ON OPEN AND DISCRETE MAPPINGS WITH A MODULUS CONDITION

Evgeny Sevost'yanov

Zhitomir Ivan Franko State University 40 Bol'shaya Berdichevskaya Str., 10 008 Zhitomir, Ukraine; esevostyanov2009@mail.ru

Abstract. It is proved that sense preserving continuous mappings $f: D \to \mathbb{R}^n$ of a domain D in \mathbb{R}^n , $n \ge 2$, satisfying some general inequalities for *p*-modulus of families of curves are open and discrete.

1. Preliminaries

The paper is devoted to the study of quasiregular mappings and their natural generalizations investigated long time, see e.g. [AC, Cr_1 , Cr_2 , Gol_1 , Gol_2 , GRSY, HK, IM, KO, MRV, MRSY, Re, Ri, UV] and further references therein.

Let us give some definitions. Everywhere further D is a domain in \mathbf{R}^n , $n \geq 2$, m is the Lebesgue measure in \mathbf{R}^n , m(A) the Lebesgue measure of a set $A \subset \mathbf{R}^n$. A mapping $f: D \to \mathbf{R}^n$ is called *discrete* if $f^{-1}(y)$ consists of isolated points for each $y \in \mathbf{R}^n$, and f is said to be *open* if it maps open sets onto open sets. The notation $f: D \to \mathbf{R}^n$ assumes that f is continuous. A mapping f is said to be *sensepreserving* if the topological index $\mu(y, f, G) > 0$ for an arbitrary domain $G \subset D$ such that $\overline{G} \subset D$ and $y \in f(G) \setminus f(\partial G)$, see e.g. [Re, II.2]. Given a mapping $f: D \to \mathbf{R}^n$, a set $E \subset D$ and a point $y \in \mathbf{R}^n$, we define the multiplicity function N(y, f, E) as the number of pre-images of y in E, i.e.,

$$N(y, f, E) = \operatorname{card} \left\{ x \in E \colon f(x) = y \right\}$$

and

$$N(f, E) = \sup_{y \in \mathbf{R}^n} N(y, f, E).$$

A set $H \subset \overline{\mathbf{R}^n}$ is called *totally disconnected* if its every component degenerates to a point; in this case we write dim H = 0 where dim denotes the *topological dimension* of H (see [HW, Section 1, Ch. II]). A mapping $f: D \to \overline{\mathbf{R}^n}$ is said to be *light* if dim $\{f^{-1}(y)\} = 0$ for every $y \in \overline{\mathbf{R}^n}$. Set

$$B(x_0, r) = \{x \in \mathbf{R}^n : |x - x_0| < r\}, \quad \mathbf{B}^n := B(0, 1), \quad \mathbf{S}^{n-1} := S(0, 1),$$

 Ω_n is a volume of the unit ball \mathbf{B}^n in \mathbf{R}^n , and ω_{n-1} is an area of the unit sphere \mathbf{S}^{n-1} in \mathbf{R}^n .

A curve γ in \mathbb{R}^n is a continuous mapping $\gamma: \Delta \to \mathbb{R}^n$ where Δ is an interval in \mathbb{R} . Its locus $\gamma(\Delta)$ is denoted by $|\gamma|$. Given a family Γ of curves γ in \mathbb{R}^n , a Borel function $\rho: \mathbb{R}^n \to [0, \infty]$ is called *admissible* for Γ , abbr. $\rho \in \operatorname{adm} \Gamma$, if

$$\int_{\gamma} \rho(x) |dx| \ge 1$$

doi:10.5186/aasfm.2016.4105

²⁰¹⁰ Mathematics Subject Classification: Primary 30C65; Secondary 30C62.

Key words: Mappings with bounded and finite distortion, moduli of families of curves, discrete and open mappings.

Evgeny Sevost'yanov

for each (locally rectifiable) $\gamma \in \Gamma$. Given $p \ge 1$, the *p*-modulus of Γ is defined by

$$M_p(\Gamma) := \inf_{\rho \in \operatorname{adm} \Gamma} \int_{\mathbf{R}^n} \rho^p(x) \, dm(x)$$

interpreted as $+\infty$ if adm $\Gamma = \emptyset$. Note that $M_p(\emptyset) = 0$; $M_p(\Gamma_1) \leq M_p(\Gamma_2)$ whenever $\Gamma_1 \subset \Gamma_2$, and $M_p(\bigcup_{i=1}^{\infty} \Gamma_i) \leq \sum_{i=1}^{\infty} M_p(\Gamma_i)$, see [Va, Theorem 6.2].

Denote $\Gamma(E, F, D)$ a family of all paths $\gamma : [a, b] \to \overline{\mathbb{R}^n}$, which join sets E and F in D, i.e., $\gamma(a) \in E, \gamma(b) \in F$ and $\gamma(t) \in D$ for $t \in (a, b)$.

