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Abstract. In this paper, we investigate the existence results for Hardy–Hénon type strongly
indefinite elliptic system

(0.1)

{

−∆HNu = (db(x))
α|v|p−1v,

−∆HN v = (db(x))
β |u|q−1u,

in the whole hyperbolic space H
N , where α, β ∈ R, N > 4, db(x) = dHN (b, x), and b is a fixed

point in hyperbolic space. We prove that there exist infinitely many nontrivial radial solutions for

problem (0.1) under some suitable conditions.

1. Introduction and main result

In this article, we study the existence of nontrivial solutions for the following
system with weights

(1.1)

{

−∆HNu = (db(x))
α|v|p−1v,

−∆HN v = (db(x))
β |u|q−1u,

on hyperbolic space H
N , where α, β ∈ R, ∆HN denotes the Laplace–Beltrami oper-

ator on H
N , N > 4, db(x) = dHN (b, x), and b is a fixed point in hyperbolic space.

When posed in Euclidean space R
N , problem (1.1) has two features. First it is

the following problem

(1.2)











−∆u = |v|p−1v, in Ω,

−∆v = |u|q−1u, in Ω,

u = v = 0, on ∂Ω.

By a Pohozaev type identity, we know that the natural restriction on p and q is below
a hyperbola, that is

(1.3)
1

p+ 1
+

1

q + 1
>
N − 2

N
,

see for instance [29]. Notice that the exponent p or q could be larger than N+2
N−2

.

Hence the usual Sobolev space H1
0 (Ω)×H1

0 (Ω) is not suitable to handle the problem.
To study the problem (1.2) under the condition (1.3), a key observation was done by
Hulshof and Van de Vorst [16], De Figueiredo and Felmer [9]. In order to solve this
problem, the main idea is to destroy the symmetry between u and v by demanding
more regularity of u than that of v if p is large and q is small, and vice versa. Thus
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fractional Sobolev spaces are involved. A simple generalization of (1.2) to the case
of systems is the following model

(1.4)

{

−∆u = |v|p−1v, in R
N ,

−∆v = |u|q−1u, in R
N .

Using a blow up technique, Qing [17] and Souto [25] had established the priori es-
timates for the solutions of problem (1.4). In [9], De Figueiredo and Felmer proved
that if 0 < p, q ≤ N+2

N−2
, but not both are equal to N+2

N−2
, then the only non-negative

solution of (1.4) is the trivial one u = 0, v = 0.
Second, it is the following problem

(1.5)











−∆u = |x|α|v|p−1v, in Ω,

−∆v = |x|β|u|q−1u, in Ω,

u = v = 0, on ∂Ω.

If α < 0, β < 0, it is a Hardy type system. If α > 0, β > 0, it is a Hénon type system.
If α > 0, β < 0, it is a Hardy–Hénon type system. We know that the hyperbola for
the restriction of the exponents p and q will be affected by exponents α and β of
weighted functions |x|α and |x|β. Indeed, by Pohozaev type identities, we see that
the natural restrictions on p and q become

1

p+ 1
(1 +

α

N
) +

1

q + 1
(1 +

β

N
) >

N − 2

N
,

with α > −N, β > −N . Such problem was studied in [10][18]. In [10], using a
variational argument, De Figueiredo, Peral and Rossi proved that there exist infinitely
many solutions of (1.5). Notice that if p = q, it is one equation case

(1.6) −∆u = |x|αup in Ω, u = 0, x ∈ ∂Ω,

where Ω is a bounded domain in R
N . This Sobolev exponent is given by the corre-

sponding Caffarelli–Kohn–Nirenberg estimate in [6]. For Hardy equation, critical and
subcritical problems were considered, for instant, in [1, 7, 13]. For Hénon equation
and its properties we refer to [2, 21, 22, 23, 24] and the references therein. Among

them, we must mention the famous paper [20]. It showed that p(α) = 2(N+α)
N−2

is the
critical exponents for the embedding of radially symmetric Sobolev spaces into Lp

spaces. In general domains, one has to restrict that the exponent p + 1 is less than
2N
N−2

.
It is also interest in studying problem (1.1) with respect to different ambient

geometries in particular to see how curvature properties affect the existence and the
nature of solutions. A recent paper by Mancini and Sandeep [19] had studied the
existence / nonexistence and uniqueness of positive solution of the following elliptic
equation

