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Abstract. In the paper [Na], Nayatani used a Patterson–Sullivan measure µ of a non-

elementary Kleinian group Γ of the second kind to define a metric tensor gµ on the set of dis-

continuity Ω(Γ) of Γ which is compatible with the natural conformal structure of Ω(Γ). The metric

tensor gµ is Γ-invariant and so it can be projected to a metric tensor gµM of any Kleinian manifold

M contained in the quotient Ω(Γ)/Γ. Nayatani showed that the sign of the scalar curvature of gµ

is determined by the exponent of convergence δΓ of Γ. He showed also that in some situations the

isometry group of (M, gµM ) coincides with the group of conformal automorphisms of M . We point

out in this paper that Nayatani’s definitions and arguments can be applied if the Patterson–Sullivan

measure µ is replaced by any conformal measure of Γ supported by the limit set L(Γ) of Γ. Combin-

ing this observation with an existence theorem of conformal measures proved in [AFTu] and [Sul3],

we deduce that if Γ is not convex cocompact, then Γ has many metric tensors like gµ and some

of them must have scalar curvatures which are negative everywhere. We also obtain a simple new

proof for the known fact that if M is compact and δΓ ≤ (n − 2)/2, where n ≥ 3 is the dimension

of M , then Γ is convex cocompact. Finally, we point out generalizations of Nayatani’s results (and

results of others) regarding the isometry group of (M, gµM ).

1. Introduction

Let Γ be a non-elementary Kleinian group acting on the unit ball Bn+1 of Rn+1,
n ≥ 3, with the limit set L(Γ), the non-empty set of discontinuity Ω(Γ) and the
exponent of convergence δΓ. Let µ be an s-conformal measure of Γ supported by
L(Γ) for some s ≥ δΓ. (See the next section for the definitions of these notions.)

In this paper, we will study the existence and properties of metric tensors gµ of
Ω(Γ) as defined in (5.1). Metric tensors of this form were introduced by Nayatani in
[Na] in the case where µ is a Patterson–Sullivan measure of Γ, i.e. a δΓ-conformal
measure of Γ obtained by using a classical method of construction invented by Pat-
terson and generalized by Sullivan. This paper is based on the observation that
Nayatani’s definition can be applied even if µ is not a Patterson–Sullivan measure of
Γ, and as a consequence of this observation we obtain generalizations of some results
of Nayatani and others.

Our first main result, an easy corollary of one of Nayatani’s results, shows that
the sign of the scalar curvature of gµ is determined by s and that if Γ is not convex
cocompact, then the scalar curvature of some gµ is negative everywhere (see The-
orem 6.1 and Corollary 6.2). More precisely, the scalar curvature of gµ is positive
everywhere, zero everywhere or negative everywhere if s < N , s = N or s > N ,
respectively, where N = (n− 2)/2, and since there are s-conformal measures of Γ for
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arbitrarily large s if Γ is not convex cocompact, there are in this case metric tensors
gµ whose scalar curvatures are negative everywhere. The proof is obtained by com-
bining an argument given by Nayatani in [Na] with an existence result of conformal
measures proved in [AFTu] and [Sul3].

The metric tensor gµ is Γ-invariant, see Proposition 5.2. It follows that if O is
a non-empty, open, connected and Γ-invariant subset of Ω(Γ) such that no other
element in Γ except the identity mapping has a fixed point in O, we obtain the
Kleinian manifold (M, gµM), where M = O/Γ and gµM is the projection of gµ to
M . The metric tensor gµM is compatible with the natural conformal structure of M
obtained by projection from Ω(Γ), which means that gµM is a locally conformally flat
metric tensor of M .

If M is compact and δΓ ≤ (n− 2)/2, we obtain as a consequence of Theorem 6.1
that Γ is convex cocompact (Theorem 7.1). In fact, Γ is convex cocompact if δΓ ≤
(n− 2)/2 and Ω(Γ)/Γ contains a non-empty compact component, see Corollary 7.2.
This result was originally proved by Izeki in [I2], but we give a new much simpler
proof.

In [Na], Nayatani considered also the isometry group of (M, gµM). He showed
that if µ is a Patterson–Sullivan measure of Γ, if any two δΓ-conformal measures of
Γ supported by L(Γ) are the same up to a multiplicative constant, and if the metric
induced by gµM is complete, then the isometry group of (M, gµM) coincides with the
group of conformal automorphisms of M . Nayatani’s result was later generalized by
Matsuzaki and Yabuki in [MatYab1] and [Yab]. In the last section of this paper, we
will point out straightforward generalizations of the results of Matsuzaki, Nayatani
and Yabuki concerning the isometry group of (M, gµM).

We will start our exposition by recalling basic definitions and facts regarding
Kleinian groups and conformal measures of Kleinian groups. We will then study some
relations between the conformal measures of a given Kleinian group, the normalizer
of the group and the bounded parabolic fixed points of the group, and apply the
results in the case of conformal measures of geometrically finite Kleinian groups.
The purpose of these studies is to obtain auxiliary results and examples that we will
use in our discussion on the isometry group of (M, gµM). Finally, we will prove our
main results in the order indicated above.

2. Preliminaries

We will start off by recalling basic facts about Kleinian groups and conformal
measures of Kleinian groups. We assume that the reader is familiar with Kleinian
groups, but we will give detailed references when discussing conformal measures. For
a general discussion on Kleinian groups, see [Be], [Mas], [MatTa] or [R2]. Conformal
measures of Kleinian groups are discussed, for example, in [Ni], [P2] and [Sul1].

2.1. Kleinian groups. Let Γ be a Kleinian group acting on the unit ball Bn+1

of the (n+1)-dimensional euclidean space R
n+1, where n ≥ 1, i.e., let Γ be a group of

Möbius transformations of R̄n+1 = R
n+1∪{∞} whose elements map B

n+1 onto itself
and which is discrete in the natural topology of Möbius transformations of R̄n+1. It
is well known that if γ ∈ Γ, then the restriction of γ to B

n+1 is an isometry of the
hyperbolic metric of Bn+1 and the restriction of γ to the unit sphere S

n = ∂Bn+1 is
a conformal automorphism of Sn.

The discreteness of Γ implies that if x ∈ B
n+1, then the orbit Γx = {γ(x) : γ ∈ Γ}

can accumulate only at Sn, and the fact that Γ acts by hyperbolic isometries on B
n+1
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implies that the set of accumulation points of Γx is independent of x. The set of
accumulation points is called the limit set of Γ and the complement of the limit set
with respect to S

n is called the set of discontinuity of Γ. We write

(2.1) L(Γ) = Γx ∩ S
n for any x ∈ B

n+1 and Ω(Γ) = S
n \ L(Γ)

to denote these sets. It is well known that either L(Γ) contains at most two points or
L(Γ) is infinite. If L(Γ) is finite, Γ is called elementary, and Γ is called non-elementary

otherwise.
It is clear that L(Γ) and Ω(Γ) are Γ-invariant, so we can form the quotient spaces

B
n+1/Γ, Ω(Γ)/Γ and (Bn+1 ∪ Ω(Γ))/Γ. Note that it is possible that Ω(Γ) = ∅. If

Ω(Γ) = ∅, then Γ is said to be of the first kind, and Γ is said to be of the second kind

otherwise. The hyperbolic structure of Bn+1 projects onto B
n+1/Γ, so B

n+1/Γ is a
hyperbolic orbifold.

A point x ∈ L(Γ) is called a conical limit point of Γ if it satisfies the following
condition. Given y ∈ B

n+1 and a hyperbolic ray R of Bn+1 with x as its endpoint,
there is r > 0 and elements γ1, γ2, . . . ∈ Γ such that γi(y) → x and d(γi(y), R) ≤ r
for every i ≥ 1, where d is the hyperbolic metric of Bn+1 obtained from the element
of length 2|dz|/(1− |z|2). The set of conical limit points of Γ is denoted by Lc(Γ).