The following fact has been established in [Sev]. Let f be a sense-preserving mapping of a domain $D \subset \mathbf{R}^n$, $n \ge 2$, into \mathbf{R}^n obeying a condition

(1.1)
$$M(\Gamma) \leqslant \int_{f(D)} Q(y) \cdot \rho_*^n(y) \, dm(y)$$

for every $\rho_* \in \text{adm } f(\Gamma)$ with respect to the conformal modulus $M(\Gamma) := M_n(\Gamma)$ and a given function $Q: \mathbb{R}^n \to [0, \infty]$. Then f is open and discrete whenever Q satisfies some conditions. Given $y_0 \in f(D)$ and numbers $0 < r_1 < r_2 < \infty$, we denote

(1.2)
$$A(r_1, r_2, y_0) = \{ y \in \mathbf{R}^n \colon r_1 < |y - y_0| < r_2 \}.$$

The goal of the present paper is to prove a similar result for n-1 . $Namely, given <math>y_0 \in f(D)$ and $0 < r_1 < r_2 < \infty$, let $\Gamma(y_0, r_1, r_2)$ be the family of all paths γ in D such that $f(\gamma) \in \Gamma(S(y_0, r_1), S(y_0, r_2), A(r_1, r_2, y_0))$. Instead of (1.1), assume that f satisfies the inequality

(1.3)
$$M_p(\Gamma(y_0, r_1, r_2)) \leqslant \int_{f(D)} Q(y) \cdot \eta^p(|y - y_0|) dm(y)$$

for some $p \in (n-1, n]$, every $y_0 \in f(D)$, any $0 < r_1 < r_2 < \infty$, and any nonnegative Lebesgue measurable function $\eta : (r_1, r_2) \to [0, \infty]$ with

(1.4)
$$\int_{r_1}^{r_2} \eta(r) \, dr \ge 1.$$

Observe that the inequality (1.3) is much weaker than (1.1) even for p = n. In fact, let $\rho_* \in \operatorname{adm} f(\Gamma)$, and assume that the relation (1.1) holds. We show that the inequality (1.3) is true. To this end, pick arbitrary $y_0 \in f(D)$ and set $\rho_*(y) := \eta(|y - y_0|)$, where η satisfies (1.4). Note that $\rho_* \in \Gamma(S_1, S_2, A)$ because $\int_{\gamma} \rho_*(y) |dy| \ge \int_{r_1}^{r_2} \eta(t) dt \ge 1$ for every $\gamma \in \Gamma(S_1, S_2, A)$ (cf. [Va, theorem 5.7]). Thus, the inequality (1.1) becomes (1.3).

The present paper is devoted to the study of the following question:

What are the properties of the majorant Q which ensure for mappings f obeying (1.3) for some n - 1 to be discrete and open?

Following [IR], we say that a function $\varphi \colon \mathbf{R}^n \to \mathbf{R}$ has a finite mean oscillation at a point $x_0 \in \mathbf{R}^n$, write $\varphi \in FMO(x_0)$, if

$$\overline{\lim_{\varepsilon \to 0}} \frac{1}{\Omega_n \varepsilon^n} \int_{B(x_0,\varepsilon)} |\varphi(x) - \varphi_{\varepsilon}| \, dm(x) < \infty,$$

where Ω_n is the volume of the unit ball in \mathbf{R}^n and

$$\varphi_{\varepsilon} = \frac{1}{\Omega_n \varepsilon^n} \int_{B(x_0,\varepsilon)} \varphi(x) \, dm(x).$$

42

Given a Lebesgue measurable function $Q: \mathbb{R}^n \to [0, \infty], q_{x_0}(r)$ denotes the integral average of Q(x) over the sphere $S(x_0, r)$, i.e.

(1.5)
$$q_{x_0}(r) := \frac{1}{\omega_{n-1}r^{n-1}} \int_{|x-x_0|=r} Q(x) \, dS,$$

where dS is an area element of S.

The main result of the present paper is the following

Theorem 1.1. Let $p \in (n-1, n]$, and $Q: \mathbb{R}^n \to (0, \infty)$ be a Lebesgue measurable function. Assume that $f: D \to \mathbb{R}^n$ is a sense-preserving mapping satisfying (1.3) for every $y_0 \in f(D)$, any $0 < r_1 < r_2 < \infty$, and any nonnegative Lebesgue measurable function $\eta: (r_1, r_2) \to [0, \infty]$ obeying (1.4). Then f is discrete and open whenever the function Q satisfies at least one of the following conditions:

- 1) $Q \in FMO(y_0)$ for every $y_0 \in f(D)$,
- 1) $Q \in I$ in $O(g_0)$ for every $y_0 \in f(D)$, 2) $q_{y_0}(r) = O\left(\left[\log \frac{1}{r}\right]^{n-1}\right)$ as $r \to 0$ for every $y_0 \in f(D)$,
- 3) for every $y_0 \in f(D)$ there exists $\delta(y_0) > 0$ such that for every sufficiently small $\varepsilon > 0$

(1.6)
$$\int_{\varepsilon}^{\delta(y_0)} \frac{dt}{t^{\frac{n-1}{p-1}} q_{y_0}^{\frac{1}{p-1}}(t)} < \infty, \quad \int_{0}^{\delta(y_0)} \frac{dt}{t^{\frac{n-1}{p-1}} q_{y_0}^{\frac{1}{p-1}}(t)} = \infty.$$

Remark 1.1. Theorem 1.1 can be extended to the mappings $f: D \to \overline{\mathbb{R}^n}$. In this case, for $y = \infty$, we must require that the conditions 1)–3) hold for $\widetilde{Q} = Q \circ \varphi$ at 0, where $\varphi(y) = \frac{y}{|y|^2}$, $\varphi(0) := \infty$.

2. Main lemma

A connected compactum $C \subset \overline{\mathbb{R}^n}$ is called a *continuum*. We say that a family of paths Γ_1 is minorized by a family Γ_2 , write $\Gamma_1 > \Gamma_2$, if for every $\gamma \in \Gamma_1$ there exists a subpath which belongs to Γ_2 . In this case, $M_p(\Gamma_1) \leq M_p(\Gamma_2)$ (see [Va, Theorem 6.4]).

