}^{1}, r_{x}^{2}\right\}$, we have $\left\{n \in \mathbf{N} \mid f_{\omega}(x) \in U\right.$ for each $\left.\omega \in \Lambda_{n}\right\} \subseteq$ $\left\{n \in \mathbf{N} \mid f_{\omega}(y) \in U\right.$ for each $\left.\omega \in \Lambda_{n}\right\}$, for each $y \in B\left(x, r_{x}\right)$. In particular, we get that $n(y) \leq n(x)$ for each $y \in B\left(x, r_{x}\right)$.
ii) With the notation $m=n\left(f_{i}(x)\right)$, there exists $\omega_{0} \in \Lambda_{m-1}$ such that $f_{\omega_{0}}\left(f_{i}(x)\right)=$ $f_{\omega_{0} i}(x) \notin U$, so, as $\omega_{0} i \in \Lambda_{m}$, we obtain that $m \in\left\{n \in \mathbf{N} \mid\right.$ there exists $\omega \in \Lambda_{n}$ such that $\left.f_{\omega}(x) \notin U\right\}$. Hence $m+1 \leq \max \left\{n \in \mathbf{N} \mid\right.$ there exists $\omega \in \Lambda_{n}$ such that $\left.f_{\omega}(x) \notin U\right\}+1=n(x)$.

For a given $\alpha>1$, we define the functions $D_{\alpha}: X \times X \rightarrow[0, \infty)$ and $\rho_{\alpha}: X \times X \rightarrow$ $[0, \infty)$ given by

$$
D_{\alpha}(x, y)=\alpha^{n(x, y)} \tilde{\rho}(x, y)
$$

and

$$
\begin{aligned}
& \rho_{\alpha}(x, y) \\
& =\inf \left\{\sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right) \mid n \in \mathbf{N}^{*},\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\} \subseteq X, x_{0}=x \text { and } x_{n}=y\right\},
\end{aligned}
$$

for each $x, y \in X$, where $n(x, y)=\max \{n(x), n(y)\}$.
As the reader can routinely verify ρ_{α} is a pseudometric on X.
Fact 9. (The properties of ρ_{α})
i)

$$
\tilde{\rho}(x, y) \leq \rho_{\alpha}(x, y),
$$

for each $x, y \in X$, so ρ_{α} is a metric.
ii)

$$
\rho_{\alpha}(x, y) \leq \alpha^{n(x, y)} \tilde{\rho}(x, y),
$$

for each $x, y \in X$.
iii) ρ_{α} and $\tilde{\rho}$ are equivalent.

Justification of Fact 9. i) We have $\tilde{\rho}(x, y) \leq \sum_{i=0}^{n-1} \tilde{\rho}\left(x_{i}, x_{i+1}\right) \leq \sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right)$ for each $n \in \mathbf{N}^{*}, x_{i} \in X$ for each $i \in\{0,1,2, \ldots, n\}$ such that $x_{0}=x$ and $x_{n}=y$, so $\tilde{\rho}(x, y) \leq \rho_{\alpha}(x, y)$ for each $x, y \in X$.
ii) We have $\rho_{\alpha}(x, y) \leq D_{\alpha}(x, y)=\alpha^{n(x, y)} \tilde{\rho}(x, y)$, for each $x, y \in X$.
iii) On the one hand, if $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a sequence of elements from X and $l \in X$ is such that $\lim _{n \rightarrow \infty} \rho_{\alpha}\left(x_{n}, l\right)=0$, then, from i) we get that $\lim _{n \rightarrow \infty} \tilde{\rho}\left(x_{n}, l\right)=0$. On the other hand, let us consider $\left(x_{n}\right)_{n \in \mathbf{N}}$ a sequence of elements from X and $l \in X$ such that $\lim _{n \rightarrow \infty} \tilde{\rho}\left(x_{n}, l\right)=0$. Taking into account Fact 8 , i), there exists $r_{l}>0$ such that $n(y) \leq n(l)$ for each y having the property that $d(y, l)<r_{l}$. As $\tilde{\rho}$ and d are equivalent, there exists $n_{0} \in \mathbf{N}$ such that $d\left(x_{n}, l\right)<r_{l}$, so $n\left(x_{n}\right) \leq n(l)$ for each $n \in \mathbf{N}, n \geq n_{0}$. Hence, using ii), we get that $\rho_{\alpha}\left(x_{n}, l\right) \leq \alpha^{n\left(x_{n}, l\right)} \tilde{\rho}\left(x_{n}, l\right) \leq \alpha^{n(l)} \tilde{\rho}\left(x_{n}, l\right)$ for each $n \in \mathbf{N}, n \geq n_{0}$ and consequently $\lim _{n \rightarrow \infty} \rho_{\alpha}\left(x_{n}, l\right)=0$. Therefore ρ_{α} and $\tilde{\rho}$ are equivalent.