(1.7) −∆HNu = |u|p−1u+ λu

in the subcritical case for every λ < (N−1
2

)2 and in critical exponent case for N(N−1)
4

<

λ ≤ (N−1
2

)2 with N ≥ 4 on hyperbolic space HN . Moreover, they proved that if λ = 0

and 1 < p < N+2
N−2

, then problem (1.7) has a positive solution. This result is contrasted
with the result in Euclidean space due to [12]. Afterward, Bhakta and Sandeep [4]
had investigated the priori estimates, existence/nonexistence of radial sign changing
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solutions of problem (1.7). In [5], the classification of radial solutions of problem
(1.7) was done by Bonforte etc. In [14], He applied the variational methods to study
the following problem

(1.8) −∆HNu = (d(x))α|u|p−1u, u ∈ H1
r (H

N)

in hyperbolic space H
N , and proved that there exists a positive solution of problem

(1.8) provided that p+1 ∈ (2, 2N+2α
N−2

). For a bounded domain case, see [3, 26, 27]. In

the case α = β = 0, He [15] considered the systems of semi-linear elliptic equations

(1.9)

{

−∆HNu = |v|p−1v,

−∆HN v = |u|q−1u,

in the whole hyperbolic space H
N . He established the decay estimates and the

symmetry properties of positive solutions and proved that there is a positive solution
pair (u, v) ∈ H1(HN)×H1(HN) of problem (1.9), moreover a ground state solution is
obtained. Furthermore, He also proved that the above problem has a radial positive
solution.

Our main concern in this paper is to look at the role played by the two weights
when dealing with the existence of solutions. We find the existence of a critical
hyperbola, given by,

N + α

p+ 1
+
N + β

q + 1
= N − 2.

Below this hyperbola we prove that there exist infinitely nontrivial solutions for
problem (1.1).

The difficulties in treating system (1.1) originate in at least three facts. Firstly,
the weight function db(x) depends on the Riemannian distance r from a pole b.
Secondly, due to the type of growth of the nonlinear term, we can not work with
the usual space H1(HN) and then we need inhomogeneous Sobolev space. Thirdly,
although problem (1.1) has a variational structure, the functional associated to it is
strongly indefinite. Below we will show that we can overcome these difficulties by
restricting to the radial situation.

It is well known that if (u, v) ∈ H1(RN)×H1(RN) is a solution of the following
problem

(1.10)

{

−∆HNu = (d(x))α|v|p−1v,

−∆HN v = (d(x))β|u|q−1u,

where d(x) = distHN (0, x), then (ũ(x), ṽ(x) = (u(τ(x)), v(τ(x)) is the solution of
problem(0.1), where τ is the hyperbolic translation such that τ(b) = 0. So, the main
results in this paper are the following theorems under the assumption of b = 0.

We first consider Hardy type systems, namely

(1.11)

{

−∆HNu = 1
(d(x))α

|v|p−1v,

−∆HN v = 1
(d(x))β

|u|q−1u.

We have the following results.

Theorem 1.1. Let 0 ≤ α, β ≤ N, α+ β < 4, p, q > 1 satisfy

1

p+ 1

(

1− α

N

)

+
1

q + 1

(

1− β

N

)

>
N − 2

N
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and

q + 1 <
2(N − β)

N − 4
, p+ 1 <

2(N − α)

N − 4
, if N > 4,

then there exist infinitely many radial solutions and at least one positive radial so-
lution of (1.11).

For Hénon type system

(1.12)

{

−∆HNu = (d(x))α|v|p−1v,

−∆HN v = (d(x))β|u|q−1u,

we obtain

Theorem 1.2. Let 0 ≤ α, β, αN
N+α

+ βN

N+β
< 4, p, q > 1 satisfy

1

p+ 1

(

1 +
α

N

)

+
1

q + 1

(

1 +
β

N

)

>
N − 2

N

and

q + 1 <
2(N + β)

N − 4
, p+ 1 <

2(N + α)

N − 4
, if N > 4,

then problem (1.12) possesses infinitely many radial solutions and at least one positive
radial solution.

For Hardy–Hénon type system

(1.13)

{

−∆HNu = 1
(d(x))α

|v|p−1v,

−∆HN v = (d(x))β|u|q−1u,

the existence results obtained are as follows.

Theorem 1.3. Let 0 ≤ α ≤ N, 0 ≤ β, p, q > 1 satisfy

1

p+ 1

(

1− α

N

)

+
1

q + 1

(

1 +
β

N

)

>
N − 2

N

and

q + 1 <
2(N + β)

N − 4
, p+ 1 <

2(N − α)

N − 4
, if N > 4,

then there are infinitely many radial solutions and at least one positive radial solution
for (1.13).