Let (X, μ) be a metric space with measure μ . For each real number $n \ge 1$, we define the Loewner function $\phi_n \colon (0, \infty) \to [0, \infty)$ on X as

$$\phi_n(t) = \inf\{M_n(\Gamma(E, F, X)) \colon \Delta(E, F) \leq t\},\$$

where the infimum is taken over all disjoint nondegenerate continua E and F in X and

$$\Delta(E, F) := \frac{\operatorname{dist}(E, F)}{\min\{\operatorname{diam} E, \operatorname{diam} F\}}.$$

A pathwise connected metric measure space (X, μ) is said to be a Loewner space of exponent n, or an n-Loewner space, if the Loewner function $\phi_n(t)$ is positive for all t > 0 (see [MRSY, Section 2.5] or [He, Ch. 8]). Observe that \mathbf{R}^n and $\mathbf{B}^n \subset \mathbf{R}^n$ are Loewner spaces (see [He, Theorem 8.2 and Example 8.24(a)]). As known, a condition $\mu(B(x_0, r)) \ge C \cdot r^n$ holds in Loewner spaces X for a constant C > 0, every point $x_0 \in X$ and all r < diam X. A space X is called geodesic if every pair of points in X can be joined by a curve whose length is equal to the distance between the points. In particular, \mathbf{B}^n is a geodesic space. A following definition can be found in [He, Section 1.4, Ch. I] or [AS, Section 1]. A measure μ in a metric space is called doubling if all balls have finite and positive measure and there is a constant $C \ge 1$ such that $\mu(B(x_0, 2r)) \le C \cdot \mu(B(x_0, r))$ for every $x_0 \in X$ and all r > 0. We also call a metric measure space (X, μ) doubling if μ is a doubling measure. Following [He, Section 7.22], given a real-valued function u in a metric space X, a Borel function $\rho: X \to [0, \infty]$ is said to be an *upper gradient* of a function $u: X \to \mathbf{R}$ if $|u(x) - u(y)| \leq \int_{\gamma} \rho |dx|$ for each rectifiable curve γ joining x and y in X. Let (X, μ) be a metric measure space and let $1 \leq p < \infty$. We say that X admits a(1; p)-Poincare inequality if there is a constant $C \geq 1$ such that

$$\frac{1}{\mu(B)} \int_{B} |u - u_B| \, d\mu(x) \leqslant C \cdot (\operatorname{diam} B) \left(\frac{1}{\mu(B)} \int_{B} \rho^p \, d\mu(x)\right)^{1/p}$$

for all balls B in X, for all bounded continuous functions u on B, and for all upper gradients ρ of u. Metric measure spaces where the inequalities

$$\frac{1}{C}R^n \leqslant \mu(B(x_0, R)) \leqslant CR^n$$

hold for a constant $C \ge 1$, every $x_0 \in X$ and all R < diam X, are called *Ahlfors n*-regular.

We need the following statement.

Proposition 2.1. The unit ball \mathbf{B}^n is an Ahlfors *n*-regular metric space in which (1; p)-Poincare inequality holds. Moreover, the estimate

(2.1)
$$M_p(\Gamma(E, F, \mathbf{B}^n)) > 0$$

holds for any continua $E, F \subset \mathbf{B}^n$ and every $p \in (n-1, n]$.

Proof. By comments given above, the unit ball \mathbf{B}^n is Ahlfors *n*-regular, moreover, the space \mathbf{B}^n is geodesic and and also a Loewner space. By [He, Theorems 9.8 and 9.5], the (1; *p*)-Poincare inequality holds in \mathbf{B}^n . Thus, (2.1) holds by [AS, Corollary 4.8].

Let $A(\varepsilon, \varepsilon_0, y_0)$ be defined by (1.2) with $r_1 = \varepsilon$ and $r_2 = \varepsilon_0$. The following lemma provides the main tool for establishing openness and discreteness in the most general situation.

Lemma 2.1. Let $p \in (n-1,n]$, and $Q: \mathbb{R}^n \to (0,\infty)$ be a Lebesgue measurable function. Assume that $f: D \to \mathbb{R}^n$ is a sense-preserving mapping satisfying (1.3) for every $y_0 \in f(D)$, any $0 < r_1 < r_2 < \infty$, and any nonnegative Lebesgue measurable function $\eta: (r_1, r_2) \to [0, \infty]$ obeying (1.4). Suppose that, in addition, for every $y_0 \in f(D)$ and some $\varepsilon_0 > 0$,

(2.2)
$$\int_{A(\varepsilon,\varepsilon_0,y_0)} Q(y) \cdot \psi^p(|y-y_0|) \, dm(y) = o\left(I^p(\varepsilon,\varepsilon_0)\right) \quad \text{as } \varepsilon \to 0,$$

where $\psi(t): (0,\infty) \to [0,\infty]$ is a nonnegative Lebesgue measurable function such that

(2.3)
$$0 < I(\varepsilon, \varepsilon_0) := \int_{\varepsilon}^{\varepsilon_0} \psi(t) \, dt < \infty \quad \forall \varepsilon \in (0, \varepsilon_0).$$

Then f is open and discrete.

