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Abstract. The convex-transitivity property can be seen as a convex generalization of the

almost transitive (or quasi-isotropic) group action of the isometry group of a Banach space on its

unit sphere. We will show that certain Banach algebras, including conformal invariant Douglas

algebras, are weak-star convex-transitive. Geometrically speaking, this means that the investigated

spaces are highly symmetric. Moreover, it turns out that the symmetry property is satisfied by

using only ‘inner’ isometries, i.e. a subgroup consisting of isometries which are homomorphisms on

the algebra. In fact, weighted composition operators arising from function theory on the unit disk

will do. Some interesting examples are provided at the end.

1. Introduction

In this paper we study examples of a Nevanlinna class type function spaces having
a rich isometry group, which, in a sense, comes close to acting transitively on the
unit sphere. To facilitate the discussion, let us recall some basic notions. We denote
the closed unit ball of a Banach space X by BX and the unit sphere of X by SX. A
Banach space X is called transitive if for each x ∈ SX the orbit GX(x)

·
= {T (x) |

T : X → X is an isometric isomorphism} is SX. In other words, the isometry group

acts transitively on the unit sphere. If GX(x) = SX (resp. conv(GX(x)) = BX) for
all x ∈ SX, then X is called almost transitive (resp. convex-transitive). It was first
reported by Pelczynski and Rolewicz in 1962 [33] that the space Lp is almost transitive
for p ∈ [1,∞) and convex-transitive for p = ∞ (see also [36]). These concepts are
motivated by Mazur’s rotation problem appearing in [2, p. 242], which remains open.
We refer to [5] for a survey and discussion on the matter.

By applying categorical methods one can verify the existence of a rich class
of almost transitive Banach spaces (see e.g. the above survey). Here we provide
examples of concrete ω∗-convex-transitive complex Banach algebras modeled on the
unit disk. Specimens of convex-transitive spaces can be found for example in [7, 8,
24, 34, 35, 38, 39].

The pointwise multiplication operator Mψ with symbol ψ in a function space X is
defined by the formula Mψf = ψf for all f ∈ X. For a characterization of isometric
(not necessarily surjective) pointwise multiplication operators on several spaces of
analytic functions in the unit disk D, see [1]. Let ϕ be an analytic function in the unit
disk with ϕ(D) ⊂ D. The composition operator Cϕ with symbol ϕ is given by Cϕf =
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f ◦ϕ. Regarding the problem of determining the isometric composition operators on
spaces of analytic functions, we refer the reader to the works [11, 27, 30, 31, 32], for
instance. Whenever we have an operator of the form T = Mψ ◦ Cϕ, we say that T
is a weighted composition operator. Forelli [18] showed that isometries (surjective or
not) for the Hardy spaces Hp(D), 1 ≤ p < ∞, p 6= 2, are precisely operators of this
form (see [17, Theorem 4.2.8]).

The space H∞(D) is of course well-known and its convex-transitivity appears like
a natural question. On the other hand, its surjective isometries have a very restricted
form, namely, they are weighted composition operators

(1.1) Tf(z) = αf(φ(z)), z ∈ D,

where α is a unimodular complex number and φ is a conformal map from D onto itself
(see [17, Thm. 4.2.2]). Thus it is easy to see that the space H∞(D) is not convex-
transitive. What is required to increase the amount of symmetries of H∞(D) to
make the resulting space convex-transitive is allowing ‘abstract divisions’ by functions
having possibly zeros on the disk. Douglas algebras can be regarded as examples of
such spaces. It is a beautiful result that every closed algebra between H∞(D) and
L∞(∂D) is actually a Douglas algebra. We refer the reader to [22, Ch. IX] and the
references therein for a comprehensive exposition on the topic.

The isometries studied in this paper are ‘ inner ’ in the sense that they arise
naturally from the function theory in the unit disk and they are multiplicative with
respect to the algebraic structure of the spaces. The fact that the isometries are
multiplicative implies that their adjoints retain the maximal ideal space of H∞(D)
invariant as a subset of the dual space.

