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Abstract. This paper contains an extension of the Julia–Miller–Mocanu lemma for holomor-

phic functions defined on the unit disk D endowed by the hyperbolic metric on D. The extension

is made by following on the one hand the way of the differential subordinations theory and on the

other hand the method of Lagrange multipliers, like in an extension of the Julia–Miller–Mocanu

lemma for holomorphic mappings in C
n.

1. Introduction and preliminaries

The classical Julia lemma continues to enjoy the attention of many mathemati-
cians in problems concerning univalent functions. We begin the discussion by recall-
ing it.

Lemma A. Let |z0| < 1 and r0 = |z0|. Let f(z) =
∑∞

k=n akz
k be continuous

on |z| ≤ r0 and holomorphic on {z : |z| < r0} ∪ {z0} with f(z) 6≡ 0 and n ≥ 1. If

|f(z0)| = max|z|≤r0 |f(z)|, then z0f
′(z0)/f(z0) is real number and z0f

′(z0)/f(z0) ≥ n.

Under the hypothesis of Lemma A, Miller and Mocanu [MM1] concluded that

Re

(

z0f
′′(z0)

f ′(z0)
+ 1

)

≥ m,

where m = z0f
′(z0)/f(z0). Lemma A coupled with the last inequality led to the de-

velopment of the theory of differential subordination (see [MM2] and the monograph
of Miller and Mocanu [MM3, p. 19]). Lemma A is often quoted as Jack’s lemma or
Clunie–Jack’s lemma although this fact was known much before the work of Jack
([Bo, Cl] and [Ja, Lemma 1]). See the article of Boas [Bo] for historical commentary
and the application of Julia’s lemma. We refer to [CV2] for an extension of Julia
and Miller–Mocanu’s results for holomorphic mappings in C

n, see also [CV1, KP] for
more details on this topic. Our aim in this article is to extend the Julia lemma on
the unit disk D := {z ∈ C : |z| < 1} endowed with the hyperbolic metric.
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Recall that the hyperbolic metric on the unit disk D, also called the Poincaré
metric on D, is the Riemannian metric λD(z)|dz|, where λD(z) = 1/(1−|z|2). Often
we work with arc length element

ds = λD(z)|dz|.

Thus, we define the hyperbolic length of a piecewise C1 curve γ in D as
´

γ
ds. In

particular, the distance function induced by the hyperbolic metric on D is

ρ(a, b) = inf

ˆ

γ

ds,

where the infimum is taken over all piecewise C1 curves γ in D joining a and b. It is
to be recalled that the induced distance on D, also called hyperbolic (or Poincaré)
distance on D, is given by

ρ(a, b) = arctanh

∣

∣

∣

∣

b− a

1− ab

∣

∣

∣

∣

, a, b ∈ D

and, in particular,

ρ(0, b) = arctanh |b| =
1

2
log

(

1 + |b|

1− |b|

)

, b ∈ D.

Both the hyperbolic distance and the hyperbolic metric on D are invariant under
conformal automorphisms of D. The geodesics of the hyperbolic metric on D are
circular arcs and line segments which are orthogonal to the unit circle.

Now, the classical Schwarz–Pick lemma can be stated in terms of the hyperbolic
metric rather than the Euclidean metric and its corollary (see [IT, Os]), which will
be used in the sequel.

Lemma B. Every holomorphic mapping f : D → D satisfies |f ∗(z)| ≤ 1 in D,

where f ∗(z) denotes the hyperbolic derivative of f at z given by

(1) f ∗(z) =
1− |z|2

1− |f(z)|2
f ′(z) for all z ∈ D.

For a new version of Schwarz–Pick lemma, we refer to the article of Beardon [Be]
and for an extension of this result for hyperbolic derivatives one can refer to [BC]. A
non-Euclidean version of Lemma B is the following:

Corollary C. Every holomorphic mapping f : D → D satisfies

(2) ρ(f(a), f(b)) ≤ ρ(a, b) for all a, b ∈ D.