Remark 2.1. In Lemma 2.1, we may assume only that $\int_{\varepsilon}^{\varepsilon_0} \psi(t) dt > 0$ for some ε and $\varepsilon_* \in (0, \varepsilon_0)$ instead of the condition $I(\varepsilon, \varepsilon_0) > 0$ for all $\varepsilon \in (0, \varepsilon_0)$. Note also that the integral (2.2) is increasing under decreasing ε . Thus, since Q(x) > 0, $I(\varepsilon, \varepsilon_0) \to \infty$ as $\varepsilon \to 0$ follows from (2.2) and (2.3).

Proof of Lemma 2.1. Without any loss of generality, we may assume that $D = \mathbf{B}^n$. Since every light sense-preserving mapping $f: D \to \mathbf{R}^n$ is open and discrete in D, see e.g., [TY, Corollary, p. 333], it is sufficient to prove that f is light. Let us assume the contrary. Then there exists $y_0 \in \mathbf{R}^n$ such that the set $\{f^{-1}(y_0)\}$ is not

totally disconnected, i.e., there exists a nondegenerate continuum $C \subseteq \{f^{-1}(y_0)\}$. Since f is sense-preserving, $f \not\equiv y_0$. Then by the continuity of f there exist $x_0 \in D$ and $\delta_0 > 0$ such that $\overline{B(x_0, \delta_0)} \subset D$ and

(2.4)
$$f(x) \neq y_0 \quad \forall x \in \overline{B(x_0, \delta_0)}.$$

By [Na, Lemma 1.15] for p = n, and Proposition 2.1 for $p \in (n - 1, n)$,

(2.5)
$$M_p\left(\Gamma\left(C, \overline{B(x_0, \delta_0)}, \mathbf{B}^n\right)\right) > 0.$$

By (2.4), since $f(C) = \{y_0\}$, every path of $\Delta = f(\Gamma(C, \overline{B(x_0, \delta_0)}, \mathbf{B}^n))$ does not degenerate to a point. On the other hand, one of the endpoints of every path of Δ is y_0 . Let Γ_i be a family of all paths $\alpha_i(t) \colon [0, 1] \to \mathbf{R}^n$ such that $\alpha_i(0) = y_0$ and $\alpha_i(1) \in S(y_0, r_i), r_i \in (0, \varepsilon_0), i = 1, 2, ..., r_i \to 0$ as $i \to \infty$. Note that

(2.6)
$$\Gamma\left(C, \overline{B(x_0, \delta_0)}, \mathbf{B}^n\right) = \bigcup_{i=1}^{\infty} \Gamma_i^*$$

where Γ_i^* is the family of all paths γ in $\Gamma(C, \overline{B(x_0, \delta_0)}, \mathbf{B}^n)$ such that $f(\gamma)$ has a subpath in Γ_i . Observe that

(2.7)
$$\Gamma_i^* > \Gamma(\varepsilon, r_i, y_0)$$

for every $\varepsilon \in (0, r_i)$ where $\Gamma(\varepsilon, r_i, y_0)$ is the family of all paths γ in D such that $f(\gamma) \in \Gamma(S(y_0, \varepsilon), S(y_0, r_i), A(\varepsilon, r_i, y_0))$. Set

$$\eta_{i,\varepsilon}(t) = \begin{cases} \psi(t)/I(\varepsilon, r_i), & t \in (\varepsilon, r_i), \\ 0, & t \notin (\varepsilon, r_i), \end{cases}$$

where $I(\varepsilon, r_i) = \int_{\varepsilon}^{r_i} \psi(t) dt$. Observe that $\int_{\varepsilon}^{r_i} \eta_{i,\varepsilon}(t) dt = 1$. Now we can apply (1.3). By (1.3) and (2.7),

(2.8)
$$M_p(\Gamma_i^*) \leqslant M_p(\Gamma(r_i,\varepsilon,y_0)) \leqslant \int_{A(\varepsilon,\varepsilon_0,y_0)} Q(y) \cdot \eta_{i,\varepsilon}^p(|y-y_0|) \, dm(y) \leqslant \mathfrak{F}_i(\varepsilon)$$

where $\mathfrak{F}_i(\varepsilon) = \frac{1}{I(\varepsilon, r_i)^p} \int_{A(\varepsilon, \varepsilon_0, y_0)} Q(y) \psi^p(|y - y_0|) dm(y)$ and $I(\varepsilon, r_i) = \int_{\varepsilon}^{r_i} \psi(t) dt$. By (2.2),

$$\int_{A(\varepsilon,\varepsilon_0,y_0)} Q(y)\psi^p(|y-y_0|)\,dm(y) = G(\varepsilon)\cdot\left(\int_{\varepsilon}^{\varepsilon_0}\psi(t)\,dt\right)^p,$$

where $G(\varepsilon) \to 0$ as $\varepsilon \to 0$ by the assumptions of the lemma. Note that $\mathfrak{F}_i(\varepsilon) = G(\varepsilon) \cdot \left(1 + \frac{\int_{\tau_i}^{\varepsilon_0} \psi(t) dt}{\int_{\varepsilon}^{r_i} \psi(t) dt}\right)^p$, where $\int_{\tau_i}^{\varepsilon_0} \psi(t) dt < \infty$ and $\int_{\varepsilon}^{r_i} \psi(t) dt \to \infty$ as $\varepsilon \to 0$, because the left-hand side in (2.2) is increasing under decreasing ε . Thus, $\mathfrak{F}_i(\varepsilon) \to 0$ as $\varepsilon \to 0$, and by (2.8) $M_p(\Gamma_i^*) = 0$ for all *i*. Finally, by (2.6) and the inequality $M_p(\bigcup_{i=1}^{\infty} \Gamma_i^*) \leq \sum_{i=1}^{\infty} M_p(\Gamma_i^*)$ [Va, Theorem 6.2], we obtain that $M_p\left(\Gamma\left(C, \overline{B(x_0, \delta_0)}, \mathbf{B}^n\right)\right) = 0$, which contradicts to (2.5). Thus, *f* is light and, therefore, *f* is open and discrete (see [TY, Corollary, p. 333]).