Some relevant results (for instance, Theorem 2.2 below) arising from the function
theory appears to have been overlooked in the Banach space rotation branch, prob-
ably because of the distance of the fields. One of the aims in this paper is pointing
out some of these existing connections.

2. Preliminaries

As was mentioned before, the open unit disk of the complex plane C will be
denoted by D. Its boundary, the unit circle, is ∂D. When we wish to emphasize the
multiplicative structure of this set, being (additively) the group R/Z, we denote ∂D
by T.

All Banach spaces here are regarded over the complex field. Recall that

GX
·
= {T | T : X → X is an isometric isomorphism}

denotes the isometry group of X. These isometries are often called rotations. We
refer to [8] and [17] for suitable background information. We call an element x ∈ SX a
point of convex-transitivity if conv(GX(x)) = BX (in the literature a term ‘big point’
is also used). If convω

∗

(GX(x)) = BX for each x ∈ SX , then, following [5], we call the
space ω∗-convex-transitive (cf. [3, 4, 6]).

The following elementary fact is applied here frequently.

Lemma 2.1. Suppose that y ∈ conv(GX(x)) and z ∈ conv(GX(y)). Then z ∈
conv(GX(x)). The same conclusion holds analogously for the weak-star closures.

Proof. The first part of the statement follows by applying multiple times the
triangle inequality, or, alternatively, by observing that the set conv(GX(x)) is invariant
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under all rotations T ∈ GX. The latter part of the statement follows in the same
vein. �

We denote by m the Lebesgue measure on the unit circle ∂D. In what follows,
the weak-star topology always refers to the relative topology inherited from the weak-
star topology of L∞ = L∞(∂D, m). As customary in connection with the Douglas
algebras, we will abbreviate C = C(∂D), the complex space of continuous functions
on the unit circle.

2.1. Decomposition of bounded analytic functions. The Hardy space
H∞ = H∞(D) consists of those analytic functions f in the unit disk with

‖f‖∞ = sup
|z|<1

|f(z)| <∞.

It is well-known that given any f ∈ H∞, the radial limit

(2.1) f̃(eiθ) = lim
r→1−

f(reiθ)

exists for a.e. θ ∈ [0, 2π), with f̃ ∈ L∞ = L∞(∂D) and ‖f̃‖L∞(∂D) = ‖f‖∞. Another
important result related to H∞ functions is the following (see [15, Ch. 2]): any
f ∈ H∞ can be written as a product f = BSF , where B is a Blaschke product, this
is, a function of the form

B(z) = λ

∞∏

n=1

|an|

an

an − z

1− anz
,

with λ ∈ ∂D and where {an} is a sequence of points in D (|an|/an ≡ 1 is understood
whenever an = 0) satisfying

∑∞
n=1(1− |an|) < ∞. The set {an} might be finite and

in this case we call the function B a finite Blaschke product.
The factor S in the decomposition is a singular inner function, i.e.

S(z) = exp

{
−

ˆ 2π

0

eiθ + z

eiθ − z
dµ(t)

}
,

where µ is a bounded nondecreasing function on ∂D with µ′(t) = 0 a.e. Finally, F
is an outer function, this is

(2.2) F (z) = exp

{
ˆ 2π

0

eit + z

eiθ − z
log |f̃(eit)|

dt

2π

}
.

Any function of the form BS, where B is a Blaschke product and S is a singular

inner function is called inner function, that is, a function f ∈ H∞ with |f̃ | = 1 a.e.
It was proved by Frostman [19] that every inner function can be uniformly approx-

imated by Blaschke products. Carathéodory [9] showed that any function f ∈ H∞

with norm ‖f‖∞ < 1 can be approximated locally uniformly by finite Blaschke prod-
ucts. The following result can be understood as a generalization of Carathéodory’s
result (see [28]).

Theorem 2.2. (D. Marshall) The norm-closed convex hull of Blaschke products

is BH∞(D).