In particular, holomorphic self maps of D do not increase the distance in the
hyperbolic metric. Indeed

λD(f(z))|f
′(z)| = λD(z) for z ∈ D,

which follows easily by multiplying (2) by

1

|a− b|
=

∣

∣

∣

∣

1

f(a)− f(b)
.
f(a)− f(b)

a− b

∣

∣

∣

∣

and take the limit as a → b, and then finally set b = z.
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Observe that Pick’s version of the Schwarz lemma, namely the inequality (2),
guarantees that |f ∗(z)| ≤ 1 unless f is a biholomorphic automorphism of the unit
disk D, and this means that we can measure the hyperbolic distance between two
hyperbolic derivatives.

Before we state our main results, we need to fix up some notation. Let D(a, r) =
{z ∈ C : |z − a| < r} denote the Euclidean open disk of radius r centered at a ∈ C.
The closure of D(a, r) will be denoted by D(a, r) and its boundary by ∂D(a, r). The
open disk D(0, r) will denoted by Dr, so that D := D1. For convenience, we use the
notation z = x+ iy and z = (x, y) interchangeably.

As for function spaces, H(G) is the linear space of holomorphic functions de-
fined on the simply connected subset G of C. With the topology of local uniform
convergence on compact subsets of G, the space H(G) becomes a topological space.

2. Main results

The first result is the extension of the Julia lemma on the unit disk endowed
by the hyperbolic metric. Throughout the discussion, f ∗(z0) denotes the hyperbolic
derivative of f at the point z0 defined by (1), and the dot product t · ∇ with t =
(t1, t2) ∈ R

2, is the usual operator notation

t · ∇ = t1
∂

∂x
+ t2

∂

∂y
.

Theorem 1. Let r0 ∈ (0, 1) and z0 ∈ ∂Dr0 . Suppose that the function f : D →
D is holomorphic and f(0) = 0. If

ρ(0, f(z0)) = max
|z|≤r0

ρ(0, f(z)),

then there exists a real number m with |m| ≥ 1 and such that

(3)
z0f

′(z0)

f(z0)
= mf ∗(z0)

|z0| f ′(z0)

|f(z0)|
·
ρ(0, f(z0))

ρ(0, z0)

and

s2B2(z0)

[

1−m

(

ρ(0, f(z0))

ρ(0, z0)

)2
]

≤
1

m
ρ(0, z0)(t · ∇)2ρ(0, z0)− ρ(0, f(z0))(t · ∇)2ρ(0, f(z0)),

(4)

for all s ∈ R \ {0} and t = (s, s) ∈ R
2 \ {(0, 0)}, where

(5) B(z0) = A(z0)
[

Re
(

(1− i)f(z0)f ′(z0)
)]

,

with

(6) A(z) =
1

|f(z)| (1− |f(z)|2)
.

Proof. We apply the method of Lagrange multipliers. Let ǫ > 0 be chosen
to be sufficiently small so that the neighborhood of (x0, y0) lies in D, say Ω =
(x0 − ǫ, x0 + ǫ)× (y0 − ǫ, y0 + ǫ) ⊂ D, and consider the real-valued function F on Ω
defined by

F (x, y) = [ρ(0, f(z))]2 − λ
{

[ρ(0, z)]2 − r2
0

}

,
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where λ ∈ R and z0 = x0 + iy0. For convenience, we let f = u+ iv and introduce

h(x, y) = ρ(0, f(z)) =
1

2
log

(

1 +
√

u2(x, y) + v2(x, y)

1−
√

u2(x, y) + v2(x, y)

)

,(7)

g(x, y) = ρ(0, z) =
1

2
log

(

1 +
√

x2 + y2

1−
√

x2 + y2

)

(8)

so that

F (x, y) = h2(x, y)− λg2(x, y).

By the assumption, z0 is a point of local conditional maximum for the function
[ρ(0, f(z))]2 under the condition [ρ(0, z0)]

2 = r2
0
, and thus, by the first derivative test

for local extremum, we obtain that

Fx(z0) = 0 = Fy(z0)

which is equivalent to Fx(z0) + iFy(z0) = 0, where Fx and Fy represent the partial
derivatives of F with respect to x and y, respectively.

