Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 41, 2016, 897-922
The Hong Kong Institute of Education,
Department of Mathematics and Information Technology
10 Lo Ping Road, Tai Po, Hong Kong, P.R. China;
vkpho 'at' ied.edu.hk
Abstract. We extend the mapping properties for the fractional integral operators, the convolution operators, the Fourier integral operators and the oscillatory integral operators to rearrangement-invariant quasi-Banach function spaces. We also generalize the Fourier restriction theorem and the Sobolev embedding theorem to rearrangement-invariant quasi-Banach function spaces. We obtain the above results by introducing two families of rearrangement-invariant quasi-Banach function spaces. Furthermore, these two families of rearrangement-invariant quasi-Banach function spaces also give us some embedding and interpolation results of Triebel-Lizorkin type spaces and Hardy type spaces built on rearrangement-invariant quasi-Banach function spaces.
2010 Mathematics Subject Classification: Primary 42B20, 42B35, 46B70, 46E30, 46E35, 42A96.
Key words: Fourier integral operator, Sobolev embedding, oscillatory integrals, Hausdorff-Young inequalities, restriction theorem, rearrangement-invariant, quasi-Banach function spaces, interpolation of operators, Triebel-Lizorkin spaces, Hardy spaces.
Reference to this article: K.-P. Ho: Fourier integrals and Sobolev embedding on rearrangement invariant quasi-Banach function spaces. Ann. Acad. Sci. Fenn. Math. 41 (2016), 897-922.
doi:10.5186/aasfm.2016.4157
Copyright © 2016 by Academia Scientiarum Fennica