A point x ∈ L(Γ) is called a parabolic fixed point of Γ if x is the fixed point of
some parabolic element in Γ. Given a parabolic fixed point x of Γ, denote by Γx the

stabilizer of x in Γ, i.e.,

(2.2) Γx = {γ ∈ Γ: γ(x) = x}.

It is known that there is kx ∈ {1, 2, . . . , n} such that Γx contains a finite index
subgroup isomorphic to Z

kx , and the number kx is called the rank of x. The parabolic
fixed point x of Γ is called a bounded parabolic fixed point of Γ if the quotient space
(L(Γ) \ {x})/Γx is compact.

If it is the case that L(Γ) can be written as a pairwise disjoint union

(2.3) L(Γ) = Lc(Γ) ∪ Γp1 ∪ Γp2 ∪ . . . ∪ Γpm,

where the points p1, p2, . . . , pm are bounded parabolic fixed points of Γ such that any
parabolic fixed point of Γ is contained in one of the orbits Γp1,Γp2, . . . ,Γpm, we say
that Γ is geometrically finite. If Γ is geometrically finite and has no parabolic fixed
points (so L(Γ) = Lc(Γ)), then Γ is called convex cocompact. It is true that Γ is
convex cocompact if and only if the quotient (Bn+1 ∪ Ω(Γ))/Γ is compact. We refer
to [Bo] for a useful discussion on geometrically finite Kleinian groups.

2.2. Conformal measures. Let Γ be a non-elementary Kleinian group acting
on B

n+1, where n ≥ 1. Given x, y ∈ B
n+1 and s ≥ 0, define the Poincaré series of Γ

(2.4) P s
Γ(x, y) =

∑

γ∈Γ

e−sd(x,γ(y)).

It is easy to see that the divergence or convergence of P s
Γ(x, y) does not depend on

the points x and y, which allows us to define the exponent of convergence δΓ of Γ by

(2.5) δΓ = inf{s ≥ 0: P s
Γ(x, y) < ∞ for some x, y ∈ B

n+1}.

According to basic results, it is the case that δΓ ∈]0, n], see Theorem 1.6.1 and

Corollary 3.4.5 of [Ni]. If P δΓ
Γ (x, y) = ∞ for some x, y ∈ B

n+1, then Γ is said to be

of divergence type, and Γ is said to be of convergence type if P δΓ
Γ (x, y) < ∞.
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Let s > 0. We say that a measure µ is an s-conformal measure of Γ if the σ-
algebra of µ-measurable sets is the σ-algebra of Borel sets of R̄n+1, if µ is positive,
finite and supported by L(Γ), and if

(2.6) µ(γA) =

ˆ

A

|γ′|s dµ

for every γ ∈ Γ and every µ-measurable set A, where |γ′| is the operator norm of the
derivative of γ with respect to the euclidean metric (i.e., if x ∈ R

n+1 \ {γ−1(∞)},
then γ′(x)/|γ′(x)| is an orthogonal matrix). Note that if µ is an s-conformal measure
of Γ and φ is a µ-measurable function, then

(2.7)

ˆ

γA

φ dµ =

ˆ

A

(φ ◦ γ)|γ′|s dµ

for every γ ∈ Γ and every µ-measurable set A.
If Γ has an s-conformal measure, then s ≥ δΓ (Corollary 4.5.3 of [Ni] or Corollary 4

of [Sul1]), and conversely, if Γ is not convex cocompact, then Γ has s-conformal
measures for every s ≥ δΓ: If s = δΓ, one can use the classical construction method
invented by Patterson (see [P1]) and generalized by Sullivan (see [Sul1]), and if
s > δΓ, one can use the construction method described in Theorem 4.1 of [AFTu]
(see also Theorem 2.19 of [Sul3] and the paper [FMatSt]). (Measures constructed
by the method of Patterson and Sullivan are called Patterson–Sullivan measures.)
On the other hand, if Γ is convex cocompact, then Γ has s-conformal measures only
if s = δΓ (and such measures can again be constructed by using the method of
Patterson and Sullivan), and any two δΓ-conformal measures of Γ are the same up to
a multiplicative constant (see Theorem 8 of [Sul1]). In fact, if Γ is geometrically finite,
then any two δΓ-conformal measures of Γ are the same up to a multiplicative constant
(Theorem 1 of [Sul2]), and more generally, the same is true if Γ is of divergence type
(this is obtained by combining [Sul1] with [Tu2]; Proposition 2 of [Sul2] states that
non-elementary geometrically finite Kleinian groups are of divergence type).

3. Conformal measures, normalizers and bounded parabolic fixed points

Let Γ be a non-elementary Kleinian group acting on B
n+1, where n ≥ 1. Denote

by Möb(Bn+1) the group of all Möbius transformations of R̄n+1 mapping B
n+1 onto

itself. Denote by N(Γ) the normalizer of Γ in Möb(Bn+1), i.e.,

(3.1) N(Γ) = {β ∈ Möb(Bn+1) : βΓβ−1 = Γ}.

The purpose of this section is to study some relations between the conformal measures
of Γ, the normalizer N(Γ) and the bounded parabolic fixed points of Γ. The rather
technical results of this section will be used in the last section of this paper. We
will not try to explain the motivation for the results at this point. Instead, we will
formulate the results so that they will be easy to apply when needed. We start with
the following lemma.

Lemma 3.2. Let Γ be a non-elementary Kleinian group acting on B
n+1, where

n ≥ 1, and let µ be an s-conformal measure of Γ for some s ≥ δΓ. Let β ∈ Möb(Bn+1).
Define the measure βs

∗µ by

(3.3) βs
∗µ(A) =

ˆ

β−1A

|β ′|s dµ

for every Borel set A of R̄n+1. It is the case that βs
∗µ is an s-conformal measure of

βΓβ−1.
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Proof. It is clear that the σ-algebra of βs
∗µ-measurable sets is the σ-algebra of

Borel sets of R̄n+1, that βs
∗µ is positive and finite (since |β ′| is positive and finite

in S
n), and that βs

∗µ is supported by βL(Γ) = L(βΓβ−1). Let γ ∈ Γ. Write γβ =
β ◦ γ ◦ β−1. Using the chain rule and (2.7), we obtain that

βs
∗µ(γβA) =

ˆ

(γ◦β−1)A

|β ′|s dµ =

ˆ

β−1A

(|β ′|s ◦ γ)|γ′|s dµ =

ˆ

β−1A

|(β ◦ γ)′|s dµ

=

ˆ

β−1A

|(γβ ◦ β)
′|s dµ =

ˆ

β−1A

(|γ′
β|

s ◦ β)|β ′|s dµ =

ˆ

A

|γ′
β|

s dβs
∗µ

for every βs
∗µ-measurable set A. We conclude that βs

∗µ is an s-conformal measure of
βΓβ−1. �

We are particularly interested in the case where β ∈ N(Γ), so βs
∗µ is an s-

conformal measure of Γ, and where any two s-conformal measures of Γ are the same
up to a multiplicative constant. We record this application of Lemma 3.2 in the
following proposition.

Proposition 3.4. Let Γ be a non-elementary Kleinian group acting on B
n+1,

where n ≥ 1, and let µ be an s-conformal measure of Γ for some s ≥ δΓ. Suppose
that any two s-conformal measures of Γ are the same up to a multiplicative constant.
Let β ∈ N(Γ) and let βs

∗µ be defined as in (3.3). Then there is a constant bβ > 0
such that βs

∗µ = bβµ.

