A_{1} WEIGHTS ON R, AN ALTERNATIVE APPROACH

Eleftherios N. Nikolidakis
National and Kapodistrian University of Athens, Department of Mathematics
GR-157 84, Athens, Greece; lefteris@math.uoc.gr

Abstract

We will prove that if ϕ belongs to the class $A_{1}(\mathbf{R})$ with constant $c \geq 1$ then the decreasing rearrangement of ϕ, belongs to the same class with constant not more than c. We also find for such ϕ the exact best possible range of those $p>1$ for which $\phi \in L^{p}$, for any such ϕ. In this way we provide alternative proofs of the results that appear in a previous work of Bojarski, Sbordone and Wik.

1. Introduction

The theory of Muckenhoupt weights has been proved to be an important tool in analysis. One of the most important facts concerning these is their self improving property. A way to express this is through the so-called reverse Hölder or more generally reverse Jensen inequalities (see [3], [4] and [9]).

In this paper we are concerned with such weights and more precisely for those ϕ that belong to the class $A_{1}(J)$ where J is an interval on \mathbf{R}. This is defined as follows.

A function $\phi: J \rightarrow \mathbf{R}^{+}$belongs to $A_{1}(J)$ if there exists a constant $c \geq 1$ such that the following condition is satisfied:

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \phi(x) d x \leq c \cdot \operatorname{ess} \inf _{I}(\phi) . \tag{1.1}
\end{equation*}
$$

for every I subinterval of J, where $|\cdot|$ is the Lesbesgue measure on R. Moreover, if the constant c is the least for which (1.1) is satisfied for any $I \subseteq J$ we say that it is the A_{1} constant of ϕ and is denoted by $[\phi]_{1}$. We say then that ϕ belongs to the A_{1} class of J with constant c and we write $\phi \in A_{1}(J, c)$.

It is a known fact that if $\phi \in A_{1}(J, c)$ then there exists $p(c)>1$ such that $\phi \in L^{p}$ for every $p \in[1, p(c))$. Moreover, ϕ satisfies a reverse Hölder inequality for every $p \in[1, p(c))$. That is for any such p there exists $C=C(p, c)>1$ such that

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \phi^{p}(x) d x \leq C\left(\frac{1}{|I|} \int_{I} \phi(x) d x\right)^{p}, \tag{1.2}
\end{equation*}
$$

for every I subinterval of J and every $\phi \in A_{1}(J, c)$.
The problem of the exact determination of the best possible exponent $p(c)$ has been treated in [2]. More precisely it is shown there the following:

Theorem A. If $\phi \in A_{1}((0,1), c)$ and c is greater than 1 , then $\phi \in L^{p}(0,1)$ for any p such that $1 \leq p<\frac{c}{c-1}$. Moreover, the following inequality is true

$$
\begin{equation*}
\frac{1}{|I|} \int_{I} \phi^{p}(x) d x \leq \frac{1}{c^{p-1}(c+p-p c)}\left(\frac{1}{|I|} \int_{I} \phi(x) d x\right)^{p} \tag{1.3}
\end{equation*}
$$

doi:10.5186/aasfm.2015.4053
2010 Mathematics Subject Classification: Primary 42B25.
Key words: A_{1}-Muckenhoupt weights, decreasing rearrangement.
for every I subinterval of $(0,1)$ and for any p in the range $\left[1, \frac{c}{c-1}\right)$. Additionally, the constant that appears on the right of inequality (1.3) is best possible.

As a consequence of the above theorem we have that the best possible range for the L^{p}-integrability of any ϕ with $[\phi]_{1}=c$ is $\left[1, \frac{c}{c-1}\right)$.

The approach for proving the above theorem as is done in [2], is by using the decreasing rearrangement of ϕ which is defined by the following equation

$$
\begin{equation*}
\phi^{*}(t)=\sup _{\substack{e \in(0,1) \\|e| \geq t}}\left[\inf _{x \in e} \phi(x)\right], \tag{1.4}
\end{equation*}
$$

for any $t \in(0,1]$. Then ϕ^{*} is a function equimeasurable to ϕ, non-increasing and left continuous. For a complete study of the notion of the non-increasing rearrangement of a function see [1] or [5].