2.2. The Nevanlinna class. Let

log+(x) =

{
log x, x ≥ 1,

0, 0 ≤ x < 1.
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The Nevanlinna class N , also known as the class of functions of bounded charac-
teristic, is the family of analytic functions f in the unit disk for which the integrals

ˆ 2π

0

log+ |f(reit)|
dt

2π

are bounded for r < 1. Since log+ |f | is subharmonic whenever f is analytic, these
integrals always increase with r.

It was proved by F. and R. Nevanlinna (see [15, Thm. 2.1]) that an analytic func-
tion f belongs to the Nevanlinna class if and only if it is the quotient of two bounded
analytic functions. The importance of this result (as mentioned on [15, p. 17]) is that
it allows properties of funtions in N to be deduced from the corresponding properties
of bounded analytic functions. For instance, every Nevanlinna function has radial

limit f̃(eit) a.e., and log |f̃(eit)| is integrable unless f ≡ 0.
The factorization of functions in the class N is the following [15, Thm. 2.9]: every

function f 6≡ 0 in the class N can be expressed in the form f = B[S1/S2]F , where B is
a Blaschke product, S1 and S2 are singular inner functions, and F is an outer function

for the Nevanlinna class; this is, F has the form (2.2) with log |f̃(eit)| ∈ L1(∂D).
It is not difficult to prove that the Nevanlinna class N contains the Hardy spaces

Hp for every p > 0. Recall thatHp = Hp(D) is defined as the set of analytic functions
f in the unit disk satisfying

sup
0≤r<1

ˆ 2π

0

|f(reit)|p
dt

2π
<∞.

We refer the reader to the book [15] for further information about Hardy spaces (and
the Nevanlinna class).

For f ∈ H∞(D) we let f̃ : ∂D → C be the corresponding boundary map as in
(2.1). Recall that the radial limit is defined a.e. θ ∈ [0, 2π) and that ‖f‖H∞(D) =

‖f̃‖L∞(∂D) . Also note that the operation of taking the radial limit is a multiplicative
homomorphism. We will look at function spaces on the boundary ∂D. Therefore we
will induce different kinds of objects acting on ∂D from the corresponding objects
acting on the disk D via the radial map and its 1-to-1 correspondence in the a.e.
sense. In what follows, the induced objects are distinguished by the symbol ˜ from
the original ones. In this sense we will consider H∞(D) ⊂ L∞(∂D) isometrically as
a Banach subalgebra.

2.3. Uniform algebras. Recall that a unital commutative Banach algebra A
is a uniform algebra if

‖a2‖ = ‖a‖2, a ∈ A.

2.4. Douglas algebras. Let A be a uniformly closed algebra with H∞ ⊂ A ⊂
L∞. For instance, consider any set Q of inner functions in H∞ and take A = [H∞, Q],
the closed algebra generated by H∞ and Q. Note that such algebra A is simply the
norm closure of {

fb1
n1

· · · bk
nk
: f ∈ H∞, b1, . . . , bk ∈ Q

}
⊂ L∞.

Any algebra of the form [H∞, Q], where Q ⊂ {u : u is an inner function in H∞}
is called a Douglas algebra.

The simplest example [H∞, z] coincides with the closed linear space H∞ + C ⊂
L∞, where C denotes the continuous functions on the unit circle. It is known that
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any Douglas algebra that properly contains H∞ must contain H∞ + C as well (see
[37]). Moreover, as it is proved in [12], H∞ + C = [H∞, B] if and only if B is a
finite Blaschke product. Note that if Q = {u : u is an inner function in H∞}, then
[H∞, Q] = L∞.

The main theorem in [29] combined with a result by S. Y. Chang [10] proves
a conjecture of R. Douglas: every uniformly closed algebra A, H∞ ⊂ A ⊂ L∞, is
generated by H∞ itself and by the set {u ∈ A: u is an inner function in H∞}. In
other words, every uniformly closed subalgebra between H∞ and L∞ is a Douglas
algebra.