Measures of the form βs
∗µ have been used in [AFTu] and [Tu2], for example.

Results equivalent to Proposition 3.4 for δΓ-conformal measures of Γ can be found
in the papers of Matsuzaki and Yabuki, see Lemma 3.2 of [MatYab1], Lemma 4.1
of [MatYab2] and Lemma 3.1 of [Yab]. See also Lemmas 4.2 and 4.3 of [Na]. The
setting of these papers is somewhat different from ours, so we give our own proof.

We continue to consider a non-elementary Kleinian group Γ acting on B
n+1,

where n ≥ 1. We will show next that the conclusion of Proposition 3.4 can be valid
without the assumption that any two s-conformal measures of Γ are the same up
to a multiplicative constant. To do this, we will introduce the following explicit
construction of conformal measures that features bounded parabolic fixed points.
The construction, which we obtained from the papers [AFTu] and [FTu] (see also
[FMatSt]), will be used a number of times in this section.

Let p ∈ L(Γ) be a bounded parabolic fixed point of Γ and let s ≥ δΓ be such that
P s
Γ(x, y) < ∞ for some x, y ∈ B

n+1. We can define a measure µp by setting that

(3.5) µp(p) = 1 and µp(γ(p)) =

ˆ

{p}

|γ′|s dµp = |γ′(p)|sµp(p) = |γ′(p)|s

for every γ ∈ Γ. According to the discussion in Section 4 of [AFTu] and Section 6 of
[FTu], µp is an s-conformal measure of Γ (see also [FMatSt]).

Let us prove the following variant of Proposition 3.4.

Proposition 3.6. Let Γ be a non-elementary Kleinian group acting on B
n+1,

where n ≥ 1. Suppose that p ∈ L(Γ) is a bounded parabolic fixed point of Γ of
rank k ∈ {1, 2, . . . , n}. Suppose that every bounded parabolic fixed point of Γ of
rank k is contained in the orbit Γp. Let s ≥ δΓ be such that P s

Γ(x, y) < ∞ for some
x, y ∈ B

n+1. Define the s-conformal measure µp of Γ by using (3.5). Then it is true
that if β ∈ N(Γ), then βs

∗µp = bβµp for some bβ > 0.
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Proof. Let β ∈ N(Γ). The measure βs
∗µp is a purely atomic measure whose atoms

are the points in the orbit Γβ(p), since βΓp = (βΓβ−1)β(p) = Γβ(p). Since β(p) is
a bounded parabolic fixed point of βΓβ−1 = Γ of rank k, we obtain that β(p) ∈ Γp
and so Γβ(p) = Γp. We conclude that βs

∗µp is a purely atomic s-conformal measure
of Γ whose atoms are the points of Γp. It is clear that two such measures are the
same up to a multiplicative constant, so the existence of bβ > 0 follows. �

From the point of view of the discussion contained in the last section of this
paper, the situation where the conclusion of Proposition 3.4 or Proposition 3.6 is
valid with bβ = 1 for every β ∈ N(Γ), i.e., the situation where βs

∗µ = µ for every
β ∈ N(Γ) and some fixed s-conformal measure µ of Γ, is particularly relevant. Note
that the condition βs

∗µ = µ for every β ∈ N(Γ) is equivalent to the condition that µ
satisfies the conformal transformation rule (2.6) with respect to every β ∈ N(Γ). In
the following, we will consider the existence of such conformal measures.

Let Γ be a non-elementary Kleinian group acting on B
n+1, where n ≥ 1. Let

qΓ ∈ {2, 3, . . . , n + 1} be the minimal number such that there is a qΓ-dimensional
Γ-invariant hyperbolic subspace of Bn+1. The minimality of qΓ implies easily that
such a hyperbolic subspace is unique and we denote it by SΓ. Note that SΓ is also
the unique hyperbolic subspace of Bn+1 of minimal dimension whose closure contains
L(Γ).

Let ΓSΓ be the group that contains the restrictions to SΓ of all the elements in
Γ. ΓSΓ can be regarded as a Kleinian group acting on SΓ, i.e., as a discrete subgroup
of HI(SΓ), the hyperbolic isometry group of SΓ. Note that each α ∈ HI(SΓ) has
a natural extension to S̄Γ. We will not distinguish between α ∈ HI(SΓ) and its
extension to S̄Γ.

Let us define

(3.7) N(ΓSΓ) = {α ∈ HI(SΓ) : αΓ
SΓα−1 = ΓSΓ}

and

(3.8) A(ΓSΓ) = {α ∈ HI(SΓ) : αL(Γ) = L(Γ)}.

Theorem 1.1 of [LWX] implies that N(ΓSΓ) is always a Kleinian group acting on SΓ,
and Corollary 3.1 of [W] implies that A(ΓSΓ) is a Kleinian group acting on SΓ if and
only if ΓSΓ is of the second kind, i.e., L(Γ) 6= S̄Γ ∩ S

n.
We can now prove the following general result.

Proposition 3.9. Let Γ be a non-elementary Kleinian group acting on B
n+1,

where n ≥ 1. Then there is s ≥ δΓ and an s-conformal measure µ of Γ such that
µ satisfies the conformal transformation rule (2.6) with respect to every β ∈ N(Γ).
Indeed, µ can be chosen so that µ satisfies (2.6) with respect to every β ∈ Möb(Bn+1)
such that βL(Γ) = L(Γ).

Proof. We use the notation introduced above. We obtain that N(ΓSΓ) is a
Kleinian group acting on SΓ. Note that δΓ = δΓSΓ ≤ δN(ΓSΓ ). We can use the
construction of Patterson and Sullivan to construct a δN(ΓSΓ )-conformal measure µ

of N(ΓSΓ). It is clear that we can extend µ to be a measure with the following
properties. The σ-algebra of µ-measurable sets is the σ-algebra of Borel sets of R̄n+1.
The measure µ is positive, finite and supported by L(Γ) = L(N(ΓSΓ)). The measure µ
satisfies the conformal transformation rule (2.6) with respect to any β ∈ Möb(Bn+1)
which maps SΓ onto itself and whose restriction to SΓ is contained in N(ΓSΓ). It is
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clear that any β ∈ N(Γ) satisfies these conditions, which implies that we have proved
the first part of the claim.

If A(ΓSΓ) is a Kleinian group acting on SΓ, i.e. if L(Γ) 6= S̄Γ ∩S
n, we can use the

same argument as above, i.e. we first use the construction of Patterson and Sullivan
to construct a δA(ΓSΓ )-conformal measure µ of A(ΓSΓ) and then extend µ in a suitable

way. On the other hand, if A(ΓSΓ) is not a Kleinian group acting on SΓ, which means
that L(Γ) = S̄Γ∩S

n, we can choose µ to be the natural (qΓ−1)-dimensional measure
of L(Γ). �

We will end this section by proving a variant of Proposition 3.9 which uses the
measure construction given in (3.5). The benefit of using the measures constructed
by (3.5) is that they are relatively simple. It is also the case that in some situations
we have a better control over the dimensionality of the constructed measures: If
µ is an s-conformal measure of Γ constructed in Proposition 3.9, we know that
s ≥ δΓ but very little else; but we will see that the variant of Proposition 3.9 (i.e.,
Proposition 3.14) often constructs suitable s-conformal measures of Γ for any s ≥ δΓ
such that P s

Γ(x, y) < ∞ for some x, y ∈ B
n+1. Before formulating and proving

Propostition 3.14, we will prove the following three lemmas.