The immediate step for proving Theorem A, as it appears in [2] is the following:
Theorem B. If $\phi \in A_{1}((0,1), c)$ then $\phi^{*} \in A_{1}\left((0,1), c^{\prime}\right)$ for some c^{\prime} such that $1 \leq c^{\prime} \leq c$.

This is treated in [2] initially for continuous functions ϕ and generalized to arbitrary ϕ by use of a covering lemma. Then applying several techniques the authors in [2] were able to prove Theorem A first for non-increasing functions and second for general ϕ by use of Theorem B.

In this paper we provide alternative proofs of the Theorems A and B. We first prove Theorem B without any use of covering lemmas. Then we provide a proof of Theorem A for non-increasing functions ϕ. Our proof gives in an immediate way the inequality (1.3). At last we prove Theorem A in it's general form by using the above mentioned results.

Additionally, we need to say that related results concerning the dyadic analogue of the above problem can be seen in [8] and [10], while in [6] and [7] related problems for estimates for the range of p in higher dimensions have been treated. At last for further study of Muckenhoupt weights one can see [11].

2. Rearrangements of A_{1} weights on $(0,1)$

We are now ready to state and prove the main theorem in this section.
Theorem 1. Let $\phi:(0,1) \rightarrow \mathbf{R}^{+}$which satisfies condition (1.1) for any subinterval I of $(0,1)$, and for a constant $c \geq 1$. Then ϕ^{*} satisfies this condition with the same constant.

Proof. It is easy to see that in order to prove our result, we need to prove the following inequality:

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u \leq c \phi^{*}(t) \tag{2.1}
\end{equation*}
$$

for any $t \in(0,1]$, due to the fact that ϕ^{*} is left continuous and non-increasing.
For any $\lambda>0$ we consider the set $E_{\lambda}=\{x \in(0,1): \phi(x)>\lambda\}$. Let now $\varepsilon>0$. Then we can find for any such ε an open set $G_{\varepsilon} \subseteq(0,1)$ for which $G_{\varepsilon} \supseteq E_{\lambda}$ and $\left|G_{\varepsilon} \backslash E_{\lambda}\right|<\varepsilon$. Then G_{ε} can be decomposed as follows: $G_{\varepsilon}=\bigcup_{j=1}^{+\infty} I_{j, \varepsilon}$, where $\left(I_{j, \varepsilon}\right)$ is a family of non-overlapping open subintervals of $(0,1)$. If any two of these have a common endpoint we replace them by their union. We apply the above procedure to
the new family of intervals and at last we reach to a family $\left(I_{j, \varepsilon}^{\prime}\right)_{j}$ of non-overlapping open intervals such that, if $G_{\varepsilon}^{\prime}=\bigcup_{j=1}^{+\infty} I_{j, \varepsilon}^{\prime}$ we still have that $G_{\varepsilon} \supseteq E_{\lambda}$ and $\left|G_{\varepsilon} \backslash E_{\lambda}\right|<\varepsilon$.

Additionally, we have that for any j such that $I_{j, \varepsilon}^{\prime} \neq(0,1)$ there exists an endpoint of it such that if we enlarge this interval in the direction of this point, thus producing the interval $I_{j,, \delta, \delta}^{\prime}$, with δ small enough, we have that $\operatorname{ess}_{\inf }^{I_{j, \varepsilon, \delta}^{\prime}}(\phi) \leq \lambda$. This follows by our construction and the definition of E_{λ}. Suppose now that $\left|E_{\lambda}\right|<1$. Thus $I_{j, \varepsilon, \delta}^{\prime} \neq(0,1)$ for any j, ε and δ. On each of these intervals we apply (1.1). So we conclude that