Theorems 1.1–1.3 are proved by a linking theorem in a version that can by found
in [8]. Due to the fact that u and v belong to different fractional Sobolev spaces so
that the related functional may be well defined. So, we should establish the continuity
and the compactness of the inclusions from fractional Sobolev spaces into Lp

α or Mp
α

spaces.
This paper is organized as follows. In Section 2, we give some basic facts about

hyperbolic space and present some compactness analysis. We obtain the embedding
of fractional Sobolev spaces to weighted Lp spaces and also establish the functional
setting in which the problem will be posed in Section 3. In Section 4 we prove our
main results.
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2. Prelininaries

The hyperbolic N -space H
N , N ≥ 2 is a complete simple connected Riemannian

manifold having constant sectional curvature −1, and for a given dimensional number,
any two such spaces are isometric [30]. There are several models for H

N , the most
important being the half-space model, the ball model, and the hyperboloid or Lorentz
model.

Let BN = {x ∈ R
N : |x| < 1} denote the unit disc in R

N . The space HN endowed
with the Riemannian metric g given by gij = (p(x))2δij is called the ball model of
the hyperbolic space, where p(x) = 2

1−|x|2
. The hyperbolic gradient and the Laplace

Beltrami operator are

∆HN = (
1− |x|2

2
)2∆+ (N − 2)

1− |x|2
2

〈x,∇〉 = (p(x))−N div((p(x))N−2∇)),

∇HNu =
∇u
p(x)2

,

where ∇ and div denote the Euclidean gradient and divergence in R
N , respectively.

Let H1(HN) denote the Sobolev space on H
N with the above metric g, then we have

H1(HN) →֒ Lp(HN) for 2 ≤ p ≤ 2N
N−2

when N ≥ 3, and p ≥ 2 when N = 2. From
the Poincaré inequality

ˆ

HN

|∇HNu|2 dVHN ≥ (N − 1)2

4

ˆ

HN

|u|2 dVHN , ∀u ∈ H1(HN),

we know that
´

HN |∇HNu|2 dVHN is a norm, equivalent to the H1(HN).

The hyperbolic distance dBN (x, y) between x, y ∈ B
N in the Poincaré ball model

is given by the formula

dBN (x, y) = Arc cosh

(

1 +
2|x− y|2

(1− |x|2)(1− |y|2)

)

.

From this we immediately obtain for x ∈ B
N ,

d(x) = dBN (0, x) = ln

(

1 + |x|
1− |x|

)

.

Let (u, v) be a symmetric solution of problem (1.1), and u = u(|ξ|), v =
v(|ξ|), |ξ| < 1, then

(2.1)



























(

1− |ξ|2
2

)2

∆u+ (N − 2)
1− |ξ|2

2
〈ξ,∇u〉+

[

ln(
1 + |ξ|
1− |ξ|)

]α

|v|p−1v = 0,

(

1− |ξ|2
2

)2

∆v + (N − 2)
1− |ξ|2

2
〈ξ,∇v〉+

[

ln(
1 + |ξ|
1− |ξ|)

]β

|u|q−1u = 0.

Setting |ξ| = tanh t
2
, u(t) = u(tanh t

2
), v(t) = v(tanh t

2
), k(t) = (sinh t)N−1, it is

easy to see that
ˆ

HN

(d(x))β|u|q+1 dVHN = wN−1

ˆ ∞

0

tβk(t)|u|q+1 dt,

ˆ

HN

(d(x))α|v|p+1 dVHN = wN−1

ˆ ∞

0

tαk(t)|v|p+1 dt,
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ˆ

HN

|∇HNu|2 dVHN = wN−1

ˆ ∞

0

k(t)|u′|2 dt,
ˆ

HN

|∇HNv|2 dVHN = wN−1

ˆ ∞

0

k(t)|v′|2 dt,

where wN−1 denotes the surface area of SN−1. In addition, we can rewrite (2.1) as

(2.2)











u′′ + N−1
tanh t

u′ + tα|v|p−1v = 0,

v′′ + N−1
tanh t

v′ + tβ|u|q−1u = 0,

u′(0) = v′(0) = 0.

Let H1
r (H

N) denote the subspace

H1
r (H

N) = {u ∈ H1(HN) : u is radial}.

It is well known that the critical exponent p for the inclusion id : H1
r (H

N) →֒ Lp is
p = 2N

N−2
and the embedding id : H1

r (H
N) →֒ Lp is compact for 2 < p < 2N

N−2
.