2.5. Further algebras built from H
∞. Next we will use the above ideas to

gain access to more Nevanlinna class style spaces. Suppose X ⊂ H∞ = H∞(D) is a
subalgebra that contains some inner function. Denote by NX the set

NX :=

{
f̃

g̃
∈ L∞(∂D) : f, g ∈ X, g inner

}
⊂ L∞ = L∞(∂D).

Note that, as was mentioned in the previous section, NH∞ = L∞. Also, that if
f̃1
g̃1
, f̃2
g̃2

∈ NX and c ∈ C, then the operations are defined point-wise a.e. on ∂D as
follows:

c
f̃1
g̃1

:=
cf̃1
g̃1
,

f̃1
g̃1

+
f̃2
g̃2

:=
f̃1g̃2 + f̃2g̃1

g̃1g̃2
,

f̃1
g̃1

·
f̃2
g̃2

:=
f̃1f̃2
g̃1g̃2

∈ NX.

Also,
∥∥∥∥∥
f̃1
g̃1

+
f̃2
g̃2

∥∥∥∥∥
L∞

≤

∥∥∥∥∥
f̃1
g̃1

∥∥∥∥∥
L∞

+

∥∥∥∥∥
f̃2
g̃2

∥∥∥∥∥
L∞

,

∥∥∥∥∥
f̃1
g̃1

·
f̃2
g̃2

∥∥∥∥∥
L∞

≤

∥∥∥∥∥
f̃1
g̃1

∥∥∥∥∥
L∞

∥∥∥∥∥
f̃2
g̃2

∥∥∥∥∥
L∞

.

Consequently, the operations · and + are coordinate-wise bounded bilinear operations
inherited from L∞. Thus NX is a Banach algebra.

3. Some auxiliary results

Let φa be the involutive automorphism of the unit disk D which interchanges the
points a ∈ D and 0 defined by

(3.1) φa(z) =
a− z

1− az
, z ∈ D.

It is an easy consequence of the Schwarz lemma that all automorphisms of D, this
is, Möbius transformations from the unit disk onto itself, have the form λφa for some
|λ| = 1. Note also that any such mapping φa induces a bilipschitz homeomorphism
∂D → ∂D and that composition f 7→ f ◦ φa is a rotation on NX if X is invariant
under compositions from the inside with such automorphisms.

Another relevant rotation on NX is defined by f 7→ ψζf , where ζ ∈ ∂D and

(ψζf)(z) = f(zζ), z ∈ ∂D. Of course, this extends naturally to a rotation on the
whole of L∞(∂D).

3.1. A property of automorphisms of the unit disk. We use, as usual, the
following notation for the average integral operator

ψ → −

ˆ

∂D

ψ(θ)dθ =
1

2π

ˆ 2π

0

ψ(eiθ) dθ,
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where ψ is a measurable function on the unit circle.

Lemma 3.1. Let φa be the automorphism of the unit disk given by (3.1). Sup-

pose that f ∈ H∞ with ‖f‖∞ = 1. Then

(3.2) sup
a∈D

∣∣∣∣−
ˆ

∂D

(f ◦ φa)(θ) dθ

∣∣∣∣ = 1.

Proof. We are to check that

(3.3) sup
a∈D

∣∣∣∣
1

2π

ˆ 2π

0

(f ◦ φa)(e
iθ) dθ

∣∣∣∣ = 1.

For a real positive number 0 < r < 1, we denote by (f ◦ φa)r the dilation function

(f ◦ φa)r(z) = (f ◦ φa)(rz), z ∈ D.

Using the fact that both f and φa are analytic in the unit disk, we get that (f ◦ φa)r
are analytic functions (hence harmonic) in the closed unit disk for each all such values
of r. Therefore, using the mean value property we get

1

2π

ˆ 2π

0

(f ◦ φa)r(e
iθ) dθ = (f ◦ φa)r(0) = f(a),

which gives, by the application of the dominated convergence theorem,

1

2π

ˆ 2π

0

(f ◦ φa)(e
iθ) dθ = f(a).