$$
\frac{1}{\left|I_{j, \varepsilon, \delta}^{\prime}\right|} \int_{I_{j, \varepsilon, \delta}^{\prime}} \phi \leq c \cdot \underset{I_{j, \varepsilon, \delta}^{\prime}}{\operatorname{ess} \inf }(\phi) \leq c \lambda,
$$

for every $\varepsilon, \delta>0$ and $j=1,2, \ldots$.
Letting $\delta \rightarrow 0^{+}$we reach to the inequality $\frac{1}{\left|I_{j, \varepsilon}^{\prime}\right|} \int_{I_{j, \varepsilon}^{\prime}} \phi \leq c \lambda$ for any $j=1,2, \ldots$ and every $\varepsilon>0$.

Since $G_{\varepsilon}=\bigcup_{j=1}^{+\infty} I_{j, \varepsilon}^{\prime}$ is disjoint we must have that:

$$
\frac{1}{\left|G_{\varepsilon}\right|} \int_{G_{\varepsilon}} \phi \leq \sup \left\{\frac{1}{\left|I_{j, \varepsilon}^{\prime}\right|} \int_{I_{j, \varepsilon}^{\prime}} \phi: j=1,2, \ldots\right\} \leq c \lambda
$$

for every $\varepsilon>0$ and letting $\varepsilon \rightarrow 0^{+}$we have as a result that

$$
\frac{1}{\left|E_{\lambda}\right|} \int_{E_{\lambda}} \phi \leq c \lambda \leq c \cdot \operatorname{ess} \inf _{\lambda}(\phi) .
$$

By the definition of E_{λ} we have that

$$
\frac{1}{\left|E_{\lambda}\right|} \int_{E_{\lambda}} \phi=\frac{1}{\left|E_{\lambda}\right|} \int_{0}^{\left|E_{\lambda}\right|} \phi^{*}(u) d u
$$

and of course

$$
\underset{E_{\lambda}}{\operatorname{ess} \inf }(\phi)=\underset{\left(0,\left(E_{\lambda}\right)\right]}{\operatorname{ess} \inf }\left(\phi^{*}\right)=\phi^{*}\left(\left|E_{\lambda}\right|\right) .
$$

since ϕ^{*} is left continuous. As a consequence from the above we immediately see that

$$
\frac{1}{\left|E_{\lambda}\right|} \int_{0}^{\left|E_{\lambda}\right|} \phi^{*}(u) d u \leq c \phi^{*}\left(\left|E_{\lambda}\right|\right)
$$

The same inequality holds even in the case where $\left|E_{\lambda}\right|=1$, so $G_{\varepsilon}=(0,1)$. Then by relation (1.1) that holds for the interval $(0,1)$, we conclude (2.1). Thus we have proved that $\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u \leq c \phi^{*}(t)$, for every t of the form $t=\left|E_{\lambda}\right|$ for some $\lambda>0$.

Let now $t \in(0,1]$ and define

$$
\phi^{*}(t)=\lambda_{1}, \quad t_{1}=\min \left\{s \in(0,1]: \phi^{*}(s)=\lambda_{1}\right\} \leq t
$$

Additionally $\left|E_{\lambda_{1}}\right|=t_{1}$. As a result

$$
\begin{aligned}
\frac{1}{t} \int_{0}^{t} \phi^{*}(u) d u & \leq \frac{t_{1}}{t}\left(\frac{1}{\left|E_{\lambda_{1}}\right|} \int_{0}^{\left|E_{\lambda_{1}}\right|} \phi^{*}(u) d u\right)+\frac{t-t_{1}}{t} \lambda_{1} \\
& \leq \frac{t_{1}}{t} c \lambda_{1}+\frac{t-t_{1}}{t} \lambda_{1} \leq c \lambda_{1}=\phi^{*}(t)
\end{aligned}
$$

where in the second inequality we have used the above results. Theorem 1 is now proved.

3. L^{p} integrability for A_{1} weights on $(0,1)$

We now proceed to the
Proof of Theorem A. We will need first a preliminary lemma which in fact can be proved under additional hypothesis by using an integration by parts argument. We prove it below in a more general form by using simple measure theoretic techniques.