For 0 ≤ α ≤ p < N , let

Lp
α = {u :

ˆ

HN

|u|p
(d(x))α

dVHN < +∞},

then we have

Lemma 2.1. The embedding H1
r (H

N) →֒ Lp
α(H

N) is continuous if 2 ≤ p ≤
2(N−α)
N−2

, and the embedding is compact if 2 < p <
2(N−α)
N−2

.

Proof. Let u ∈ H1
r (H

N), by [4][14], then we have

|u(x)| ≤ 1
√

ωN−1(N − 2)

(

1− |x|2
2

)
N−2

2 1

|x|N−2
2

‖u‖H1
r (H

N ),

or

|u(x)| ≤ 1
√
ωN−1

(

1− |x|2
2

)
N−1

2 1

|x|N2
‖u‖H1

r (H
N ),

where ωN−1 is the surface area of SN−1.
Now, we claim that

ˆ

HN

|u|p
(d(x))α

dVHN ≤ C‖u‖p
H1

r (H
N )

for p ∈
[

2,
2(N − α)

N − 2

]

.

Indeed, if N − N−2
2
p− α ≥ 0 and N−1

2
p−N + α > −1, we get

ˆ

HN

|u|p
(d(x))α

dVHN ≤ C‖u‖p
H1

r (H
N )

[
ˆ 1

2

0

ln

(

1 + r

1− r

)−α(
1− r2

2

)(N−2
2

p−N)
rN−1−N−2

2
p dr

+

ˆ 1

1
2

log

(

1 + r

1− r

)−α(
1− r2

2

)(N−1
2

p−N)
rN−1−N

2
p dr

]
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≤ C‖u‖p
H1

r (H
N )

[
ˆ 1

2

0

(

1− r2

2

)(N−2
2

p−N+α)
rN−1−N−2

2
p−α dr

+

ˆ 1

1
2

(

1− r2

2

)(N−1
2

p−N+α)
rN−1−N

2
p−α dr

]

≤ C‖u‖p
H1

r (H
N )
.

This shows that the embedding H1
r (H

N) →֒ Lp
α(H

N) is continuous if 2 ≤ p ≤ 2(N−α)
N−2

.

Now, we will show that it is compact. From [4], we know thatH1
r (H

N) →֒ Lq(HN)

is compact for all q ∈ (2, 2N
N−2

). Then we fix q ∈ (2, 2(N−α)
N−2

). By the Hölder inequality

for a ∈ (0, 1), we get
ˆ

HN

|u(x)|p
(d(x))α

dVHN =

ˆ

HN

|u|p−qa

(d(x))α
|u|qa dVHN

≤
(
ˆ

HN

|u|q dVHN

)a [ˆ

HN

(d(x))−α|u|p−qa)
1

1−a dVHN

]1−a

.

Now, we only need to check that

(2.3) p∗ =
p− qa

1− a
<

2(N − α
1−a

)

N − 2
.

It is easy to check that (2.3) holds if and only if

(2.4) p(N − 2) < 2N(1− a) + qa(N − 2)− 2α.

Thus for a fixed p <
2(N−α)
N−2

, (2.4) may easily be achieved by choosing a sufficiently
small. Hence, we have

‖u‖Lp
α(HN ) ≤ ‖u‖

a
p

Lq(HN )
‖u‖

1−a
p

H1
r (H

N )

where a > 0 and is small. It is easy to see that this Lemma holds. �

Let

M
q
β =

{

u :

ˆ

HN

(d(x))β |u|q dVHN < +∞
}

.

Lemma 2.2. The inclusion id : H1
r (H

N) →֒ M
q
β is continuous if 2 ≤ q ≤ 2(N+β)

N−2

and is compact if 2 < q <
2(N+β)
N−2

.

Proof. See [14]. �

3. The existence of radial solutions of (1.1)

Now we define the inhomogeneous Sobolev space on H
N . Let L2

r(H
N) be the

space of L2-functions in H
N which are radially symmetric, and T = −∆HN with the

domain D(T ) = H2
r (H

N) which is the space of radial symmetric functions that are
in L2 and have second derivatives in L2. For 0 ≤ s ≤ 2, the space Es, which is
the domain D(T

s
2 ), is precisely the space obtained by interpolation between H2

r (H
N)

and L2
r(H

N),

[H2
r (H

N), L2
r(H

N)]1− s
2
.
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In this case, the space Es is the usual Sobolev space Hs
r (H

N). So write A =

(−∆HN )
1
2 , we have for all 0 ≤ s ≤ 2,

D(As) = Hs
r (H

N).