This readily implies (3.3) (and then (3.2) as well) since

1 = ‖f‖∞ = sup
a∈D

|f(a)|. �

3.2. Abstract harmonic analysis tool.

Proposition 3.2. Suppose that f ∈ L∞(T) with ‖f‖L∞ = 1. Assume also that
−
´

T
f = s where 0 ≤ s ≤ 1. Then

s1T ∈ convω
∗

(ψζf : ζ ∈ T) ⊂ L∞(T)

where ψζ(f)(z) = f(zζ), ζ, z ∈ T.

The above statement is rather easy to see for exponents 1 ≤ p <∞ but the case
p = ∞, treated below, is more complicated. We do not know if the statement holds
for norm topology in place of the weak-star topology. We note that if it does hold,
then our main result (Theorem 4.1 below) in the case of A = L∞ can be improved to
the full convex-transitive case. Also, if this improvement is possible, the next natural
question is whether a similar conclusion holds for a general compact group (or an
amenable locally compact group in the weak-star setting) with the Haar measure.

Proof. Fix f and s as above and assume to the contrary that

s1T /∈ convω
∗

(ψζf : ζ ∈ T) ⊂ L∞(T).

Then there exists by the Hahn–Banach theorem a functional F ∈ L∞(T)∗, ‖F‖ = 1,
such that

supF (convω
∗

(ψζf : ζ ∈ T)) < F (s1T).

Moreover, we may pick F to be weak-star continuous above by using the Hahn–
Banach separation on locally convex spaces (see e.g. [16, Thm. 4.25]), in this case for
the weak-star topology.



Convex-transitive Douglas algebras 929

Denote by Gn, where n is a positive integer, the finite cyclic subgroup of T

generated by ei
2π
2n (in T). Define linear operators Tn : L

∞(T) → L∞(T) by

(Tnf)(z) =
1

#Gn

∑

g∈Gn

f(gz).

Clearly Tn(1T) = 1T and ‖T‖ = 1. The adjoint operators T ∗
n : L

∞(T)∗ → L∞(T)∗

are given by
(T ∗

nx
∗)[x] = x∗(Tnx), x ∈ L∞(T), x∗ ∈ L∞(T)∗.

By the Banach–Alaoglu theorem, BL∞(T)∗ is weak-star compact. Thus the se-
quence T ∗

nF has a weak-star cluster point, say F0. This, of course, need not be
unique, a priori. Note that F0(1T) = F (1T) by the construction.

As an element of the dual of L∞(T) the element F0 can be seen as a finitely
additive signed measure Σ → C with finite variation, ‖F0‖, see e.g. [14, IV.8.16].

However, note that F0 has the property that for all n ≥ 1,

F0x = F0Tnx.

Thus, by using the finite additivity of the measure we get that for any dyadic de-
composition of the form

2n−1⋃

k=0

Dk,n = T, where Dk,n =
[
eik

2π
2n , ei(k+1) 2π

2n

)
, k = 0, . . . 2n − 1,

we have F0(1Di,n
·) = F0(1Dj,n

·) for any 0 ≤ i, j ≤ 2n − 1. In particular, ‖F0(1Di,n
·)‖

depends only on n.
By applying an outer measure approximation of measurable sets we see that

m(M)

2π
‖F0‖ = ‖F0(1M ·)‖

for general measurable sets M ⊂ T. Indeed, for each such set M and any ε > 0,
there is a positive integer n and there are finitely many n-th level dyadic intervals
Di,n as above such that

m(M ∆
⋃

i

Di,n) < ε,

where ∆ denotes the symmetric difference between sets, that is, A∆B = (A \ B) ∪
(B \ A).

On the other hand, it follows from the weak-star continuity of F that

lim sup
m(E)→0

‖F (1E·)‖ = 0

(F ∈ L1(T)) and since the above limit is uniform and

‖T ∗
nF (1E·)‖ ≤ sup

m(E′)=m(E)

‖F (1E′·)‖,

we obtain
lim sup
m(E)→0

‖F0(1E ·)‖ = 0.