Lemma 3.10. Let Γ be a non-elementary Kleinian group acting on B
n+1, where

n ≥ 1. Let p ∈ L(Γ) be a bounded parabolic fixed point of Γ of rank k ∈ {1, 2, . . . , n}.
Suppose that G is a Kleinian group acting on B

n+1 such that Γ ⊂ G and L(G) =
L(Γ). Then p is a bounded parabolic fixed point of G of rank k.

Proof. It is trivial that p is a parabolic fixed point of G. Let l ∈ {k, k+1, . . . , n}
be the rank of p in G. Let α be a Möbius transformation of R̄n+1 that maps B

n+1

onto H
n+1 and p to ∞, where

H
n+1 = {(x1, x2, . . . , xn+1) ∈ R

n+1 : xn+1 > 0}

is the upper half-space of Rn+1. Write Γα = αΓα−1 and Gα = αGα−1. In order to
show that p is a bounded parabolic fixed point of G of rank k, it is sufficient to show
that ∞ is a bounded parabolic fixed point of Gα of rank k.

In the following, we will use a number of well-known results regarding parabolic
Kleinian groups acting on H

n+1 which have ∞ as the fixed point. We assume that
the reader is familiar with these results and so we will not discuss them in detail.
For a discussion on these and related results, see [Bo], [R2], [SusSw] or [Tu1], for
example.

Recall that Γα
∞ and Gα

∞ denote the stabilizers of ∞ in Γα and Gα. There is a Gα
∞-

invariant l-plane V of Rn with a compact Gα
∞-quotient. There is also a Γα

∞-invariant
k-plane W ⊂ V with a compact Γα

∞-quotient. Since ∞ is a bounded parabolic fixed
point of Γα, it is the case that L(Γα) \ {∞} is contained in a uniform euclidean
neighbourhood of W , i.e., the euclidean distance of any x ∈ L(Γα) \ {∞} from W
is uniformly bounded. Since L(Gα) = L(Γα), we conclude that L(Gα) \ {∞} is
contained in a uniform euclidean neighbourhood of W . Since Gα

∞ acts on R
n by

euclidean isometries and there is a compact set C ⊂ V such that Gα
∞C = V , we

obtain that if y ∈ V , there is z ∈ L(Gα) such that |y − z| is uniformly bounded. It
follows that W = V and l = k, so ∞ is a bounded parabolic fixed point of Gα of
rank k. �

Lemma 3.11. Let Γ be a non-elementary Kleinian group acting on B
n+1, where

n ≥ 1. Suppose that p ∈ L(Γ) is a parabolic fixed point of Γ of rank k ∈ {1, 2, . . . , n}.
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Suppose that G is a Kleinian group acting on B
n+1 that has Γ as a normal subgroup.

Then the orbit Gp is a pairwise disjoint union of Γ-orbits of parabolic fixed points of
Γ of rank k.

Proof. It is trivial that Γp ⊂ Gp. Suppose that q ∈ Gp, i.e., that q = g(p)
for some g ∈ G. Now q is a parabolic fixed point of rank k of gΓg−1 = Γ, and so
Γq ⊂ Gp. The claim follows. �

Lemma 3.12. Let Γ be a non-elementary Kleinian group acting on B
n+1, where

n ≥ 1. Let p ∈ L(Γ) be a bounded parabolic fixed point of Γ of rank k ∈ {1, 2, . . . , n}.
Let G be a Kleinian group acting on B

n+1 such that Γ ⊂ G. Suppose that Gp is
the pairwise disjoint union of Γp1, Γp2, . . ., Γpm, where p1, p2, . . . , pm are bounded
parabolic fixed points of Γ of rank k and p1 = p. Let s ≥ δΓ be such that P s

Γ(x, y) < ∞
for some x, y ∈ B

n+1. Then there is a purely atomic s-conformal measure of G whose
atoms are the points of Gp.

Proof. Note first that L(G) = L(Γ), so Lemma 3.10 implies that p is a bounded
parabolic fixed point of G of rank k. Define the measure µ by setting that

(3.13) µ(p) = 1 and µ(g(p)) =

ˆ

{p}

|g′|s dµ = |g′(p)|sµ(p) = |g′(p)|s

for every g ∈ G. Comparing the definitions (3.5) and (3.13), we see that µ is well-
defined and that in order to show that µ is the s-conformal measure of G we are
looking for, we need to show only that µ is finite.

Let us define µ1(p1) = 1 and µ1(γ(p1)) = |γ′(p1)|
s for all γ ∈ Γ. According to

the remark following the definition (3.5), µ1 is an s-conformal measure of Γ. Observe
that µ1 is the same as the restriction of µ to Γp1. Next, let g2 ∈ G be such that
g2(p1) = p2. Define µ2(p2) = µ(p2) = |g′2(p1)|

s and

µ2(γ(p2)) =

ˆ

{p2}

|γ′|s dµ2 = |γ′(p2)|
sµ2(p2) = |γ′(p2)|

s|g′2(p1)|
s

for every γ ∈ Γ. Then µ2 is an s-conformal measure of Γ, and since

µ(γ(p2)) = µ((γ ◦ g2)(p1)) = |(γ ◦ g2)
′(p1)|

s = |γ′(p2)|
s|g′2(p1)|

s = µ2(γ(p2))

for every γ ∈ Γ, the measure µ2 is the same as the restriction of µ to Γp2. We can
continue in this manner to construct the s-conformal measures µ3, µ4, . . . , µm of Γ
such that, given i ∈ {1, 2, . . . , m}, the restriction of µ to Γpi is µi. Now µ =

∑m
i=1 µi,

which implies that µ is finite. We obtain that µ is a purely atomic s-conformal
measure of G whose atoms are the points in Gp. �

Note that if the situation is as in Lemma 3.12, we obtain that δG = δΓ, which
might be of independent interest. We can now prove the variant of Proposition 3.9
we mentioned earlier. We will use the notation introduced after Proposition 3.6.

Proposition 3.14. Let Γ be a non-elementary Kleinian group acting on B
n+1,

where n ≥ 1. Let p ∈ L(Γ) be a bounded parabolic fixed point of Γ of rank k ∈
{1, 2, . . . , n}. Then p is a bounded parabolic fixed point of N(ΓSΓ) of rank k and the
N(ΓSΓ)-orbit of p is a pairwise disjoint union of Γ-orbits of bounded parabolic fixed
points of Γ of rank k. Furthermore, there is a purely atomic s-conformal measure µ
of N(ΓSΓ) whose atoms are the points of N(ΓSΓ)p for every s ≥ δN(ΓSΓ ) such that

P s
N(ΓSΓ )

(x, y) < ∞ for some x, y ∈ B
n+1, and if the N(ΓSΓ)-orbit of p is the pairwise

disjoint union of finitely many Γ-orbits of bounded parabolic fixed points of Γ of rank
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k, we can construct such a measure µ for every s ≥ δΓ such that P s
Γ(x, y) < ∞ for

some x, y ∈ B
n+1. In all cases, the measure µ can be extended to an s-conformal

measure of Γ which satisfies the conformal transformation rule (2.6) with respect to
any mapping in N(Γ).