Moreover, we have Hs
r →֒ H t

r for s > t (see [28]), and the Sobolev embedding theorem

Hs
r →֒ Lq, if 2 ≤ q <∞, and s =

N

2
− N

q

holds.

Lemma 3.1. If s > 1, then the space Hs
r (H

N) is continuous embedded in

L
2(N−α)
N−2s

α (HN) and M
2(N+β)
N−2s

β .

Proof. If u ∈ Hs
r (H

N) with s > 1, then we have u ∈ H1
r (H

N).
(i) We have

(
ˆ

HN

|u|
2(N−α)
N−2s

(d(x))α
dVHN

)
N−2s

2(N−α)

=

[
ˆ

B 1
2

|u|
2(N−α)
N−2s

(d(x))α

(

2

1− |x|2
)N

dx+

ˆ

B1\{B 1
2
}

|u|
2(N−α)
N−2s

(d(x))α

(

2

1− |x|2
)N

dx

]
N−2s

2(N−α)

≤ C‖u‖Hs
r (H

N ) +

[(
ˆ

B1\{B 1
2
}

|u| 2N
N−2s

(

2

1− |x|2
)N

dx

)
N−α
N

·
(
ˆ

B1\{B 1
2
}

(d(x))−N

(

2

1− |x|2
)N

dx

)]
N−2s

2(N−α)

≤ C‖u‖Hs
r (H

N ) +

[(
ˆ

B1\{B 1
2
}

|u| 2N
N−2s

(

2

1− |x|2
)N

dx)
N−α
N

(
ˆ 1

1
2

r−1 dx

)]
N−2s

2(N−α)

≤ C‖u‖Hs
r (H

N ).

(ii) By [18], we have

(
ˆ

HN

(d(x))β|u|
2(N+β)
N−2s dVHN

)
N−2s

2(N+β)

=

[
ˆ

B 1
2

(d(x))β|u|
2(N+β)
N−2s

(

2

1− |x|2
)N

dx

+

ˆ

B1\{B 1
2
}

(d(x))β|u|
2(N+β)
N−2s

(

2

1− |x|2 )
N dx

]
N−2s

2(N+β)

≤ C‖u‖Hs
r(H

N ) +

[
ˆ 1

1
2

(

ln
1 + r

1− r

)β
2(N+β)
N−2s

(

1− r2

2

)(N−1
2

2(N+β)
N−2s

−N)

· rN−1−N
2

2(N+β)
N−2s dr

]
N−2s

2(N+β)

‖u‖Hs
r (H

N )
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≤ C‖u‖Hs
r(H

N ) +

[
ˆ 1

1
2

(

1− r2

2

)(N−1
2

2(N+β)
N−2s

−N+β
2(N+β)
N−2s )

· rN−1−N
2

2(N+β)
N−2s

−β
2(N+β)
N−2s dr

]
N−2s

2(N+β)

‖u‖Hs
r(H

N )

≤ C‖u‖Hs
r(H

N ). �

Now, we have the following imbedding theorem. The case s = 1 was proved by
[4].

Lemma 3.2. Let s > 0. The restriction to Hs
r (H

N) of the Sobolev imbedding

of Hs(HN) into Lp
α(H

N) is continuous if 2 ≤ p ≤ 2(N−α)
N−2s

, and it is compact if

2 < p <
2(N−α)
N−2s

.

Proof. Case 1. s > 1. By the definition of Hs(HN), we have

Hs
r (H

N) →֒ H1
r (H

N).

So if u ∈ Hs
r (H

N), we have u ∈ Lp
α(H

N), 2 ≤ p ≤ 2(N−α)
N−2

and u ∈ Lq(HN), 2 ≤ q ≤
2N

N−2s
. For 2(N−α)

N−2
< p <

2(N−α)
N−2s

, by Hölder inequality, we have

ˆ

HN

|u|p
(d(x))α

dVHN ≤
(

ˆ

HN

|u|
2(N−α)
N−2

(d(x))α

)b(
ˆ

HN

|u|
p−

2(N−α)
N−2

b

1−b

d(x)α
dVHN

)1−b

,

where 0 < b < 1, 1
p
= θ(N−2)

2(N−α)
+ (1−θ)(N−2s)

2(N−α)
. This shows that the map i : Hs

r (H
N) →

Lp
α(H

N) is continuous for all 2 ≤ p ≤ 2(N−α)
N−2s

.