Clearly F0 is an absolutely continuous σ-additive signed measure Σ → C. Thus
we may regard F0 ∈ L1(T) via the Radon–Nikodym derivative.

By a standard argument employing Lusin’s theorem, we can see that ‖f −
ψζ(f)‖1 → 0 as T ∋ ζ → 1. Since T ∗

nF0 = F0 for n ≥ 1 we obtain that F0 = ψζF0
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for every ζ ∈ T (up to a modification in a null set). That is, F0 = c1T ∈ L1(T) can
be regarded as a constant function.

The constant is given by c = F (1T), so that F0 is in fact unique and T ∗
nF

ω∗

−→ F0.
Observe that

sup
|z|=1

F (ψzf) ≥ F0(f) = c−

ˆ

T

f = cs

and
F (1T) = (T ∗

nF )(1T) → F0(1T) = cs.

Thus
sup
|ζ|=1

F (ψζf) ≥ F (1T) = cs,

contradicting the counter assumption. This concludes the argument. �

4. Main results

Theorem 4.1. Let A be a Douglas algebra, H∞ ⊂ A ⊂ L∞, which is invariant

under compositions from the inside with automorphisms of the unit disk. Then the

following conditions are equivalent:

(1) The Douglas algebra is not minimal, i.e. A 6= H∞,

(2) A is ω∗-convex-transitive,

(3) A is ω∗-convex-transitive with respect to the subgroup of weighted composi-

tion operators of the type f̃ 7→ ψ̃(̃f ◦ φ) where ψ̃ ∈ A is a.e. unimodular and

φ is an automorphism of D.

Remarks. It is known that L∞ is convex-transitive as a Banach space. The
point here is that the ω∗-convex-transitivity holds even if we restrict to a much
smaller isometry group, which, in addition to being multiplicative, splits to very
particular type of isometries motivated by function theory. Recall that we denote by
ω∗ the locally convex topology σ(A, L1) which is the weak-star topology in the case
that A = L∞.

Proof. The rotations of H∞ are of the type (1.1), which clearly map the constant
functions to constant functions. It is easy to see that the subspace of constant
functions in L∞ is a 1-dimensional ω∗-closed subspace. Thus H∞ is not ω∗-convex-
transitive.

The rest of the argument we will study Douglas algebras A ) H∞. As it was
mentioned before, in such a case A contains C, the continuous functions on ∂D, as
a subspace. To prove the statement it suffices to show the ω∗-convex-transitivity of
A with respect to the special isometry subgroup, which is denoted by GA, in what
follows.

We will achieve this in two main steps. First, we will show that for any x ∈ SA

the unit function 1∂D is contained in convω
∗

(GA(x)). Second, we check that for
any y ∈ SA we have that y ∈ convω

∗

(GA(1∂D)). Then a standard argument (see
Lemma 2.1) yields that y ∈ convω

∗

(GA(x)) for any x ∈ SA and the ω∗-convex-
transitivity of the space follows.

First step. Let x ∈ SA. We will show that 1∂D ∈ convω
∗

(GA(x)). Let ε > 0. Then

by the construction of the Douglas algebra there is x0 =
f̃

g̃
with f, g ∈ H∞ and g inner,

such that ‖x−x0‖ < ε. Thus, it actually suffices to show that 1∂D ∈ convω
∗

(GA(x0)).
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It is easy to see that the multiplication of functions in A by inner functions g̃
such that g̃ ∈ A induces a rotation on A. Therefore we may write y = T (x0), T ∈ GA,
such that y is the boundary value of an analytic function f ∈ SH∞(D).

According to Lemma 3.1 we have that

sup
a∈D

∣∣∣∣−
ˆ

∂D

f ◦ φa(θ) dθ

∣∣∣∣ = 1

and therefore we obtain sequences an ∈ D and cn ∈ ∂D such that

lim
n→∞

cn−

ˆ

∂D

f ◦ φan(θ) dθ = 1.