Proof. N(ΓSΓ) is a Kleinian group acting on SΓ which has ΓSΓ as a normal sub-
group. It follows that L(N(ΓSΓ)) = L(ΓSΓ) = L(Γ) and so Lemma 3.10 implies that
p is a bounded parabolic fixed point of N(ΓSΓ) of rank k. Additionally, Lemma 3.11
implies that the N(ΓSΓ)-orbit of p is a pairwise disjoint union of Γ-orbits of bounded
parabolic fixed points of Γ of rank k. We can use the definition (3.5) to construct
a purely atomic s-conformal measure µ of N(ΓSΓ) whose atoms are the points in
N(ΓSΓ)p, where s ≥ δN(ΓSΓ ) is such that P s

N(ΓSΓ )
(x, y) < ∞ for some x, y ∈ B

n+1. If

N(ΓSΓ)p is the pairwise disjoint union of finitely many Γ-orbits of bounded parabolic
fixed points of Γ of rank k, we can use Lemma 3.12 to show that the measure µ
constructed above can be chosen to be an s-conformal measure of N(ΓSΓ) for any
fixed s ≥ δΓ such that P s

Γ(x, y) < ∞ for some x, y ∈ B
n+1. It is clear that µ can be

extended as described in the claim, see the proof of Proposition 3.9. �

We close this section by mentioning a relevant result of Matsuzaki and Yabuki
(see [MatYab1] and [MatYab2]) which states that if any two δΓ-conformal measures
of a non-elementary Kleinian group Γ acting on B

n+1, n ≥ 1, are the same up to a
multiplicative constant, then any δΓ-conformal measure of Γ satisfies the transforma-
tion rule (2.6) with respect to any mapping in N(Γ) (the proof is based on special
properties of the measure construction of Patterson and Sullivan).

4. Conformal measures of geometrically finite Kleinian groups

In this section, we will take a closer look at conformal measures of geometrically
finite Kleinian groups. The results of this section will be used in the last section of
this paper.

Let Γ be a non-elementary geometrically finite Kleinian group acting on B
n+1,

where n ≥ 1. Let µ be an s-conformal measure of Γ for some s ≥ δΓ. We mentioned
earlier that if Γ is convex cocompact (i.e., Γ does not contain parabolic elements), then
s = δΓ and any two δΓ-conformal measures of Γ are the same up to a multiplicative
constant. Therefore, we assume that Γ contains parabolic elements. Recall from (2.3)
that L(Γ) is the pairwise disjoint union of the conical limit set Lc(Γ) and finitely many
orbits Γp1,Γp2, . . . ,Γpm of bounded parabolic fixed points of Γ.

Suppose first that s = δΓ. We mentioned earlier that now any two s-conformal
measures of Γ are the same up to a multiplicative constant. Moreover, the µ-measure
of parabolic fixed points of Γ is zero, see Section 3.5 of [Ni] or Section 2 of [Sul2],
so Lc(Γ) is of full µ-measure. In fact, Sullivan showed in [Sul2] that µ is sometimes
the same as the standard δΓ-dimensional Hausdorff covering measure of L(Γ) and
sometimes the same as the standard δΓ-dimensional packing measure of L(Γ) up to
a multiplicative constant. (If Γ is convex cocompact, µ is the same as either one
of these measures up to a multiplicative constant.) More precisely, if kmin and kmax

denote the minimum and maximum of the ranks of parabolic fixed points of Γ, then
µ is the covering measure up to a multiplicative constant in case δΓ ≥ kmax and µ
is the packing measure up to a multiplicative constant in case δΓ ≤ kmin. Sullivan
showed also that if kmin < δΓ < kmax, then L(Γ) has zero measure with respect to
the covering measure and infinite measure with respect to the packing measure. We
showed in [A-M] that if the covering and packing measure constructions are modified
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in a suitable way, either one of them can always be used to construct a measure which
is the same as µ up to a multiplicative constant. The conclusion is that µ is in every
case (including the convex cocompact case) a constant multiple of a measure which
is constructed by using the properties of L(Γ) as a point set without any reference
to the action of Γ and which satisfies the conformal transformation rule (2.6) with
respect to any β ∈ Möb(Bn+1) that maps L(Γ) onto itself. Let us formulate this
result as a proposition.

Proposition 4.1. Let Γ be a non-elementary geometrically finite Kleinian group
acting on B

n+1, n ≥ 1. Suppose that µ is a δΓ-conformal measure of Γ. Then µ
satisfies the transformation rule (2.6) with respect to any β ∈ Möb(Bn+1) that maps
L(Γ) onto itself.

We consider next the case where s > δΓ. It is not difficult to prove that
µ(Lc(Γ)) = 0 in this case (see Corollary 20 of [Sul1]), and so µ is the sum of its
restrictions to the orbits Γp1,Γp2, . . . ,Γpm. In fact, if we use (3.5) to define the
measure µi, where i ∈ {1, 2, . . . , m}, by µi(pi) = 1 and µi(γ(pi)) = |γ′(pi)|

s for every
γ ∈ Γ, we obtain a purely atomic s-conformal measure of Γ, and it follows that the
s-conformal measures of Γ are exactly the measures

∑m
i=1 aiµi, where ai ≥ 0 for every

i ∈ {1, 2, . . . , m} so that at least one of these numbers is strictly greater than 0.
We end this section by showing that Proposition 3.14 can be applied in the present

situation to construct an s-conformal measure of Γ which satisfies the conformal
transformation rule (2.6) with respect to any element in N(Γ).

Proposition 4.2. Let Γ be a non-elementary geometrically finite Kleinian group
which acts on B

n+1, n ≥ 1, and which contains parabolic elements. Then, given any
s > δΓ, there is an s-conformal measure µ of Γ which satisfies the transformation
rule (2.6) for any element in N(Γ).

Proof. Like in the discussion following the proof of Proposition 3.6, let SΓ be the
unique Γ-invariant hyperbolic subspace of Bn+1 of minimal dimension. Define ΓSΓ

and N(ΓSΓ) as in (3.7). Now N(ΓSΓ) is a Kleinian group acting on SΓ and ΓSΓ is a
geometrically finite normal subgroup of N(ΓSΓ). Let p ∈ L(Γ) be a bounded parabolic
fixed point of Γ of rank k ∈ {1, 2, . . . , n}. There are only finitely many pairwise
disjoint Γ-orbits of bounded parabolic fixed points of Γ, so it follows that the N(ΓSΓ)-
orbit of p is the union of finitely many Γ-orbits of bounded parabolic fixed points of
Γ of rank k. The existence of µ follows immediately from Proposition 3.14. �

We remark that if the situation is as in the proof of Proposition 4.2, Theorem 1
of [SusSw] implies that ΓSΓ is a finite index subgroup of N(ΓSΓ), which means that
N(ΓSΓ) is geometrically finite with δN(ΓSΓ ) = δΓ. (The fact that ΓSΓ is of finite index

in N(ΓSΓ) follows also from an argument contained in the proof of Theorem 1 in
[R1].) It follows that we can apply (3.5) directly to construct µ without having to
refer to Proposition 3.14. Furthermore, if A(ΓSΓ) (see (3.8)) is a Kleinian group
acting on SΓ, then Theorem 1 of [SusSw] can be used again to conclude that ΓSΓ

is of finite index in A(ΓSΓ) and hence, since now A(ΓSΓ) is geometrically finite with
δA(ΓSΓ ) = δΓ, the s-conformal measure µ constructed in Proposition 4.2 can be taken

to satisfy the transformation rule (2.6) with respect to any β ∈ Möb(Bn+1) mapping
L(Γ) onto itself.
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5. Nayatani’s metric tensors

In this section, we will define the primary objects of study of this paper, the
metric tensors originally introduced by Nayatani in [Na]. Each of these tensors is as-
sociated with a Kleinian group, and we will repeat Nayatani’s argument which shows
that a given tensor is invariant under the action of the associated Kleinian group
(Proposition 5.2). We will also point out, building on earlier results of Matsuzaki,
Nayatani and Yabuki, that in some situations the elements in the normalizer of the
associated Kleinian group induce scalings of the tensor (Proposition 5.5).