Now, we will show that the map i : Hs
r (H

N) → Lp
α(H

N) is compact for all 2 < p <
2(N−α)
N−2s

. From [4], we have that H1
r (H

N) →֒ Lp(HN), 2 < p < 2N
N−2

and H1
r (H

N) →֒
Lp
α(H

N), 2 < p <
2(N−α)
N−2

are compact. By the definition of Hs(HN), we also have

Hs
r (H

N) →֒ H1
r (H

N).

Hence,

Hs
r (H

N) →֒ Lp(HN), 2 < p <
2N

N − 2

and

Hs
r (H

N) →֒ Lp
α(H

N), 2 < p <
2(N − α)

N − 2
are compact.

If 2(N−α)
N−2

≤ p <
2(N−α)
N−2s

, we can deduce this lemma by using Sobolev inequalities and

Hölder inequalities. Indeed, for a ∈ (0, 1) and 2 < q <
2(N−α)
N−2

, we get

ˆ

HN

|u|p
(d(x))α

dVHN =

ˆ

HN

|u|p−qa|u|qa
(d(x))α

dVHN

≤
(
ˆ

HN

|u|q
(d(x))α

dVHN

)a( ˆ

HN

|u| p−qa
1−a

(d(x))α
dVHN

)1−a

.
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Now, we only need to check that

(3.1)
q − pa

1− a
≤ 2(N − α)

N − 2s
.

It is easy to check that (3.1) holds if and only if

(3.2) p(N − 2s) ≤ 2(N − α)(1− a) + qa(N − 2s)

holds. Thus for a fixed p <
2(N−α)
N−2s

, (3.2) may easily be achieved by choosing a

sufficiently small.
Case 2. 0 < s < 1. From [28], we have that

[L2(HN), H1(HN)]s = Hs(HN),

and
[L2

r(H
N), H1

r (H
N)]s = Hs

r (H
N).

Now, we claim that

‖u‖Lp
α(HN ) ≤ C‖u‖Hs(HN ) for 2 ≤ p ≤ 2(N − α)

N − 2
.

Indeed, suppose that u ∈ L2
r(H

N) ∩H1
r (H

N), by Hölder inequality
ˆ

HN

|u|p
(d(x))α

dVHN =

ˆ

HN

|u|2γ1+q(1−γ1)

(d(x))α
dVHN

≤
(
ˆ

HN

|u|2 dVHN

)γ1
(
ˆ

HN

|u|q

(d(x))
β

1−γ1

dVHN

)1−γ1

where 2γ1 + q(1− γ1) = p, 0 < γ1 < 1. Hence

(
ˆ

HN

|u|p
(d(x))α

dVHN

)
1
p

≤ ‖u‖
2γ1
p

L2

(
ˆ

HN

|u|q

(d(x))
α

1−γ1

dVHN

)
1
q

q(1−γ1)
p

.

Let θ1 =
2γ1
p

, q(1−γ1)
p

= 1− θ1. Then

(
ˆ

HN

|u|p
(d(x))α

dVHN

)
1
p

≤ ‖u‖θ1
L2

(
ˆ

HN

|u|q

(d(x))
α

1−γ1

dVHN

)

1−θ1
q

,

and 1
p
= θ1

2
+ 1−θ1

q
. Let θ1 = 1 − s. Then q = 2ps

2−p(1−s)
and 1 − γ1 = 1 − p(1−s)

2
. By

Lemma 2.1, we know that the critical exponent of
ˆ

HN

|u|q

(d(x))
α

1−γ1

dVHN =

ˆ

HN

|u|q

(d(x))
α

1−
p(1−s)

2

dVHN

is q∗(s) =
2(N− 2α

2−p(1−s)
)

N−2
. Requiring q ≤ q∗(s), we obtain that

p ≤ 2(N − α)

N − 2s
.

Now, we want to prove that the embedding Hs
r (H

N) →֒ Lp
α(H

N) is compact if

2 < p <
2(N−α)
N−2s

. From Section 2, setting |ξ| = tanh t
2
, u(t) = u(tanh t

2
), k(t) =

(sinh t)N−1, we have
ˆ

HN

1

(d(x))α
|u|p dVHN = wN−1

ˆ ∞

0

t−αk(t)|u|p dt,
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ˆ

HN

|∇HNu|2 dVHN = wN−1

ˆ ∞

0

k(t)|u′|2 dt.

By [15], we get

‖(sinh t)N−1
2 u(t)‖Hs(1,∞) ≤ C‖u‖Hs

r (H
N ).