Fact 10. If $\varphi_{1}, \varphi_{2}:[0, \infty) \rightarrow[0, \infty)$ are comparison functions, then the function $\psi:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\psi(t)=\sup \left\{\varphi_{1}\left(t_{1}\right)+\varphi_{2}\left(t_{2}\right) \mid t_{1}, t_{2} \in[0, \infty) \text { and } t_{1}+t_{2} \leq t\right\}
$$

for each $t \in[0, \infty)$, is also a comparison function.
Justification of Fact 10. First let us prove that ψ is increasing. Indeed, if $t, u \in$ $[0, \infty), t<u$, then for any $t_{1}, t_{2} \in[0, \infty)$ such that $t_{1}+t_{2} \leq t$, we also have $t_{1}+t_{2} \leq u$. Hence $\varphi_{1}\left(t_{1}\right)+\varphi_{2}\left(t_{2}\right) \leq \sup \left\{\varphi_{1}\left(u_{1}\right)+\varphi_{2}\left(u_{2}\right) \mid u_{1}, u_{2} \in[0, \infty)\right.$ and $\left.u_{1}+u_{2} \leq u\right\}=\psi(u)$. Consequently $\psi(t) \leq \psi(u)$.

Now we prove that $\psi(t)<t$ for each $t>0$. Indeed, for each $t_{1}, t_{2} \in[0, \infty)$ such that $t_{1}+t_{2} \leq t$ we have $\varphi_{1}\left(t_{1}\right)+\varphi_{2}\left(t_{2}\right) \leq t_{1}+t_{2} \leq t$, so $\psi(t) \leq t$. Hence $\psi(t) \leq t$ for each $t \in[0, \infty)$. For a fixed $t>0$ and a fixed decreasing sequence $\left(s_{n}\right)_{n \in \mathbf{N}}$ of real numbers converging to 0 , for each $n \in \mathbf{N}$ there exist $x_{n}, y_{n} \in[0, \infty)$ such that

$$
\begin{equation*}
x_{n}+y_{n} \leq t+s_{n} \tag{*}
\end{equation*}
$$

and $\psi\left(t+s_{n}\right)-s_{n}<\varphi_{1}\left(x_{n}\right)+\varphi_{2}\left(y_{n}\right)$. By passing to subsequences if necessary, we may assume that the bounded sequences $\left(x_{n}\right)_{n \in \mathbf{N}}$ and $\left(y_{n}\right)_{n \in \mathbf{N}}$ are monotone. If x is the limit of $\left(x_{n}\right)_{n \in \mathbf{N}}$ and y is limit of $\left(y_{n}\right)_{n \in \mathbf{N}}$, then, by $(*)$, we get $x+y \leq t$. If $\left(x_{n}\right)_{n \in \mathbf{N}}$ is increasing, then the bounded sequence $\left(\varphi_{1}\left(x_{n}\right)\right)_{n \in \mathbf{N}}$ is also increasing and $\lim _{n \rightarrow \infty} \varphi_{1}\left(x_{n}\right) \leq \varphi_{1}(x)$. If $\left(x_{n}\right)_{n \in \mathbf{N}}$ is decreasing, as φ_{1} is right continuous, $\lim _{n \rightarrow \infty} \varphi_{1}\left(x_{n}\right)=\varphi_{1}(x)$. Hence $\lim _{n \rightarrow \infty} \varphi_{1}\left(x_{n}\right) \leq \varphi_{1}(x)$ and in a similar manner we deduce that $\lim _{n \rightarrow \infty} \varphi_{2}\left(y_{n}\right) \leq \varphi_{2}(y)$. Then we have
$(* *) \quad \psi(t) \leq \lim _{n \rightarrow \infty} \psi\left(t+s_{n}\right) \leq \lim _{n \rightarrow \infty} \varphi_{1}\left(x_{n}\right)+\varphi_{2}\left(y_{n}\right)+s_{n} \leq \varphi_{1}(x)+\varphi_{2}(y) \leq \psi(t)$.
Thus $\psi(t)=\varphi_{1}(x)+\varphi_{2}(y)$. If $x=y=0$, then $\psi(t)=0<t$. If $x \neq 0$ or $y \neq 0$, then $\psi(t)=\varphi_{1}(x)+\varphi_{2}(y)<x+y \leq t$.