We need to find expression for the terms hx(z0) + ihy(z0) and gx(z0) + igy(z0).
By a direct computation, (7) gives that

(9) hx(z) =
1

1− |f(z)|2
∂

∂x
(|f(z)|) = A(z) (u(z)ux(z) + v(z)vx(z))

and similarly

(10) hy(z) = A(z)(u(z)uy(z) + v(z)vy(z)),

where A(z) is given by (6). If we take in these two equalities u(x, y) = x and
v(x, y) = y, it follows that ux(z) = vy(z) = 1 and uy(z) = vx(z) = 0. These
observations show that

gx(z) =
x

|z|(1− |z|2)
and gy(z) =

y

|z|(1− |z|2)
.

Next, using (9), (10) and the Cauchy–Riemann equations ux(z0) = vy(z0) and
uy(z0) = −vx(z0) (which hold since f = u+ iv is holomorphic), we compute

(11) hx(z0) + ihy(z0) = A(z0)f(z0) (ux(z0)− ivx(z0)) =
f(z0)f ′(z0)

|f(z0)| (1− |f(z0)|2)

by the definition of A(z) and the fact that f ′(z0) = ux(z0) + ivx(z0). Since

Fx(z0) + iFy(z0) = 2h(z0)[hx(z0) + ihy(z0)]− 2λg(z0)[gx(z0) + igy(z0)],

the condition Fx(z0) + iFy(z0) = 0 gives that

(12) h(z0)[hx(z0) + ihy(z0)] = λg(z0)[gx(z0) + igy(z0)]

which is same as

h(z0)

(

f(z0)f ′(z0)

|f(z0)|(1− |f(z0)|2)

)

= λg(z0)

(

z0
|z0|(1− |z0|2)

)

and therefore,
1− |z0|

2

1− |f(z0)|2
= λ

z0
f(z0)

∣

∣

∣

∣

f(z0)

z0

∣

∣

∣

∣

1

f ′(z0)

g(z0)

h(z0)
.
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Using this, we obtain that

(13) f ∗(z0) =
1− |z0|

2

1− |f(z0)|2
· f ′(z0) = λ

z0f
′(z0)

f(z0)
·

|f(z0)|

|z0|f ′(z0)
·
g(z0)

h(z0)
.

If in (13) we take λ = 1/m (clearly λ 6= 0), we get the desired relation (3). Next, we
claim that |m| ≥ 1. From (13), it follows that

h(z0)

g(z0)
|f ∗(z0)| =

∣

∣

∣

∣

1

m

∣

∣

∣

∣

.

But by Schwarz–Pick’s lemma (see Lemma B) and Corollary C, we have that

|f ∗(z0)| ≤ 1 and h(z0) = ρ(0, f(z0)) ≤ ρ(0, z0) = g(z0)

(evidently we use the fact that f(0) = 0). Therefore, we obtain that
∣

∣

∣

∣

1

m

∣

∣

∣

∣

=
h(z0)

g(z0)
· |f ∗(z0)| ≤ 1

which proves that |m| ≥ 1.
Because z0 is a local maximum, the second differential of F at the point z0 is

negative semidefinite. That is, the quadratic form (t · ∇)2F (z0) for all t = (t1, t2) ∈
R

2 \ {0} is negative, where

(t · ∇)2F (z0) =
(

t1 t2
)

(

Fxx(z0) Fxy(z0)
Fyx(z0) Fyy(z0)

)(

t1
t2

)

= t2
1
Fxx(z0) + 2t1t2Fxy(z0) + t2

2
Fyy.

We now set t1 = t2 = s ∈ R \ {0}. Then it is a simple exercise to see that

(t · ∇)2F (z0) = 2s2
[

(

hx(z0) + hy(z0)
)2

−
1

m

(

gx(z0) + gy(z0)
)2

]

+ 2h(z0)(t · ∇)2h(z0)− 2
1

m
g(z0)(t · ∇)2g(z0),

where t = (s, s) ∈ R
2 \ {(0, 0)}. Equation (12) (with λ = 1/m) yields that

gx(z0) + gy(z0)

hx(z0) + hy(z0)
= m ·

h(z0)

g(z0)
= m ·

ρ(0, f(z0))

ρ(0, z0)
.