Thus, we can easily deduce this lemma by ∀p ∈ (2, 2(N−α)
N−2s

),

‖u‖Lp
α(HN ) ≤ C‖u‖Hs(HN ), ∀u ∈ Hs

r (H
N),

‖(sinh t)N−1
2 u(t)‖Lp

α(1,∞) ≤ C‖u‖Hs
r(H

N ).

Indeed, we have
ˆ ∞

R

tα(sinh t)N−1|u(t)|p dt ≤ 1

( e
R+e−R

2
)(N−1)(p

2
−1)

ˆ ∞

R

tα(sinh t)
(N−1)p

2 |u(t)|p dt

≤ 1

( e
R+e−R

2
)(N−1)(p

2
−1)

‖u‖Hs(HN ).

It implies that if R is large enough,

wN−1

ˆ ∞

R

tα(sinh t)N−1|u(t)|p dt ≤ ε, ∀u ∈ Hs
r (H

N). �

Similar as Lemma 3.2, we may verify that

Lemma 3.3. Let s > 0. The restriction to Hs
r (H

N) of the Sobolev imbedding

of Hs(HN) into M
q
β(H

N) is continuous if 2 ≤ q ≤ 2(N+β)
N−2s

, and it is compact if

2 < q <
2(N+β)
N−2s

.

Now, let s, t > 0 with s + t = 2, we define the Hilbert space E = Hs
r (H

N) ×
H t

r(H
N) and the bilinear form B : E × E −→ R is defined by

B[(u, v), (ϕ, ψ)] =

ˆ

HN

AsuAtψ + AsϕAtv,

and the corresponding quadratic form associated with the bilinear form B is

Q(z) =

ˆ

HN

AsuAtv, (u, v) ∈ E.

As in [11], we have E = E− ⊕E+ and B[z+, z−] = 0 for z+ ∈ E+, z− ∈ E−, where

E− = {(u,−A−tAsu) : u ∈ Hs
r (H

N)}, E+ = {(u,A−tAsu) : u ∈ Hs
r (H

N)}.
We also have Q(z) = 1

2
B[z, z] and 1

2
‖z‖2E = Q(z+) − Q(z−), where z = (u, v) ∈ E

and z = z+ + z−, z+ ∈ E+, z− ∈ E−.
Now, we consider the existence of solutions for problem (1.1). We choose s, t > 0,

and s+ t = 2 such that

2 < p+ 1 <
2N

N − 2t
, 2 < q + 1 <

2N

N − 2s
.

By the assumptions in Theorem 1.1, we know that such an s exists.
We consider the functional I : E −→ R, defined by

I(z) =
ˆ

HN

AsuAtv dVHN − 1

p+ 1

ˆ

HN

1

(d(x))α
|v|p+1 dVHN − 1

q + 1

ˆ

HN

1

(d(x))β
|u|q+1 dVHN
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for z = (u, v) ∈ E. I is a C1 functional and

〈I ′(z), η〉E =

ˆ

HN

AsuAtψ + AsϕAtv −
ˆ

HN

1

(d(x))α
|v|p−1vψ −

ˆ

HN

1

(d(x))β
|u|q−1uϕ

for z = (u, v) ∈ E and η = (ϕ, ψ) ∈ E. So the critical points of I satisfy the equations
ˆ

HN

AsuAtψ −
ˆ

HN

1

(d(x))α
|v|p−1vψ = 0 for all ψ ∈ H t

r(H
N),

and
ˆ

HN

AsϕAtv −
ˆ

HN

1

(d(x))α
|u|q−1uϕ = 0 for all ϕ ∈ Hs

r (H
N).

Let φn be the eigenfunction of −∆HN in H1
r (H

N). Let

En = span{φ1, φ2, · · · , φn} × span{φ1, φ2, · · · , φn}.
It is easy to see that

⋃∞
n=1En = E.

As As : Hs
r (H

N) → L2
r(H

N) and At : H t
r(H

N) → L2
r(H

N) are isomorphisms, we

see that {φ̂j}, j = 1, 2, · · · , where φ̂j = A−tAsφj is a complete orthogonal system in
H t

r(H
N).

Now we define the splitting of En. For K ∈ N and for n ≥ K, let

Xn = (E−
1 ⊕ · · · ⊕ E−

n )⊕ (E+
1 ⊕ · · · ⊕E+

k−1) and Yn = (E+
k ⊕ · · · ⊕ E+

n )

where E+
j = span{(φj, φ̂j)} and E−

j = span{(φj,−φ̂j)}. We have En = Xn ⊕ Yn.
We say that the functional I satisfies the so-called (PS)∗ condition with respect to

En, i.e. any sequence {zk}, zk ∈ Enk
with nk → ∞ as k → ∞, satisfying I ′|Enk

(zk) →
0 and I(zk) → c has a subsequence that converges in E.