$Evgeny\ Sevost'y anov$

3. Proof of the main result

In this section we show that the assertion of Theorem 1.1 follows from Lemma 2.1. For this goal, given $Q \in FMO(y_0)$, we may apply the function $\psi(t) = (t \log \frac{1}{t})^{-n/p}$. Indeed, by [IR, Corollary 2.3], see also [MRSY, Corollary 6.3, Ch. 6], we obtain

(3.1)
$$\int_{\varepsilon < |y-y_0| < \varepsilon_0} Q(y) \cdot \psi^p(|y-y_0|) \, dm(y) = O\left(\log\log\frac{1}{\varepsilon}\right) \quad \text{as } \varepsilon \to 0$$

and

(3.2)
$$I(\varepsilon, \varepsilon_0) = \int_{\varepsilon}^{\varepsilon_0} \psi(t) \, dt > \log \frac{\log \frac{1}{\varepsilon}}{\log \frac{1}{\varepsilon_0}} > \log \log \frac{1}{\varepsilon}$$

for sufficiently small $\varepsilon_0 > 0$, and hence

$$\frac{1}{I^p(\varepsilon,\varepsilon_0)} \int_{\varepsilon < |y-y_0| < \varepsilon_0} Q(y) \cdot \psi^p(|y-y_0|) \, dm(y) \leqslant C \left(\log \log \frac{1}{\varepsilon} \right)^{1-p} \to 0 \quad \text{as } \varepsilon \to 0.$$

The latter yields the desired conclusion for the case 1) because (2.2)-(2.3) hold.

Note that the case 2) is a consequence of case 3) and therefore, we may restrict ourselves by checking the condition 3). For this case we pick the function

(3.3)
$$\psi(t) = \begin{cases} 1/[t^{\frac{n-1}{p-1}}q_{y_0}^{\frac{1}{p-1}}(t)], & t \in (\varepsilon, \varepsilon_0), \\ 0, & t \notin (\varepsilon, \varepsilon_0), \end{cases}$$

in Lemma 2.1 and thus,

(3.4)
$$I(\varepsilon,\varepsilon_0) = \int_{\varepsilon}^{\varepsilon_0} \frac{dr}{r^{\frac{n-1}{p-1}}q^{\frac{1}{p-1}}_{y_0}(r)}.$$

Applying the Fubini theorem ([Sa, Theorem 8.1, Ch. III]), we obtain

$$\int_{\varepsilon < |y-y_0| < \varepsilon_0} Q(y) \cdot \psi^p(|y-y_0|) \, dm(y) = \omega_{n-1} \cdot I(\varepsilon, \varepsilon_0) = o(I^p(\varepsilon, \varepsilon_0)) \quad \text{as } \varepsilon \to 0,$$

where ω_{n-1} denotes the area of the unit sphere \mathbf{S}^{n-1} in \mathbf{R}^n .

4. Corollaries

The following statements can be derived from Lemma 2.1.

Corollary 4.1. Let $p \in (n-1, n]$, and $Q: \mathbb{R}^n \to (0, \infty)$ be a Lebesgue measurable function. Assume that $f: D \to \mathbb{R}^n$ is a sense-preserving mapping satisfying (1.3) for every $y_0 \in f(D)$, any $0 < r_1 < r_2 < \infty$, and any nonnegative Lebesgue measurable function $\eta: (r_1, r_2) \to [0, \infty]$ obeying (1.4). Then f is discrete and open whenever the function Q satisfies the both conditions:

1)
$$\int_{\varepsilon}^{\delta_{0}} \frac{dt}{tq_{y_{0}}^{\frac{1}{n-1}}(t)} < \infty \text{ for every } y_{0} \in f(D), \text{ some } \delta_{0} = \delta_{0}(y_{0}) \text{ and sufficiently}$$

small $\varepsilon > 0,$
2)
$$\int_{0}^{\delta_{0}} \frac{dt}{tq_{y_{0}}^{\frac{1}{n-1}}(t)} = \infty \text{ for every } y_{0} \in f(D) \text{ and some } \delta_{0} = \delta_{0}(y_{0}).$$

Proof. Arguing similarly to the proof of the case 3) in Theorem 1.1 and choosing

$$\psi(t) = \begin{cases} \left(1/[tq_{y_0}^{\frac{1}{n-1}}(t)] \right)^{n/p}, & t \in (\varepsilon, \varepsilon_0), \\ 0, & t \notin (\varepsilon, \varepsilon_0), \end{cases}$$

in Lemma 2.1, we obtain the desired conclusion.

Corollary 4.2. Let $p \in (n-1,n)$, and $Q: \mathbb{R}^n \to (0,\infty)$ be a Lebesgue measurable function. Assume that $f: D \to \mathbb{R}^n$ is a sense-preserving mapping satisfying (1.3) for every $y_0 \in f(D)$, any $0 < r_1 < r_2 < \infty$, and any nonnegative Lebesgue measurable function $\eta: (r_1, r_2) \to [0, \infty]$ obeying (1.4). Then f is discrete and open whenever $Q \in L^s_{\text{loc}}$ for some $s \ge n/(n-p)$.