Moreover, (11) quickly implies that

hx(z0) + hy(z0) = A(z0)
[

Re (f(z0)f ′(z0)) + Im (f(z0)f ′(z0))
]

= A(z0)Re ((1− i)f(z0)f ′(z0)) = B(z0).

Finally, because (t · ∇)2F (z0) ≤ 0, the last two relations give the desired inequality
(4). The proof is complete. �

We now introduce a class of holomorphic functions for which Theorem 1 is appli-
cable. Let Q denote the class of functions q holomorphic and one-to-one on D\E(q),
where E(q) = {ζ ∈ ∂D : q(z) → ∞ as z → ζ}. Note that on q(ζ0) 6= 0 on D\E(q).

Theorem 2. Let p, q ∈ H(D) with p(0) = q(0), where q(kz) ∈ Q. Suppose that

there exist an z0 = x0 + iy0 ∈ D and ζ0 ∈ ∂D\E(q) such that p(z0) = q(kζ0) and
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p(Dr0) ⊂ q(Dk) for some k ∈ (0, 1), where r0 = |z0| and q is locally univalent in Dk.

Then there exists an m ∈ R with |m| ≥ 1 such that

(14)
z0p

′(z0)

|z0| |p′(z0)|2
·
ρ(0, r0)

1− |z0|2
= m ·

ζ0q
′(kζ0)

|q′(kζ0)|2
·
ρ(0, k)

1− k2
,

and

B2(z0)

[

3k2 + k − 1

k
−m

(

ρ(0, k)

ρ(0, r0)

)2
]

≤
ρ(0, r0)

m
H(z0)−

[

∣

∣

∣

∣

p′(z0)

kq′(kζ0)

∣

∣

∣

∣

2

−K(z0)

]

2ρ(0, k)

1− k2
,

(15)

where

B(z0) =
1

1− k2

[

Re
p′(z0)

ζ0q′(kζ0)
+ Im

p′(z0)

ζ0q′(kζ0)

]

,

H(z0) =
1

|z0|(1− |z0|2)

[

(x0 + y0)
2(3|z0|

2 − 1)

|z0|2(1− |z0|2)
+ 2

]

,

K(z0) = Im

[

ζ0
p′′(z0)[q

′(kζ0)]
2 − q′′(kζ0)[p

′(z0)]
2

[q′(kζ0)]
3

]

.

Proof. By the assumption we have that p(Dr0) ⊂ q(Dk). Observe that p(Dr0) is
bounded because p is holomorphic in D. Define f : Dr0 → Ω ⊂ D by

f(z) = q−1(p(z)), z ∈ Dr0 .

Then f ∈ H(Dr0), f(0) = q−1(q(0)) = 0, and |f(z)| ≤ k = |f(z0)| for |z| ≤ r0, where
f(z0) = q−1(p(z0)) = q−1(q(kζ0)) = kζ0 ∈ ∂D. Since p(z) = q(f(z)), we see that
zp′(z) = zq′(f(z)) · f ′(z) and thus, at the point z0, we rewrite

(16) z0p
′(z0) = z0q

′(f(z0))f
′(z0) =

(

z0f
′(z0)

f(z0)

)

kζ0q
′(kζ0) and f ′(z0) =

p′(z0)

q′(kζ0)
.

Observe that ρ(0, f(z0)) = ρ(0, kζ0) = ρ(0, k) and by the last condition one has
|f ′(z0)| = |p′(z0)/q

′(kζ0)|. These observations and (16) imply that the representation
(3) in Theorem 1 is easily seen to be equivalent to (14).

For the proof of (15), we need to find an equivalent expression for the inequality
(4) in Theorem 1. To do this, we need first to calculate

(t · ∇)2h(z) = s2[hxx(z) + 2hxy(z) + hyy(z)]

at z = z0, for t = (s, s) ∈ R
2 \ {(0, 0)} with h(z) = ρ(0, f(z)). By (9), one easily

obtains that

hxx = Ax(uux + vvx) + A(uuxx + vvxx + u2

x + v2x),

hyy = Ay(uuy + vvx) + A(uuyy + vvyy + u2

y + v2y),

hxy = Ay(uux + vvx) + A(uyux + uuxy + vyvx + vvxy),

where f = u+ iv and A is given by (6). Moreover,

Ax =
(3|f |2 − 1)(uux + vvx)

|f |3(1− |f |2)2
and Ay =

(3|f |2 − 1)(uuy + vvy)

|f |3(1− |f |2)2
.
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Using these, a computation gives that