Let Γ be a non-elementary Kleinian group of the second kind acting on B
n+1,

where n ≥ 1. Let µ be an s-conformal measure of Γ for some s ≥ δΓ. Adapting a
definition given in [Na], we define a metric tensor gµ of Ω(Γ) which is compatible
with the natural conformal structure of Ω(Γ) by setting that

(5.1) gµx =

(
ˆ

L(Γ)

(

2

|x− y|2

)s

dµ(y)

)2/s

gex

for every x ∈ Ω(Γ), where ge is the standard euclidean metric tensor of Sn. Originally,
Nayatani gave this definition assuming that µ is a δΓ-conformal Patterson–Sullivan
measure of Γ, but the definition works for any conformal measure of Γ.

It is easy to conclude that gµ is Γ-invariant, i.e., that γ∗gµ = gµ for every γ ∈ Γ,
where γ∗gµ is the pullback of gµ with respect to γ (see page 118 of [Na]). In order
to facilitate our discussion, we reproduce here the easy argument establishing the
Γ-invariance of gµ.

Proposition 5.2. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, n ≥ 1, and let µ be an s-conformal measure of Γ for some s ≥ δΓ.
Let gµ be as in (5.1). Then γ∗gµ = gµ for every γ ∈ Γ.

Proof. Let γ ∈ Γ and recall that

|γ(x)− γ(y)|2 = |γ′(x)||γ′(y)||x− y|2

for every x, y ∈ S
n and that

γ∗ge = |γ′|2ge.

Given x ∈ Ω(Γ), write

(5.3) λµ(x) =

(
ˆ

L(Γ)

(

2

|x− y|2

)s

dµ(y)

)2/s

and note that (in the following, we use (2.7) and the fact that L(Γ) is Γ-invariant)

(λµ ◦ γ)(x) =

(
ˆ

γL(Γ)

(

2

|γ(x)− y|2

)s

dµ(y)

)2/s

=

(
ˆ

L(Γ)

(

2

|γ(x)− γ(y)|2

)s

|γ′(y)|s dµ(y)

)2/s

=

(
ˆ

L(Γ)

(

2

|γ′(x)||γ′(y)||x− y|2

)s

|γ′(y)|s dµ(y)

)2/s

=
λµ(x)

|γ′(x)|2
.

We conclude that

(5.4) γ∗gµ = γ∗(λµg
e) = (λµ ◦ γ)γ

∗ge =
λµ

|γ′|2
|γ′|2ge = λµg

e = gµ,

i.e., that gµ is Γ-invariant. �
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The following result related to Proposition 5.2 will be useful in our discussion in
the last section of this paper.

Proposition 5.5. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, n ≥ 1, and let µ be an s-conformal measure of Γ for some s ≥ δΓ.
Let gµ be as in (5.1). Suppose that for every β ∈ N(Γ) there is bβ > 0 such that
βs
∗µ = bβµ. Then it is true that if β ∈ N(Γ), there is cβ > 0 such that β∗gµ = cβg

µ.

Proof. Let β ∈ N(Γ). According to our assumption, there is bβ > 0 such that
βs
∗µ = bβµ. It follows that

ˆ

βA

φ dµ =

ˆ

βA

φb−1
β dβs

∗µ =

ˆ

A

(φ ◦ β)b−1
β |β ′|s dµ

for every µ-measurable set A and every µ-measurable function φ. Recall the definition
of the function λµ from (5.3). Arguing as in the proof of Proposition 5.2, we conclude
that

λµ ◦ β =
b
−2/s
β λµ

|β ′|2
,

and using (5.4) we see that
β∗gµ = cβg

µ,

where cβ = b
−2/s
β . �

The condition of Proposition 5.5 is satisfied, for example, when any two s-
conformal measures of Γ are the same up to a multiplicative constant (e.g., Γ is
of divergence type and s = δΓ), see Proposition 3.4, or when the situation is as de-
scribed in Proposition 3.6. Results equivalent to Proposition 5.5 with the assumption
that any two δΓ-conformal measures of Γ are the same up to a multiplicative constant
have been proved by Nayatani (see Lemmas 4.2 and 4.3 and Proposition 4.4 of [Na])
and Matsuzaki and Yabuki (see Lemmas 3.2 and 3.3 of [MatYab1] and Lemma 3.1
of [Yab]).

6. Scalar curvatures of Nayatani’s tensors

We are now in a position to discuss our first main result. Let Γ be a non-
elementary Kleinian group of the second kind acting on B

n+1, where n ≥ 3. Let µ
be an s-conformal measure of Γ for some s ≥ δΓ. Let gµ be the metric tensor of Ω(Γ)
defined in (5.1).

One of the main results in [Na] is the following. Suppose for the time being that
µ is a δΓ-conformal Patterson–Sullivan measure of Γ. Write N = (n − 2)/2. It is
now the case that if δΓ < N , δΓ = N or δΓ > N , then the scalar curvature of gµ is
positive everywhere, zero everywhere or negative everywhere, respectively. Also, if
δΓ > n−2, then the Ricci curvature of gµ is negative everywhere. In [Na], this result
is contained in Theorem 3.3.

The proof of Theorem 3.3 in [Na] is a straightforward calculation, see pages 120
and 121 of [Na]. From the point of view of this paper, it is essential to note that
Nayatani’s argument remains valid if we replace the δΓ-conformal Patterson–Sullivan
measure of Γ with any s-conformal measure of Γ. We obtain the following result.

Theorem 6.1. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, where n ≥ 3. Suppose that µ is an s-conformal measure of Γ for
some s ≥ δΓ. Let gµ be the metric tensor defined in (5.1). Write N = (n−2)/2. It is
now true that if s < N , s = N or s > N , then the scalar curvature of gµ is positive
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everywhere, zero everywhere or negative everywhere, respectively. Additionally, if
s > n− 2, then the Ricci curvature of gµ is negative everywhere.

Recall that Theorem 4.1 of [AFTu] and Theorem 2.19 of [Sul3] imply that if Γ
is not convex cocompact, then there are s-conformal measures of Γ for every s ≥ δΓ.
We may deduce the following.

Corollary 6.2. Let the situation be as in Theorem 6.1. Suppose additionally
that Γ is not convex cocompact. Then we can always choose a metric tensor gµ

whose scalar curvature is negative everywhere, and gµ can be chosen so that its Ricci
curvature is negative everywhere as well. Additionally, if δΓ < N , we can choose a
metric tensor gµ whose scalar curvature is positive everywhere and another tensor
whose scalar curvature is zero everywhere.

7. Compact Kleinian manifolds

Suppose that Γ is a non-elementary Kleinian group of the second kind acting
on B

n+1, where n ≥ 3. Let M be a non-empty, open and connected subset of
Ω(Γ)/Γ and let O be a component of the preimage of M under the natural projection
Ω(Γ) → Ω(Γ)/Γ. Write ΓO = {γ ∈ Γ: γO = O} and suppose that no non-trivial
element in ΓO has a fixed point in O. Then M = O/ΓO is a manifold with a natural
conformal structure, i.e., the projection of the natural conformal structure of O. The
manifold M with its natural conformal structure is called a Kleinian manifold.

The results of the previous section are particularly interesting in the situation
where M is compact. In this situation, it is the case that if g1 and g2 are conformally
equivalent metric tensors of M , then the scalar curvature of g1 is positive everywhere,
zero everywhere or negative everywhere and the sign of the scalar curvature of g2 is
the same as that of g1. This result is well-known, see Lemma 1.1 of [ScYau] for
example. Also, the result is mentioned on page 123 in [Na].

Since the metric tensors defined in (5.1) are obtained by scaling the standard
metric tensor, any two of them are conformally equivalent. Also, since these tensors
are Γ-invariant, see Proposition 5.2, they can be projected to M . Therefore, if M is
compact, the signs of the scalar curvatures of the projections to M of any two metric
tensors defined in (5.1) are the same.