Proof. Given $\varepsilon_0 \in (0, \infty)$ and $x_0 \in D$, set $G := B(x_0, \varepsilon_0)$. Note that the function $\psi(t) := 1/t$ satisfies (2.3). Thus, in order to apply Lemma 2.1 it remains to verify (2.2). Indeed, by the Hölder inequality we obtain

(4.1)
$$\int_{\varepsilon < |x-x_0| < \varepsilon_0} \frac{Q(x)}{|x-x_0|^p} dm(x) \\ \leqslant \left(\int_{\varepsilon < |x-x_0| < \varepsilon_0} \frac{1}{|x-x_0|^{pq}} dm(x) \right)^{\frac{1}{q}} \left(\int_G Q^{q'}(x) dm(x) \right)^{\frac{1}{q'}}$$

where q = n/p, 1/q + 1/q' = 1, i.e., q' = n/(n-p). Observe that the first integral in the right-hand side of (4.1) can be implicitly calculated. Namely, by the Fubini theorem

$$\int_{\varepsilon < |x-x_0| < \varepsilon_0} \frac{1}{|x-x_0|^{pq}} \, dm(x) = \omega_{n-1} \int_{\varepsilon}^{\varepsilon_0} \frac{dt}{t} = \omega_{n-1} \log \frac{\varepsilon_0}{\varepsilon}.$$

Following notation of Lemma 2.1, we have

$$\frac{1}{I^p(\varepsilon,\varepsilon_0)} \int_{\varepsilon<|x-x_0|<\varepsilon_0} \frac{Q(x)}{|x-x_0|^p} \, dm(x) \leqslant \omega_{n-1}^{\frac{p}{n}} \|Q\|_{L^{\frac{n}{n-p}}(G)} \left(\log\frac{\varepsilon_0}{\varepsilon}\right)^{-p+\frac{p}{n}} \to 0 \quad \text{as } \varepsilon \to 0$$

that implies (2.2). Thus, the desired conclusion follows from Lemma 2.1.

5. Examples

First of all, let us give some examples of mappings obeying (1.1) and (1.3). It is known that, for an arbitrary quasiregular mapping $f: D \to \mathbf{R}^n$, one has

(5.1)
$$M(\Gamma) \le N(f, A) K_O(f) M(f(\Gamma))$$

for a constant $K_O(f) \ge 1$, for any Borel set A in the domain D such that $N(f, A) < \infty$ and any family Γ of curves γ in A (see [MRV, Theorem 3.2] or [Ri, Theorem 6.7, Chap. II]). Thus, for any such quasiregular mapping, the inequalities (1.1) and (1.3) hold.

Let us give other examples. Set at points $x \in D$ of differentiability of f

$$||f'(x)|| = \max_{h \in \mathbf{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}, \quad J(x, f) = \det f'(x),$$

and define for any $x \in D$ and $p \ge 1$

$$K_{O,p}(x,f) = \begin{cases} \frac{\|f'(x)\|^p}{|J(x,f)|}, & J(x,f) \neq 0, \\ 1, & f'(x) = 0, \\ \infty, & \text{otherwise.} \end{cases}$$

We say that a property P holds for p-almost every (p-a.e.) curves γ in a family Γ if the subfamily of all curves in Γ , for which P fails, has p-modulus zero. Recall that a mapping $f: D \to \mathbf{R}^n$ is said to have N-property (by Luzin) if m(f(S)) = 0 whenever m(S) = 0 for $S \subset \mathbf{R}^n$. Similarly, f has the N^{-1} -property if $m(f^{-1}(S)) = 0$ whenever m(S) = 0.

If $\gamma: \Delta \to \mathbf{R}^n$ is a locally rectifiable curve, then there is the unique nondecreasing length function l_{γ} of Δ onto a length interval $\Delta_{\gamma} \subset \mathbf{R}$ with a prescribed normalization $l_{\gamma}(t_0) = 0 \in \Delta_{\gamma}, t_0 \in \Delta$, such that $l_{\gamma}(t)$ is equal to the length of the subcurve $\gamma|_{[t_0,t]}$ of γ if $t > t_0, t \in \Delta$, and $l_{\gamma}(t)$ is equal to minus length of $\gamma|_{[t,t_0]}$ if $t < t_0, t \in \Delta$. Let $g: |\gamma| \to \mathbf{R}^n$ be a continuous mapping, and suppose that the curve $\tilde{\gamma} = g \circ \gamma$ is also locally rectifiable. Then there is a unique non–decreasing function $L_{\gamma,g}: \Delta_{\gamma} \to \Delta_{\tilde{\gamma}}$ such that $L_{\gamma,g}(l_{\gamma}(t)) = l_{\tilde{\gamma}}(t)$ for all $t \in \Delta$. We say that a mapping $f: D \to \mathbf{R}^n$ is absolutely continuous on paths with respect to p-modulus, write $f \in ACP_p$, if for p-a.e. curve $\gamma: \Delta \to D$ the function $L_{\gamma,f}$ is locally absolutely continuous on Δ .

The following result is a generalization of the above classical inequality (5.1) for quasiregular mappings and provides an example of the inequality (1.3) (see [Ri, Theorem 2.4, Ch. II]).