Finally, we prove that ψ is right continuous. It is clear that ψ is right continuous at 0 . In order to prove that ψ is right continuous at $t>0$ it suffices to prove that for each decreasing sequence $\left(t_{n}\right)_{n \in \mathbf{N}}$ of elements from $[0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=t$,
the sequence $\left(\psi\left(t_{n}\right)\right)_{n \in \mathbf{N}}$ is convergent and $\lim _{n \rightarrow \infty} \psi\left(t_{n}\right)=\psi(t)$. This results from (**).

According to Fact 10 , let us consider the comparison function $\psi:[0, \infty) \rightarrow[0, \infty)$ given by

$$
\psi(t)=\sup \left\{\left.\varphi\left(t_{1}\right)+\frac{t_{2}}{\alpha} \right\rvert\, t_{1}, t_{2} \in[0, \infty) \text { and } t_{1}+t_{2} \leq t\right\}
$$

for each $t \in[0, \infty)$.
Fact 11. $\left(f_{i}\right.$ are ψ-contractions with respect to $\left.\rho_{\alpha}\right)$ We have

$$
\rho_{\alpha}\left(f_{j}(x), f_{j}(y)\right) \leq \psi\left(\rho_{\alpha}(x, y)\right)
$$

for each $j \in\{1,2, \ldots, N\}$ and each $x, y \in X$.
Justification of Fact 11. Let us consider $x, y \in X$ and $\varepsilon>0$. From the definition of ρ_{α}, there exist $n \in \mathbf{N}^{*}$ and $\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\} \subseteq X$ such that $x_{0}=x, x_{n}=y$ and

$$
\begin{equation*}
\rho_{\alpha}(x, y) \leq \sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right)<\rho_{\alpha}(x, y)+\varepsilon \tag{11.1}
\end{equation*}
$$

Let us note that if there exist $l, k \in\{0,1,2, \ldots, n\}, l<k$ such that $n\left(x_{l}\right)=$ $n\left(x_{k}\right)=0$, then

$$
\begin{aligned}
D_{\alpha}\left(x_{l}, x_{k}\right) & =\alpha^{n\left(x_{l}, x_{k}\right)} \tilde{\rho}\left(x_{l}, x_{k}\right)=\tilde{\rho}\left(x_{l}, x_{k}\right) \\
& \leq \tilde{\rho}\left(x_{l}, x_{l+1}\right)+\tilde{\rho}\left(x_{l+1}, x_{l+2}\right)+\ldots+\tilde{\rho}\left(x_{k-1}, x_{k}\right) \\
& \leq D_{\alpha}\left(x_{l}, x_{l+1}\right)+D_{\alpha}\left(x_{l+1}, x_{l+2}\right)+\ldots+D_{\alpha}\left(x_{k-1}, x_{k}\right)
\end{aligned}
$$

so

$$
\begin{aligned}
& \rho_{\alpha}(x, y) \\
& \leq D_{\alpha}\left(x_{0}, x_{1}\right)+\ldots+D_{\alpha}\left(x_{l-1}, x_{l}\right)+D_{\alpha}\left(x_{l}, x_{k}\right)+D_{\alpha}\left(x_{k}, x_{k+1}\right)+\ldots+D_{\alpha}\left(x_{n-1}, x_{n}\right) \\
& \leq \sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i-1}\right)<\rho_{\alpha}(x, y)+\varepsilon
\end{aligned}
$$

Thus, we can assume that the set $\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{n}\right\}$ contains at most two elements x_{i} and x_{j} such that $n\left(x_{i}\right)=n\left(x_{j}\right)=0$ and if $i \neq j$, then $|i-j|=1$.