Recall that if Γ is not convex cocompact, then there are s-conformal measures of
Γ for every s ≥ δΓ, and that if Γ is convex cocompact, then every conformal measure
of Γ is δΓ-conformal. Using the results of the previous section, we obtain the following
theorem.

Theorem 7.1. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, where n ≥ 3. Let M be a compact Kleinian manifold contained
in Ω(Γ)/Γ as defined at the beginning of this section. Write N = (n − 2)/2. It is
now true that M has a metric tensor which is compatible with the natural conformal
structure of M and whose scalar curvature is positive everywhere, zero everywhere
or negative everywhere (and the sign of the scalar curvature is the same for every
metric tensor of M which is compatible with the natural conformal structure) if
and only if δΓ < N , δΓ = N or δΓ > N , respectively. Additionally, if δΓ ≤ N , or
equivalently, if there is a metric tensor of M which is compatible with the natural
conformal structure of M and whose scalar curvature is positive everywhere or zero
everywhere, then Γ is convex cocompact.
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The first part of Theorem 7.1 is the same as Corollary 3.4 in [Na]. The second
part of Theorem 7.1 is contained in Proposition 7 of Izeki’s paper [I2]. In order to
discuss Izeki’s result in greater detail, we formulate it as the following corollary of
Theorem 7.1. For the sake of completeness, we repeat Izeki’s argument up to the
point where we can apply Theorem 7.1. It is clear that applying Theorem 7.1 is much
simpler than using the argument given by Izeki on pages 3736 and 3737 of [I2].

Corollary 7.2. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, where n ≥ 3. Suppose that Ω(Γ)/Γ has a non-empty compact
component K and that δΓ ≤ (n − 2)/2. Then Ω(Γ) is connected and Γ is convex
cocompact.

Proof. Let OK be a component of the preimage of K with respect to the natural
projection Ω(Γ) → Ω(Γ)/Γ. Let ΓK = {γ ∈ Γ : γOK = OK}, so K = OK/ΓK .
The compactness of K implies that ΓK is finitely generated, and so Selberg’s lemma
implies that ΓK has a torsion-free subgroup Γ′

K of finite index. The exponent of
convergence δ′K of Γ′

K is smaller than or equal to δΓ, so it is strictly smaller than n−1,
since δΓ ≤ (n− 2)/2. Also, OK/Γ

′
K is a compact Kleinian manifold. Proposition 3.2

of [I1] implies that Ω(Γ′
K) = OK and that the Hausdorff dimension of S

n \ OK is
smaller than or equal to δ′K . In particular, Sn \ OK has no interior points in S

n, so
Ω(Γ) = OK . This means that Ω(Γ) is connected, that ΓK = Γ, and that Ω(Γ)/Γ = K.
In order to show that Γ is convex cocompact, it is enough to show that the finite
index subgroup Γ′

K of Γ is convex cocompact. But the convex cocompactness of Γ′
K

follows from Theorem 7.1. �

Theorem 1 of [I2] is actually somewhat stronger than Proposition 7 discussed
above. According to Theorem 1 of [I2], Ω(Γ) is connected and Γ is convex cocompact if
Γ is a non-elementary Kleinian group acting on B

n+1, where n ≥ 3, whose exponent of
convergence δΓ is strictly smaller than n/2 and whose quotient space Ω(Γ)/Γ contains
a non-empty compact component K. In fact, Theorem 1 of [I2] states more generally
that if K exists and δΓ < n− 1, then Ω(Γ) is connected and Γ is geometrically finite.
(Recall that a convex cocompact Kleinian group is a geometrically finite Kleinian
group containing no parabolic elements.) We remark that in the paper [CQYan]
it is proved that if Γ is a non-elementary Kleinian group acting on B

n+1, n ≥ 3,
such that Ω(Γ)/Γ is non-empty and compact, then Γ is geometrically finite if and
only if the Hausdorff dimension of L(Γ) is strictly smaller than n (recall from [BiJ]
the well-known result stating that in general the exponent of convergence of a non-
elementary Kleinian group is equal to the Hausdorff dimension of the conical limit
set of the group).

8. Isometry groups of Nayatani’s metric tensors

Suppose again that Γ is a non-elementary Kleinian group of the second kind
acting on B

n+1, where n ≥ 3. Let O ⊂ Ω(Γ) be a non-empty, open and connected
set which is mapped onto itself by every element in Γ. Suppose that no non-trivial
element in Γ has a fixed point in O. It follows that the quotient M = O/Γ is a
Kleinian manifold.

Suppose that µ is an s-conformal measure of Γ for some s ≥ δΓ. From the
definition (5.1), we obtain the metric tensor gµ on Ω(Γ), and we denote by gµM the
projection of this metric tensor to M .
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If α is a gµM -isometry of M , then it is trivial that α is a conformal automorphism
of M . The purpose of this section is to discuss sufficient conditions guaranteeing that
the converse is true, i.e., that every conformal automorphism of M is a gµM -isometry.

Our discussion is based on the following characterization of conformal automor-
phisms of M given by Lemma 4.1 of [Na]. Recall that N(Γ) denotes the normalizer
of Γ in Möb(Bn+1). Denote by NO(Γ) the subgroup of N(Γ) containing the elements
mapping O onto itself. If β ∈ NO(Γ), we obtain the induced mapping β̄ : M → M
given by β̄(Γx) = Γβ(x) for every x ∈ O. According to Lemma 4.1 of [Na], it is
the case that α is a conformal automorphism of M if and only if α = β̄ for some
β ∈ NO(Γ), and two mappings β1, β2 ∈ NO(Γ) induce the same conformal automor-
phism of M if and only if β2 = β1 ◦ γ for some γ ∈ Γ.

Let α be an arbitrary conformal automorphism of M . Our aim is to establish
sufficient conditions which guarantee that α is a gµM -isometry, i.e., that α∗gµM = gµM .
In the literature, the conclusion α∗gµM = gµM is usually obtained in the following way.
One shows first that, under suitable circumstances, there is a constant cα > 0 such
that α∗gµM = cαg

µ
M , and then one shows that it is in fact the case that cα = 1.

Of course, it is true that α∗gµM = cαg
µ
M if β∗gµ = cαg

µ, where β ∈ NO(Γ) is such
that β̄ = α, so we are led to consider the group NO(Γ), or more generally, the full
normalizer N(Γ).

The first isometry result on Nayatani’s metric tensors was proved by Nayatani
himself. In Proposition 4.4 of [Na], he shows that if s = δΓ, if any δΓ-conformal
measure of Γ is the same as µ up to a multiplicative constant, and if the metric
induced by gµM is complete, then any conformal automorphism of M is a gµM -isometry.
The proof consists of two parts. Nayatani shows first that since any two δΓ-conformal
measures of Γ are the same up to a multiplicative constant, it is the case that if
β ∈ N(Γ), then there is a constant cβ > 0 such that β∗gµ = cβg

µ, see Lemmas 4.2
and 4.3 of [Na]. He shows then that if β ∈ NO(Γ) and cβ 6= 1, then β̄ has a fixed
point in M (because of the completeness of the induced metric), which in turn can
be used to deduce the contradiction that Γ is elementary.

In Nayatani’s argument, the existence of the constant cβ follows from the exis-
tence of a constant bβ > 0 such that βs

∗µ = bβµ, see our Proposition 5.5 (in [Na] this
is formulated in a different but equivalent way), and the existence of bβ follows if
every two δΓ-conformal measures of Γ are the same up to a multiplicative constant,
see Proposition 3.4.