(t · ∇)2h =
s2(3|f |2 − 1)

|f |3(1− |f |2)2
[(uux + vvx)

2 + 2(uux + vvx)(uuy + vvy) + (uuy + vvy)
2]

+ 2s2A[|f ′|2 + uuxy + vvxy].(17)

Since 2(uuxy+vvxy) = u (t ·∇)2u+v (t ·∇)2v = 2Im (f f ′′), the last relation at z = z0
shows that

(t · ∇)2h(z0) = s2
{

(3|f(z0)|
2 − 1)

|f(z0)|
B2(z0) + 2A|f ′(z0)|

2 + 2A(z0)Im
(

f(z0) f ′′(z0)
)

}

,

where

C(z0) = u(z0)(ux(z0) + uy(z0)) + v(z0)(vx(z0) + vy(z0)) = Re
(

(1− i)f(z0)f ′(z0)
)

and B(z0) = A(z0)C(z0) is given by (5) so that

B(z0) =
1

1− k2
Re

(

(1− i)ζ0
p′(z0)

q′(kζ0)

)

=
1

1− k2
Re

(

(1− i)
p′(z0)

ζ0q′(kζ0)

)

,

since |ζ0| = 1.
If we take in the above expression u(x, y) = x and v(x, y) = y, then from (17) we

find after computation that

(t · ∇)2g(z0) =
1

|z0|(1− |z0|2)

[

(x0 + y0)
2(3|z0|

2 − 1)

|z0|2(1− |z0|2)
+ 2

]

s2 = H(z0)s
2.

The second relation (4) in Theorem 1 becomes

s2B2(z0)

[

3|f(z0)|
2 + |f(z0)| − 1

|f(z0)|
−m

(

ρ(0, f(z0)

ρ(0, r0)

)2
]

≤
1

m
ρ(0, r0)(t · ∇)2g(z0)− 2A(z0)s

2

[

|f ′(z0)|
2 − Im

(

f(z0)f
′′(z0)

)]

.

Since p(z) = q(f(z)), we have p′′(z0) = q′′(kζ0)(f
′(z0))

2 + q′(kζ0)f
′′(z0) and thus,

using the second relation in (16) it follows easily that

f ′′(z0) =
p′′(z0)[q

′(kζ0)]
2 − q′′(kζ0)[p

′(z0)]
2

[q′(kζ0)]
3

and the desired conclusion follows by substituting this, f(z0) = kζ0, and using (16)
in the last expression. The proof is complete. �

We need to introduce the following definition.

Definition 1. Let f, g ∈ H(D). We say that the function f is subordinate to
g, written f ≺ g or f(z) ≺ g(z), if there exists a function w holomorphic in D, with
w(0) = 0, ρ(0, w(z)) < arctanh k for some k ∈ (0, 1) and such that f(z) = g(w(z)).

Note that ρ(0, w(z)) < arctanh k is equivalent to |w(z)| < k in D, and thus,
k → 1− gives us the standard definition of subordination. We also note that if g
is univalent, then it is easy to show that f ≺ g if and only if f(0) = g(0) and
f(D) ⊂ g(kD) for some k ∈ (0, 1).
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Corollary 1. Suppose that p, q ∈ H(D) with p(0) = q(0), where q(kz) ∈ Q.

If p is not subordinate to q, then there exist an z0 ∈ D with |z0| = r0, k ∈ (0, 1),
ζ0 ∈ ∂D\E(q), a real number m with |m| ≥ 1 and such that p(Dr0) ⊂ q(Dk),

(18) p(z0) = q(kζ0)

and satisfies the conditions (14) and (15).

Proof. Suppose that p and q are holomorphic in D such that p(z) ⊀ q(z). In
view of Schwarz’s lemma, we obtain that p(D) * q(kD) = q(Dk). Since p and q are
holomorphic in D, we can define

r0 = sup{r : p(Dr) ⊂ q(Dk)}.