We claim that

$$
\rho_{\alpha}\left(f_{j}(x), f_{j}(y)\right) \leq \psi\left(\rho_{\alpha}(x, y)+\varepsilon\right)
$$

for each $j \in\{1,2, \ldots, N\}$. In order to prove our claim we have to consider two cases:
c1) The set $\left\{s \mid s \in\{0,1,2, \ldots, n\}\right.$ and $\left.n\left(x_{s}\right)=0\right\}$ has at most one element.
c2) The set $\left\{s \mid s \in\{0,1,2, \ldots, n\}\right.$ and $\left.n\left(x_{s}\right)=0\right\}$ has two elements, denoted by x_{l} and x_{l+1}, where $l \in\{0,1, \ldots, n-1\}$.
In case c1) we have

$$
\rho_{\alpha}\left(f_{j}(x), f_{j}(y)\right) \leq \sum_{i=0}^{n-1} D_{\alpha}\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right)=\sum_{i=0}^{n-1} \alpha^{n\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right)} \widetilde{\rho}\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right)
$$

$$
\stackrel{\text { Fact 5, ii) }}{\leq} \sum_{i=0}^{n-1} \alpha^{n\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right)} \tilde{\rho}\left(x_{i}, x_{i+1}\right) \stackrel{\text { Fact 8, ii) }}{\leq} \sum_{i=0}^{n-1} \alpha^{n\left(x_{i}, x_{i+1}\right)-1} \tilde{\rho}\left(x_{i}, x_{i+1}\right)
$$

$$
\begin{aligned}
& =\frac{1}{\alpha} \sum_{i=0}^{n-1} \alpha^{n\left(x_{i}, x_{i+1}\right)} \tilde{\rho}\left(x_{i}, x_{i+1}\right)=\frac{1}{\alpha} \sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right) \\
& \stackrel{(11.1)}{<} \frac{1}{\alpha}\left(\rho_{\alpha}(x, y)+\varepsilon\right) \leq \psi\left(\rho_{\alpha}(x, y)+\varepsilon\right) .
\end{aligned}
$$

In case c2) we have

$$
\begin{aligned}
& \rho_{\alpha}\left(f_{j}(x), f_{j}(y)\right) \leq \sum_{i=0}^{n-1} D_{\alpha}\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right) \\
& =D_{\alpha}\left(f_{j}\left(x_{l}\right), f_{j}\left(x_{l+1}\right)\right)+\sum_{i=0, i \neq l}^{n-1} D_{\alpha}\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right) \\
& n\left(f_{j}\left(x_{l}\right)\right)=n\left(f_{j}\left(x_{l+1}\right)\right)=0 \stackrel{\tilde{\rho}}{=}\left(f_{j}\left(x_{l}\right), f_{j}\left(x_{l+1}\right)\right)+\sum_{i=0, i \neq l}^{n-1} D_{\alpha}\left(f_{j}\left(x_{i}\right), f_{j}\left(x_{i+1}\right)\right) \\
& \begin{array}{c}
\left.\begin{array}{c}
x_{l}, x_{l+1} \in U,(2), \\
\text { Fact } 5, \text { ii) }) \text { and Fact } 8, \text { ii }) \\
\leq
\end{array}\left(\tilde{\rho}\left(x_{l}, x_{l+1}\right)\right)+\frac{1}{\alpha} \sum_{i=0, i \neq l}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right)\right)
\end{array} \\
& =\varphi\left(D_{\alpha}\left(x_{l}, x_{l+1}\right)\right)+\frac{1}{\alpha} \sum_{i=0, i \neq l}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right) \\
& \leq \psi\left(\sum_{i=0}^{n-1} D_{\alpha}\left(x_{i}, x_{i+1}\right)\right) \stackrel{(11.1)}{\leq} \psi\left(\rho_{\alpha}(x, y)+\varepsilon\right) .
\end{aligned}
$$