Lemma 1. Let $g:(0,1] \rightarrow \mathbf{R}^{+}$be a non-increasing function. Then the following inequality is true for any $p>1$ and every $\delta \in(0,1)$

$$
\begin{equation*}
\int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} d t=-\frac{1}{p-1}\left(\int_{0}^{\delta} g\right)^{p} \frac{1}{\delta^{p-1}}+\frac{p}{p-1} \int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t) d t \tag{3.1}
\end{equation*}
$$

Proof. By using Fubini's theorem it is easy to see that

$$
\begin{equation*}
\int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} d t=\int_{\lambda=0}^{+\infty} p \lambda^{p-1}\left|\left\{t \in(0, \delta]: \frac{1}{t} \int_{0}^{t} g \geq \lambda\right\}\right| d t \tag{3.2}
\end{equation*}
$$

Let now $\frac{1}{\delta} \int_{0}^{\delta} g=f_{\delta} \geq f=\int_{0}^{1} g$.
Then

$$
\frac{1}{t} \int_{0}^{t} g>f_{\delta}, \quad \forall t \in(0, \delta) \quad \text { while } \quad \frac{1}{t} \int_{0}^{t} g \leq f_{\delta}, \quad \forall t \in[\delta, 1] .
$$

Let now λ be such that: $0<\lambda<f_{\delta}$. Then for every $t \in(0, \delta]$ we have that $\frac{1}{t} \int_{0}^{t} g \geq \frac{1}{\delta} \int_{0}^{\delta} g=f_{\delta}>\lambda$. Thus

$$
\left|\left\{t \in(0, \delta]: \frac{1}{t} \int_{0}^{t} g \geq \lambda\right\}\right|=|(0, \delta]|=\delta
$$

Now for every $\lambda \geq f_{\delta}$ there exists unique $a(\lambda) \in(0, \delta]$ such that $\frac{1}{a(\lambda)} \int_{0}^{a(\lambda)} g=\lambda$. It's existence is quaranteeded by the fact that $\lambda>f_{\delta}$, that g is non-increasing and that $g\left(0^{+}\right)=+\infty$ which may without loss of generality be assumed (otherwise we work with the λ 's on the interval $\left.\left(0,\|g\|_{\infty}\right]\right)$.

Then

$$
\left\{t \in(0, \delta]: \frac{1}{t} \int_{0}^{t} g \geq \lambda\right\}=(0, a(\lambda)]
$$

Thus from (3.2) we conclude that

$$
\begin{align*}
\int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} d t & =\int_{\lambda=0}^{f_{\delta}} p \lambda^{p-1} \cdot \delta \cdot d \lambda+\int_{\lambda=f_{\delta}}^{+\infty} p \lambda^{p-1} a(\lambda) d \lambda \tag{3.3}\\
& =\delta\left(f_{\delta}\right)^{p}+\int_{\lambda=f_{\delta}}^{+\infty} p \lambda^{p-1} \frac{1}{\lambda}\left(\int_{0}^{a(\lambda)} g(u) d u\right) d \lambda
\end{align*}
$$

by the definition of $a(\lambda)$.