Theorem 5.1. Let a mapping $f: D \to \mathbf{R}^n$ be differentiable a.e. in D, have Nand N^{-1} -properties and possess ACP_p -property for some $p \ge 1$. Let A be a Borel set in D, and let Γ be a family of paths in A. Suppose that $K_{O,p}(x, f) \le \alpha(f(x))$ a.e. for a Borel function $\alpha: \mathbf{R}^n \to [0, \infty]$. Then

$$M_p(\Gamma) \le \int_{\mathbf{R}^n} \rho'^p(y) N(y, f, A) \alpha(y) \, dm(y) \quad \forall \, \rho' \in \operatorname{adm} f(\Gamma).$$

Recall that N(y, f, A) is Lebesgue measurable for any Borel measurable set A (see [RR, Theorem of Section IV.1.2]).

Proof. Let $\rho' \in \operatorname{adm} f(\Gamma)$. Set $\rho(x) = \rho'(f(x)) ||f'(x)||$ for $x \in A$ and $\rho(x) = 0$ otherwise. Let Γ_0 be a family of all locally rectifiable curves of Γ where f is locally absolutely continuous. Since $f \in ACP_p$, $M_p(\Gamma) = M_p(\Gamma_0)$. Now, by [Ri, Lemma 2.2, Ch. II], $\int_{\gamma} \rho(x) |dx| = \int_{\gamma} \rho'(f(x)) ||f'(x)|| |dx| \ge \int_{f \circ \gamma} \rho'(y) |dy| \ge 1$, and, consequently, $\rho \in \operatorname{adm} \Gamma_0$. By the change of variables formula

$$M_{p}(\Gamma) = M_{p}(\Gamma_{0}) \leq \int_{\mathbf{R}^{n}} \rho^{p}(x) \, dm(x) = \int_{A} \frac{\rho'^{p}(f(x)) ||f'(x)||^{p} |J(x,f)|}{|J(x,f)|} \, dm(x)$$
$$\leq \int_{A} \rho'^{p}(f(x)) \alpha(f(x)) |J(x,f)| \, dm(x) = \int_{\mathbf{R}^{n}} \rho'^{p}(y) N(y,f,A) \alpha(y) \, dm(y),$$

see [MRSY, Proposition 8.3]. Here we take into account, that $J(x, f) \neq 0$ a.e., see [MRSY, Proposition 8.3]. The theorem is proved.

By Theorem 5.1 we obtain the following

Corollary 5.1. Let $f: D \to \mathbb{R}^n$ be differentiable a.e. in D, have N- and N^{-1} properties, and $f \in W^{1,p}_{\text{loc}}$ for some $p \ge 1$. Let A in D be a Borel set and Γ be a
family of paths in A. Suppose that $K_{O,p}(x, f) \le \alpha(f(x))$ a.e. for a Borel function

 $\alpha \colon \mathbf{R}^n \to [0,\infty]$. Then

$$M_p(\Gamma) \leq \int_{\mathbf{R}^n} \rho'^p(y) N(y, f, A) \alpha(y) \, dm(y) \quad \text{for all } \rho' \in \text{adm } f(\Gamma).$$

Indeed, as known, $W_{\text{loc}}^{1,p} = ACL^p$ (see [Maz, Theorems 1 and 2, section 1.1.3]). On the other hand, $ACL^p \subset ACP_p$ by the Fuglede lemma (see [Va, Theorem 28.2]). Thus, by Theorem 5.1 we obtain the inequality of type (1.3).

The next statement follows from Theorems 1.1 and 5.1, Corollaries 4.1 and 4.2.

Corollary 5.2. Let $p \in (n-1,n]$, $f: D \to \mathbb{R}^n$ be differentiable a.e. in D, have N- and N^{-1} -properties, ACP_p -property for some $p \ge 1$ and $K_{O,p}(x,f) \le \alpha(f(x))$ a.e. for a Borel function $\alpha: \mathbb{R}^n \to [0,\infty]$. Let Γ be a family of paths in a Borel set $A \subseteq D$ and let $Q(y) = N(y, f, D) \cdot \max\{\alpha(y), 1\}$. Then f is open and discrete whenever Q satisfies at least one of the following conditions:

- 1) $Q \in FMO(y_0)$ for every $y_0 \in f(D)$;
- 2) for every $y_0 \in f(D)$ $q_{y_0}(r) = O\left(\left[\log \frac{1}{r}\right]^{n-1}\right)$ as $r \to 0$, where $q_{y_0}(r)$ is defined in (1.5);

3) for all $y_0 \in f(D)$ there exists $\delta > 0$: for all $\varepsilon \in (0, \delta)$: $\int_{\varepsilon}^{\delta} \frac{dt}{t^{\frac{n-1}{p-1}}q_{y_0}^{\frac{1}{p-1}}(t)} < \infty$

and
$$\int_0^{\delta} \frac{dt}{t^{\frac{n-1}{p-1}}q_{y_0}^{\frac{1}{p-1}}(t)} = \infty;$$

4) for all $y_0 \in f(D)$ there exists $\delta > 0$: for all $\varepsilon \in (0, \delta)$: $\int_{\varepsilon}^{\delta} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} < \infty$ and $\int_{\varepsilon}^{\delta} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} = \infty$;

$$\int_{0} \frac{dt}{tq_{y_0}^{\frac{1}{n-1}}(t)} = c$$

5)
$$p \in (n-1,n)$$
 and $Q \in L^s_{loc}(\mathbf{R}^n)$ for some $s \ge \frac{n}{n-p}$

In particular, the assertion of Corollary 5.2 holds if $f \in W_{\text{loc}}^{1,p}$ instead of $f \in ACP_p$.