From our claim, taking into account the fact that ψ is right continuous, it follows that

$$
\rho_{\alpha}\left(f_{j}(x), f_{j}(y)\right) \leq \psi\left(\rho_{\alpha}(x, y)\right),
$$

for each $j \in\{1,2, \ldots, N\}$.
Now just take $\rho_{\alpha}=\delta$.
Fact 12. If the metric space (X, d) is complete, then (X, δ) is complete.
Justification of Fact 12. If $\left(x_{n}\right)_{n \in \mathbf{N}}$ is a ρ-Cauchy sequence of elements of X, then, since $d \leq \rho$ (see Fact 1), $\left(x_{n}\right)_{n \in \mathbf{N}}$ is d-Cauchy, so there exists $l \in X$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, l\right)=0$. As ρ is equivalent with d, we infer that $\lim _{n \rightarrow \infty} \rho\left(x_{n}, l\right)=0$, hence (X, ρ) is complete. Using a similar way of reasoning, based on Fact 5 , i), we infer that $(X, \widetilde{\rho})$ is complete and, based on Fact 9 , i), that (X, δ) is complete.

Remark 3.2. The above theorem states the existence of a comparison function ψ having the property that $\mathcal{S}=\left((X, d),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ is ψ-hyperbolic (since $\mathcal{S}=$ $\left((X, \delta),\left(f_{i}\right)_{i \in\{1,2, \ldots, N\}}\right)$ is ψ-contractive). Then, according to Theorem 2.1, taking into account Fact 2 and Fact 12, we infer that $A(\mathcal{S})=K$.

Consequently, Condition C is a sufficient one for the existence of a unique fixed point of the function $\mathcal{F}: \mathcal{K}(X) \rightarrow \mathcal{K}(X)$ given by

$$
\mathcal{F}(C)=\bigcup_{i=1}^{N} f_{i}(C)
$$

for each $C \in \mathcal{K}(X)$, where $\mathcal{K}(X)$ denotes the family of non-empty and compact subsets of a complete metric space (X, d).

Acknowledgement. We want to thank the referee whose generous and valuable remarks and comments brought major improvements to the paper and enhanced clarity.

References

[1] Atkins, R., M. Barnsley, A. Vince, and D. Wilson: A characterization of hyperbolic affine iterated function systems. - Topology Proc. 36, 2010, 189-211.
[2] Banakh, T., W. Kubis, N. Novosad, M. Nowak, and F. Strobin: Contractive function systems, their attractors and metrization. - Topol. Methods Nonlinear Anal. (to appear).
[3] Bessaga, C.: On the converse of the Banach fixed point principle. - Colloq. Math. 7, 1959, 41-43.
[4] Dumitru, D.: Attractors of infinite iterated function systems containing contraction type functions. - An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 59, 2013, 281-298.
[5] Dumitru, D., and A. Mihail: The shift space of an iterated function system containing Meir-Keeler functions. - An. Univ. Bucur. Mat. 57, 2008, 75-88.
[6] Janoš, L.: A converse of the Banach's contraction theorem. - Proc. Amer. Math. Soc. 18, 1967, 287-289.
[7] Kameyama, A.: Distances on topological self-similar sets and the kneading determinants. - J. Math. Kyoto Univ. 40, 2000, 603-674.
[8] Kieninger, B.: Iterated function systems on compact Hausdorff spaces. - Shaker Verlag, Aachen, 2002.
[9] Leader, S.: A topological characterization of Banach contractions. - Pacific J. Math. 69, 1977, 461-466.
[10] Leader, S.: Uniformly contractive fixed points in compact metric spaces. - Proc. Amer. Math. Soc. 86, 1982, 153-158.
[11] Miculescu, R., and A. Mihail: Alternative characterization of hyperbolic affine infinite iterated function systems. - J. Math. Anal. Appl. 407, 2013, 56-68.
[12] Miculescu, R., and A. Mihail: On a question of A. Kameyama concerning self-similar metrics. - J. Math. Anal. Appl. 422, 2015, 265-271.
[13] Miculescu, R., and A. Mihail: Remetrization results for possible infinite self-similar systems. - Topol. Methods Nonlinear Anal. (to appear).
[14] Strobin, F., and J. Swaczyna: On a certain generalisation of the iterated function system. - Bull. Aust. Math. Soc. 87, 2013, 37-54.

[^0]: doi:10.5186/aasfm.2016.4103
 2010 Mathematics Subject Classification: Primary 54E35, 47H09, 54E40.
 Key words: Metric spaces, comparison function, φ-contraction.