The fact that p(D) * q(Dk) implies that there exists an r0 ∈ (0, 1) for which p(Dr0) ⊂

q(Dk) and p(Dr0) * q(Dk). But p(Dr0) ⊂ q(Dk) = ∂q(Dk), and hence, there exists
an z0 ∈ ∂Dr0 such that p(z0) ∈ ∂q(Dk). This provides the existence of ζ0 ∈ ∂D such
that p(z0) = q(kζ0). Now we apply Theorem 2 and obtain the desired conclusions of
the corollary. �

3. Particular case

We consider the case where q(D) is a disk. Let

w = q(z) = M
Mz + a

M + az
,

with M > 0 and |a| < M . Then q(D) = DM , q(0) = a, the function q is holomorphic
and univalent for |z| < M/|a| and, in particular, in the closed unit disk D. Moreover,
an easy computation shows that

z = q−1(w) =
M(w − a)

M2 − aw
, q′(z) =

M(M2 − |a|2)

(M + az)2
and q′′(z) = −

2M(M2 − |a|2)a

(M + az)3
.

If there exist points z0 ∈ D and ζ0 ∈ ∂D such that p(z0) = q(kζ0) for some k ∈ (0, 1)
and ρ(0, p(z)) < M for all z such that |z| < |z0|, then ρ(0, p(z0)) = ρ(0, q(kζ0)) = M.
For convenience, we denote M [p(z0)−a] = a1, M

2−ap(z0) = a2 and M2−|a|2 = a3.
Thus, we have

kζ0 = q−1(p(z0)) =
M [p(z0)− a]

M2 − ap(z0)
and kζ0q

′(kζ0) =
[M2 − ap(z0)][p(z0)− a]

M2 − |a|2
=

a1a2
Ma3

so that

k|q′(kζ0)| =
|a1a2|

Ma3
,

ζ0q
′(kζ0)

|q′(kζ0)|2
=

Mka1a2a3
|a1a2|2

, and q′′(ζ0) = −
2aa3

2

(a3M)2
.

Finally, we compute

ζ0
p′′(z0)[q

′(kζ0)]
2 − q′′(kζ0)[p

′(z0)]
2

[q′(kζ0)]
3

= k
p′′(z0)[kζ0q

′(kζ0)]
2 − k2ζ2

0
q′′(kζ0)[p

′(z0)]
2

[kζ0q′(kζ0)]
3

=
a3Mk

a1a22
[a2p

′′(z0) + 2a(p′(z0))
2].

Using these relations with Theorem 2, we obtain the following result.
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Theorem 3. Let p ∈ H(D), with p(0) = a and let z0 ∈ D such that

ρ(0, p(z0)) = max{ρ(0, p(z)) : |z| ≤ |z0|}.

Suppose that M > 0, |a| < M and k is such that k = |M [p(z0)− a]/[M2 − ap(z0)]|.
Then exists a number m such that |m| ≥ 1 with

(19)
z0p

′(z0)

|z0| |p′(z0)|2
·
ρ(0, r0)

1− |z0|2
= m ·

Mka1a2a3
|a1a2|2

·
ρ(0, k)

1− k2
,

and

B2(z0)

[

3k2 + k − 1

k
−m

(

ρ(0, k)

ρ(0, r0)

)

2
]

≤
ρ(0, r0)

m
H(z0)−

[

|p′(z0)|
2M2a2

3

|a1a2|2
−K(z0)

]

2ρ(0, k)

1− k2
,

where

B(z0) =
Mka3
1− k2

[

Re
p′(z0)

a1a2
+ Im

p′(z0)

a1a2

]

,

H(z0) =
1

|z0|(1− |z0|2)

[

(x0 + y0)
2(3|z0|

2 − 1)

|z0|2(1− |z0|2)
+ 2

]

,

K(z0) = Im

[

a3Mk

a1a22
[a2p

′′(z0) + 2a(p′(z0))
2]

]

.

We remark that if we choose a = 0 and p(D) = D in Theorem 3, then k could
be clearly taken as |p(z0)| and hence, in this choice (19) is same as (3) and hence,
Theorem 3 reduces to Theorem 1.
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