Note that the preserving orientation is essential condition for mappings f in all statements given above. An example of a mapping f with finite length distortion that does not preserve orientation and such that $M(f(\Gamma)) = M(\Gamma)$, i.e., $Q \equiv 1$, but is neither discrete nor open, was given in [MRSY, Section 8.10].

We also give another simple example which shows that the preserving orientation can not be dropped. Let $x = (x_1, \ldots, x_n)$. We define f as the identical mapping in the closed domain $\{x_n \ge 0\}$ and set $f(x) = (x_1, \ldots, -x_n)$ for $x_n < 0$. Note that the mapping f preserves the lengths of paths. Therefore, f satisfies the inequality (1.3) with $Q \equiv 1$. This mapping is discrete but not open. In fact, under the mapping fthe ball \mathbf{B}^n is mapped onto the set $\{y = (y_1, \ldots, y_n) \in \mathbf{R}^n : |y| < 1, y_n \ge 0\}$ which is not open in \mathbf{R}^n .

Remark 5.1. Results obtained in the paper can be applied to various classes of plane and space mappings (see e.g. [GRSY] and [MRSY]).

Note that we discuss the case while p ranges between n-1 and n. The question on discreteness and openness of the mappings obeying the same modulus conditions for $1 \le p \le n-1$ remains open.

References

[AS]	ADAMOWICZ, T., and N. SHANMUGALINGAM: Non-conformal Loewner type estimates for
	modulus of curve families Ann. Acad. Sci. Fenn. Math. 35, 2010, 609–626.

- [AC] ANDREIAN CAZACU, C.: On the length-area dilatation. Complex Var. Theory Appl. 50, 2005, 765–776.
- [Cr₁] CRISTEA, M.: Local homeomorphisms having local ACL^n inverses. Complex Var. Elliptic Equ. 53:1, 2008, 77–99.
- [Cr₂] CRISTEA, M.: Open discrete mappings having local ACLⁿ inverses. Complex Var. Elliptic Equ. 55:1-3, 2010, 61–90.
- [Gol₁] GOLBERG, A.: Homeomorphisms with finite mean dilatations. Contemp. Math. 382, 2005, 177–186.
- [Gol₂] GOLBERG, A.: Differential properties of (α, Q) -homeomorphisms. In: Further Progress in Analysis, World Scientific Publ., 2009, 218–228.
- [GRSY] GUTLYANSKII, V. YA., V. I. RYAZANOV, U. SREBRO, and E. YAKUBOV: The Beltrami equation: A geometric approach. Dev. Math. 26, New York etc., Springer, 2012.
- [He] HEINONEN, J.: Lectures on analysis on metric spaces. Springer, New York, 2001.
- [HK] HENCL, S., and P. KOSKELA: Lectures on mappings of finite distortion. Lecture Notes in Math. 2096, Springer, 2014.
- [HW] HUREWICZ, W., and H. WALLMAN: Dimension theory. Princeton Univ. Press, 1948.
- [IR] IGNAT'EV, A., and V. RYAZANOV: Finite mean oscillation in the mapping theory. Ukr. Math. Bull. 2:3, 2005, 403–424.
- [IM] IWANIEC, T., and G. MARTIN: Geometric function theory and non-linear analysis. -Clarendon Press, Oxford, 2001.
- [KO] KOSKELA, P., and J. ONNINEN: Mappings of finite distortion: Capacity and modulus inequalities. - J. Reine Angew. Math. 599, 2006, 1–26.
- [MRV] MARTIO, O., S. RICKMAN, and J. VÄISÄLÄ: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. Ser. A I Math. 448, 1969, 1–40.
- [MRSY] MARTIO, O., V. RYAZANOV, U. SREBRO, and E. YAKUBOV: Moduli in modern mapping theory. Springer, New York, 2009.
- [Maz] MAZ'YA, V.: Sobolev spaces. Springer-Verlag, Berlin, 1985.
- [Na] NÄKKI, R.: Boundary behavior of quasiconformal mappings in n-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 484, 1970, 1–50.
- [RR] RADO, T., and P.V. REICHELDERFER: Continuous transformations in analysis. Springer-Verlag, Berlin etc., 1955.
- [Re] RESHETNYAK, YU. G.: Space mappings with bounded distortion. English transl. Amer. Math. Soc., Providence, RI, 1989.
- [Ri] RICKMAN, S.: Quasiregular mappings. Springer-Verlag, Berlin etc., 1993.
- [Sa] SAKS, S.: Theory of the integral. Dover Publ. Inc., New York, 1964.
- [Sev] SEVOST'YANOV, E. A.: On the openess and discreteness of mappings with unbounded characteristic of quasiconormality. Ukrainian Math. J. 63:8, 2012, 1298–1305.
- [TY] TITUS, C. J., and G. S. YOUNG: The extension of interiority with some applications. -Trans. Amer. Math. Soc. 103, 1962, 329–340.
- [UV] UKHLOV, A. D., and S. K. VODOP'YANOV: Sobolev spaces and mappings with bounded (*P*; *Q*)-distortion on Carnot groups. Bull. Sci. Mat. 54:4, 2009, 349–370.
- [Va] VÄISÄLÄ, J.: Lectures on n-dimensional quasiconformal mappings. Lecture Notes in Math. 229, Springer-Verlag, Berlin etc., 1971.

Received 26 January 2015 • Accepted 8 May 2015

50