As a consequence (3.3) becomes

$$
\begin{aligned}
\int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} d t & =\frac{1}{\delta^{p-1}}\left(\int_{0}^{\delta} g\right)^{p}+\int_{\lambda=f_{\delta}}^{+\infty} p \lambda^{p-2}\left(\int_{0}^{a(\lambda)} g(u) d u\right) d \lambda \\
& =\frac{1}{\delta^{p-1}}\left(\int_{0}^{\delta} g\right)^{p}+\int_{\lambda=f_{\delta}}^{+\infty} p \lambda^{p-2}\left(\int_{\substack{\left\{u \in(0, \delta \delta] \\
\frac{1}{u} f_{0} g \geq \lambda\right\}}} g(u) d u\right) d \lambda \\
& =\frac{1}{\delta^{p-1}}\left(\int_{0}^{\delta} g\right)^{p}+\frac{p}{p-1} \int_{0}^{\delta} g(t)\left[\lambda^{p-1}\right]_{\lambda=f_{\delta}}^{\frac{1}{t} f_{0}^{t} g} d t \\
& =\frac{1}{\delta^{p-1}}\left(\int_{0}^{\delta} g\right)^{p}+\frac{p}{p-1}\left[\int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t)-\left(\int_{0}^{\delta} g(t) d t\right) f_{\delta}^{p-1}\right] \\
& =-\frac{1}{p-1} \frac{1}{\delta^{p-1}}\left(\int_{0}^{\delta} g\right)^{p}+\frac{p}{p-1} \int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t) d t,
\end{aligned}
$$

where in the third equality we have used Fubini's theorem and the fact that $\frac{1}{\delta} \int_{0}^{\delta} g=$ f_{δ}. Lemma 1 is now proved.

In the proof of Theorem A we will need the following:
Lemma 2. Let $g:(0,1] \rightarrow \mathbf{R}^{+}$be non-increasing such that

$$
\frac{1}{t} \int_{0}^{t} g(u) d u \leq c g(t), \quad \text { for every } t \in(0,1]
$$

Then for every $\delta \in(0,1]$ we have the following inequality

$$
\frac{1}{\delta} \int_{0}^{\delta} g^{p} \leq \frac{1}{c^{p-1}(c+p-p c)}\left(\frac{1}{\delta} \int_{0}^{\delta} g\right)^{p}
$$

for every p such that $1 \leq p<\frac{p}{p-1}$. Moreover the above inequality is sharp.
Proof. Fix $\delta \in(0,1]$ and $p \in\left[1, \frac{c}{c-1}\right)$. Then by Lemma 1

$$
\begin{align*}
& \int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} d t=-\frac{1}{p-1}\left(\int_{0}^{\delta} g\right)^{p} \frac{1}{\delta^{p-1}}+\frac{p}{p-1} \int_{0}^{\delta}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t) d t \tag{3.4}\\
& \Rightarrow \frac{1}{\delta} \int_{0}^{\delta}\left[\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t)-\frac{p-1}{p}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p}\right] d t \leq \frac{1}{p}\left(\frac{1}{\delta} \int_{0}^{\delta} g\right)^{p}
\end{align*}
$$

We now define the following function h_{y}, of the variable x for any fixed constant $y>0$

$$
h_{h}(x)=x^{p-1} y-\frac{p-1}{p} x^{p}, \text { for } x \in[y, c y] .
$$

Then

$$
h_{y}^{\prime}(x)=(p-1) x^{p-2} y-(p-1) x^{p-1}=(p-1) x^{p-2}(y-x) \leq 0, \quad \forall x \geq y
$$

Thus, h_{y} is decreasing on the interval $[y, c y]$. We conclude that for any x such that $y \leq x \leq c y$ we have $h_{y}(x) \geq h_{y}(c y)$.

Applying the above conclusion in the case where $x=\frac{1}{t} \int_{0}^{t} g, y=g(t)$ (noting that $y \leq x \leq c y$, for any fixed t) we reach to the inequality:

$$
\begin{align*}
\left(\frac{1}{t} \int_{0}^{t} g\right)^{p-1} g(t)-\frac{p-1}{p}\left(\frac{1}{t} \int_{0}^{t} g\right)^{p} & \geq c^{p-1} g^{p}(t)-\frac{p-1}{p} c^{p} g^{p}(t) \tag{3.5}\\
& =c^{p-1}\left[1-\frac{p-1}{p} c\right] g^{p}(t), \quad \forall t \in(0,1]
\end{align*}
$$