It is clear that Nayatani’s argument can be applied to s-conformal measures of
Γ for any s ≥ δΓ and not just δΓ-conformal measures of Γ. Also, it is possible that
the constants bβ considered above exist even if it is not necessarily true that any
two s-conformal measures of Γ are the same up to a multiplicative constant, see
Proposition 3.6. We obtain the following generalization of Nayatani’s result.

Theorem 8.1. Let Γ, M , µ, gµ and gµM be as defined at the beginning of this
section. Suppose that if β ∈ NO(Γ), then there is a constant bβ > 0 such that
βs
∗µ = bβµ. Suppose also that the metric induced by gµM is complete. Then every

conformal automorphism of M is a gµM -isometry.

Nayatani notes in Corollary 4.5 of [Na] that his result is true if Γ is convex
cocompact and µ is a Patterson–Sullivan measure of Γ (the convex cocompactness of
Γ implies that M is compact (and hence the metric induced by gµM is complete) and
that any two δΓ-conformal measures of Γ are the same to a multiplicative constant).
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We observe that Theorem 8.1 is applicable if M is compact and µ is a purely atomic
measure as described in Proposition 3.6.

Regarding Nayatani’s isometry result, Maubon showed in [Mau] that if Γ is geo-
metrically finite and µ is δΓ-conformal, then the metric induced by gµM is not neces-
sarily complete. It is not possible, therefore, to use Nayatani’s argument to conclude
that every conformal automorphism of M is a gµM -isometry in this case. However,
Yabuki showed in [Yab] that the conclusion holds nevertheless. The first part of
Yabuki’s argument is the same as Nayatani’s, i.e., he concludes that, since any two
δΓ-conformal measures of Γ are the same up to a multiplicative constant, there is a
constant cβ > 0 for any β ∈ N(Γ) such that β∗gµ = cβg

µ. Moreover, the main idea in
the second part of Yabuki’s argument is the same as in Nayatani’s, i.e., Yabuki shows
that if β ∈ NO(Γ) and cβ 6= 1, then β̄ has a fixed point, which can be used to deduce
the contradiction that Γ is elementary. More precisely, Yabuki notes first that gµ can
be extended to a metric tensor of Bn+1∪Ω(Γ) (it is clear that we can have x ∈ B

n+1

in (5.1); see also Section 2 of [INa]) and that β̄ can be extended to (Bn+1 ∪Ω(Γ))/Γ.
The so-called ε-thick part Cε

Γ of the so-called convex core of Γ is mapped onto itself
by β̄, and Cε

Γ is compact because Γ is geometrically finite. Therefore, if cβ 6= 1, one
can show that β̄ has a fixed point in Cε

Γ. See Section 3 of [Yab] for the details.
In their paper [MatYab1] (see also [MatYab2]), Matsuzaki and Yabuki general-

ize the isometry results in [Na] and [Yab] to the case where any two δΓ-conformal
measures of Γ are the same up to a multiplicative constant (Γ does not have to be
geometrically finite or even of divergence type). The first part of the argument is the
same as before, i.e. they show that, given β ∈ N(Γ), there is a constant cβ > 0 such
that β∗gµ = cβg

µ, where µ is a δΓ-conformal measure of Γ. The argument that shows
that in fact cβ = 1 depends essentially on the properties of the construction used
to obtain Patterson–Sullivan measures, and our results in this paper do not provide
generalizations in this case.

Next, we wish to point out the following simple condition that guarantees that if
the constants cβ, where β ∈ N(Γ), considered above exist, then we have in fact that
cβ = 1 in all cases. The condition is that the constants cβ are uniformly bounded
away from 0 and ∞. (Observe that cβ−1 = c−1

β .)

Theorem 8.2. Let Γ, µ and gµ be as at the beginning of this section. Suppose
that there is a constant c > 1 satisfying the following. If β ∈ N(Γ), then there is
cβ ∈ [c−1, c] such that β∗gµ = cβg

µ. Then it is in fact true that cβ = 1 for every
β ∈ N(Γ).

Proof. Let cN(Γ) = sup{cβ : β ∈ N(Γ)}. It is clear that if β1, β2 ∈ N(Γ), then
cβ1◦β2

= cβ1
cβ2

. So if β0 ∈ N(Γ) is fixed, then

cN(Γ) = sup{cβ0◦β : β ∈ N(Γ)} = sup{cβ0
cβ : β ∈ N(Γ)} = cβ0

cN(Γ),

and so cβ0
= 1. �

The constants cβ, β ∈ N(Γ), are uniformly bounded away from 0 and ∞ for
example in the case where the index of Γ in N(Γ) is finite, since then there are
α1, α2, . . . , αk ∈ N(Γ) such that any β ∈ N(Γ) can be written as β = αiβ ◦ γβ for
some iβ ∈ {1, 2, . . . , k} and γβ ∈ Γ, and so cβ = cαiβ

cγβ = cαiβ
.

Recall from the proof of Proposition 5.5 that if bβ and cβ are constants as in

the above discussion, then they are related by cβ = b
−2/s
β for every β ∈ N(Γ). It

follows that cβ = 1 if bβ = 1. Recall also that the condition bβ = 1 is equivalent to
the condition that µ satisfies the conformal transformation rule (2.6) with respect
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to β. We conclude that if Γ, µ, M and gµM are as at the beginning of this section,
then every conformal automorphism of M is a gµM -isometry in case µ satisfies the
conformal transformation rule (2.6) with respect to every β ∈ NO(Γ). According to
Proposition 3.9, there always exists such a measure µ. Let us write this down.

Theorem 8.3. Let Γ be a non-elementary Kleinian group of the second kind
acting on B

n+1, where n ≥ 3. Then there exists s ≥ δΓ and an s-conformal measure
µ of Γ such that if gµ is defined as in (5.1), then β∗gµ = gµ for every β ∈ N(Γ).
Indeed, µ can be chosen so that β∗gµ = gµ for every β ∈ Möb(Bn+1) that maps L(Γ)
onto itself. It follows that if M and gµM are as at the beginning of this section, then
every conformal automorphism of M is a gµM -isometry.

Observe that Proposition 3.14 discusses situations where the measure µ of The-
orem 8.3 (satisfying β∗gµ = gµ for every β ∈ N(Γ)) can be chosen so that s is any
fixed number that satisfies the condition P s

Γ(x, y) < ∞ for some x, y ∈ B
n+1. In

particular, Proposition 3.14 is applicable in the case where Γ is a geometrically finite
Kleinian group containing parabolic elements, see Proposition 4.2. We mention also
that the main result of [MatYab1] discussed above is based on the fact that, in the
context of [MatYab1], any Patterson–Sullivan measure of the given Kleinian group
Γ satisfies the transformation rule (2.6) with respect to any β ∈ N(Γ).

Finally, we point out that we in fact obtain the main result of [Yab] mentioned
above as a corollary of the main results of [A-M], see Proposition 4.1. Actually, we
obtain the following more general result.

Theorem 8.4. Let Γ be a non-elementary Kleinian group of the second kind act-
ing on B

n+1, n ≥ 3. Suppose that G is a non-elementary geometrically finite Kleinian
group acting on B

n+1 such that L(Γ) = L(G). Let µ be a δG-conformal measure of
G. Then µ is a δG-conformal measure of Γ and µ satisfies the transformation rule
(2.6) with respect to any element in N(Γ). It is also true that if gµ is a metric tensor
of Ω(Γ) as defined in (5.1) and if M is a Kleinian manifold contained in Ω(Γ)/Γ as
described at the beginning of this section, then every conformal automorphism of M
is a gµM -isometry.

We close our exposition by noting that our remarks following Proposition 4.2
discuss situations where the conformal measure µ of the group G in Theorem 8.4 can
be chosen to be s-conformal for any fixed s > δG.
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