The result in [8] now can be stated as follows.

Lemma 3.4. Suppose that I ∈ C1(E,R) be an even functional satisfying the
(PS)∗ condition with respect to En. Assume that T : En → En for n large. Let ρ > 0
and σ > 0 be such that σ‖Ty1‖E > ρ. Assume that there are constants α ≤ β such
that

inf
S∩En

I ≥ α, sup
T (∂D∩En)

I < α, and sup
T (D∩En)

I ≤ α

for n large. Then I has a critical value c ∈ [α, β].

Lemma 3.5. The functional I satisfies the (PS)∗ condition with respect to En.

Proof. Let (zk)k≥1 = (uk, vk)k≥1 ⊂ Enk
be a sequence such that

I(zk) → c, I ′|Enk
(zk) → 0.

We need only to show that ‖zn‖ = ‖(un, vn)‖ is bounded uniformly. Indeed, if ‖zn‖
is uniformly bounded, by using Lemma 3.2, we see that un and vn converge strongly
up to a subsequence in Lp+1 and Lq+1 respectively, the conclusion here doesn’t follow
in a standard way but can be proved as in [11]. Taking η = zk, we have

c+ 1 + εk‖zn‖ ≥ I(zk)−
1

2
〈I ′(zk), zk〉

=

(

1

2
− 1

p+ 1

)
ˆ

HN

1

(d(x))α
|vk|p+1 dVHN

+

(

1

2
− 1

q + 1

)
ˆ

HN

1

(d(x))β
|uk|q+1 dVHN .

(3.3)
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Now, we estimate ‖uk‖Hs
r

and ‖vk‖Ht
r
. From (3.3), we have

∣

∣

∣

∣

ˆ

HN

AsϕAtvn

∣

∣

∣

∣

≤ |
ˆ

HN

1

(d(x))β
|uk|q−1ukϕdVHN |+ εk‖ϕ‖Hs

r

≤
(
ˆ

HN

1

(d(x))β
|uk|q+1 dVHN

)
q

q+1
(
ˆ

HN

1

(d(x))β
|ϕ|q+1 dVHN

)
1

q+1

+ εk‖ϕ‖Hs
r

≤
[(
ˆ

HN

1

(d(x))β
|uk|q+1 dVHN

)
q

q+1

+ εn

]

‖ϕ‖Hs
r

for all ϕ ∈ Es
nk

which implies that

‖vn‖Ht
r
≤
(
ˆ

HN

1

(d(x))β
|un|q+1 dVHN

)
q

q+1

+ εn.

Similarly, we prove that

‖un‖Hs
r
≤
(
ˆ

HN

1

(d(x))α
|vn|p+1 dVHN

)
p

p+1

+ εn.

Thus we conclude that

‖un‖Hs
r
+ ‖vn‖Ht

r

≤
(
ˆ

HN

1

(d(x))β
|vn|p+1 dVHN

)
p

p+1

+

(
ˆ

HN

1

(d(x))α
|un|q+1 dVHN

)
q

q+1

+ 2εn.
(3.4)

Using this estimate in (3.3), we get

‖un‖q+1

L
q+1
β

+ ‖vn‖p+1

L
p+1
α

≤ C(‖un‖q
L
q+1
β

+ ‖vn‖p
L
p+1
α

) + C.

Hence, both ‖un‖Lq+1
β

, ‖vn‖Lp+1
α

are bounded, and consequently ‖un‖Hs
r
, ‖vn‖Ht

r
are

also bounded in view of (3.4). �

Proof of Theorem 1.1. Thanks to Lemma 3.5, we know that I satisfies the (PS)∗

condition and hence using the abstract critical point result [8], we obtain that the
functional I has a critical value ck ∈ [αk, βk]. Since αk → ∞, we get infinitely many
critical values of I. Therefore we have infinitely many solution of (1.11). �

Proofs of Theorems 1.2 and 1.3. The proofs of Theorems 1.2 and 1.3 are similar
to that of Theorem 1.1. We only give the main ideas of the proof. We may choose
s + t = 2 under assumptions of Theorem 1.2, so that the inclusions i1 : E

s × Et →
Mp+1

α ×M
q+1
β is compact. Using Lemma 3.5, we may verify (PS)∗ condition. The

rest part are similar to the proof of Theorem 1.1, we omit the details. �
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