Applying (3.5) in (3.4) we have as a result that

$$
\begin{align*}
& c^{p-1}\left[1-\frac{p-1}{p} c\right] \frac{1}{\delta} \int_{0}^{\delta} g^{p}(t) d t \leq \frac{1}{p}\left(\frac{1}{\delta} \int_{0}^{\delta} g\right)^{p} \tag{3.6}\\
& \Rightarrow \frac{1}{\delta} \int_{0}^{\delta} g^{p} \leq \frac{1}{c^{p-1}[p+c-p c]}\left(\frac{1}{\delta} \int_{0}^{\delta} g\right)^{p}
\end{align*}
$$

which is the inequality that is stated above.
Additionally (3.6) is sharp as can be seen by using the function $g(t)=\frac{1}{c} t^{\frac{1}{c}-1}$, $t \in(0,1]$, for $c>1$, and $g=$ const for $c=1$. Lemma 2 is now proved.

We are now ready for the
Proof of Theorem A. Let $I \subseteq(0,1)$ be an interval. We set $\phi_{I}: I \rightarrow \mathbf{R}^{+}$by $\phi_{I}(x)=\phi(x), x \in I$. Then ϕ_{I} satisfies on I the condition (1.1) with constant c. That is $\phi \in A_{1}(I)$ with A_{1}-constant less or equal than c. Then by the results of Section 2 and a dilation argument we conclude that

$$
\phi_{I}^{*}=g_{I}:(0,|I|] \rightarrow \mathbf{R}^{+}
$$

satisfies

$$
\frac{1}{t} \int_{0}^{t} g_{I} \leq c g_{I}(t), \quad \text { for any } t \in(0,|I|]
$$

Then by Lemma 2 and considering the results of this Section we have the inequality:

$$
\begin{equation*}
\frac{1}{t} \int_{0}^{t} g_{I}^{p}(u) d u \leq \frac{1}{c^{p-1}(c+p-p c)}\left(\frac{1}{t} \int_{0}^{t} g_{I}(u) d u\right)^{p} \tag{3.7}
\end{equation*}
$$

for any $t \in(0,|I|]$.
By the fact now that $g_{I}=(\phi / I)^{*}$ and (3.7) we see immediately: (for $t=|I|$) that

$$
\frac{1}{|I|} \int_{I} \phi^{p} \leq \frac{1}{c^{p-1}(c+p-p c)}\left(\frac{1}{|I|} \int_{I} \phi\right)^{p}
$$

At last, we mention that the result is best possible since Lemma 2 is proved to be sharp.

Theorem A is now proved.

References

[1] Bennet, C., and R. Sharpley: Interpolation of operators. - Academic Press, 1988.
[2] Bojarski, B., C. Sbordone, and I. Wik: The Muckenhoupt class $A_{1}(\mathbf{R})$. - Studia Math. 101:2, 1992, 155-163.
[3] Coifman, R., and C. Fefferman: Weighted norm inequalities for maximal functions and singular integrals. - Studia Math. 51, 1974, 241-250.
[4] Gehring, F.: The L^{p}-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 1973, 265-277.
[5] Hardy, G., J. Littlewood, and G. Polya: Inequalities, Cambridge University Press, Cambridge 1934.
[6] Kinnunen, J.: Sharp results on reverse Hölder inequalities. - Ann. Acad. Sci. Fenn. Math. Diss. 95, 1994, 1-34.
[7] Kinnunen, J.: A stability result for Muckenhoupt's weights. - Publ. Mat. 42, 1998, 153-163.
[8] Melas, A.: A sharp L^{p} inequality for dyadic A_{1} weights in \mathbf{R}^{n}. - Bull. London Math. Soc. 37, 2005, 919-926.
[9] Muckenhoupt, B.: Weighted norm inequalities for the Hardy-Littlewood maximal function. - Trans. Amer. Math. Soc. 165, 1972, 207-226.
[10] Nikolidakis, E.: Dyadic A_{1} weights and equimeasurable rearrangements of functions. - J. Geom. Anal. - DOI: 10.1007/s12220-015-9571-0.
[11] Torchinsky, A.: Real variable methods in harmonic analysis. - Academic Press, 1986.

Received 24 March 2015 • Accepted 10 April 2015