Recall that according to the assumptions the composition of functions in A from
the inside by Möbius transformations φ of the unit disk onto itself induces rotations
on A. Indeed, if f, g ∈ H∞(D), then the essential supremum of the modulus of

boundary values f̃◦φ

g̃◦φ
coincides with that of f̃

g̃
, since φ induces a bilipschitz transform

of the boundary onto itself. We conclude that

supS{Tx : T ∈ GA} = 1,

where S : A → R is the average integral operator.
Thus, Proposition 3.2 yields

1∂D ∈ convω
∗

(Rx : R ∈ GA),

where we use rotations of the disk composed both from the inside and outside.

Second step. We first treat the case H∞ ( A ⊆ L∞, case a), and then give a
superfluous argument for the case with A = L∞, case b).

Case a). Note that if v ∈ C is unimodular, then v ∈ C is unimodular as well.
Moreover, multiplication from the outside by v induces a rotation on A. It is known
that the norm closed convex hull of unimodular functions of C is BC. This can be
verified for example by using the Russo–Dye theorem.

Next we show that BC
ω∗

= BL∞(∂D). Indeed, by a standard mollification ar-
gument any z ∈ L∞(∂D) can approximated in the L1-sense by a sequence (zn) of
continuous functions with ‖zn‖∞ ≤ ‖z‖∞. In particular zn → z in measure and we
see easily that

ˆ

∂D

h(zn − z) → 0

as n → ∞ for any h ∈ L1(∂D). Thus zn
ω∗

−→ z and hence BC
ω∗

= BL∞. It follows
that BA = convω

∗

(GA(1)).

Case b) (A = L∞). Fix f̃

g̃
∈ SA, where g is inner. Let us denote by I1 and I2 the

radial parts of some given inner functions. Note that multiplication with functions
of the form y 7→ I1

I2
y defines a rotation on A. The fact that this operator is linear

is clear, it is isometric by virtue of the properties of inner functions and invertibility
follows by noting that I2

I1
defines also a linear isometry. First note that

(4.1)
f̃

g̃
∈ GA(f̃).
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By applying Theorem 2.2 we obtain that

f̃ ∈ conv(B̃ : B Blaschke product),

which reads

f̃ ∈ conv(GA(1∂D)),

since in the case of the maximal Douglas algebra the multiplications from the outside
by Blaschke products induce rotations. Thus, by (2.1) we conclude that

f̃

g̃
∈ conv(GA(1∂D)).

By combining the two steps the principle in Lemma 2.1 yields that A is ω∗-
convex-transitive with respect to the special subgroup of rotations. �

Note that both the smallest Douglas algebra that properly contains H∞, this
is H∞ + C, and the maximal one, L∞, are invariant under compositions from the
inside with surjective Möbius transformations of the disk. Not every Douglas algebra
satisfies this condition (see [21, Cor. 6]). However, in the next examples we show
two Douglas algebras A1 and A2 satisfying the hypotheses in Theorem 4.1 and with
H∞ + C  Ai  L∞, i = 1, 2.

Example 4.2. An analytic function f ∈ H∞ with ‖f‖∞ = 1 is said to have
angular derivative at ζ ∈ ∂D if there exists a point ω ∈ ∂D such that (f(z)−ω)/(z−ζ)
has finite non-tangential limit as z → ζ (see [13, p. 50]). Note that if f is analytic
at z = ζ and |f(ζ)| = 1, then f has angular derivative at ζ . By using the Julia–
Carathéodory theorem [13, p. 51], it is easy to check that f has angular derivative
at every point on ∂D if and only if for every automorphism φ of the unit disk the
function f ◦ φ also has angular derivative on ∂D.

Consider

Q1 = {b : b is a Blaschke product with angular derivative at every point on ∂D}

and let A1 = [H∞, Q1]. Since both H∞ and Q1 are invariant under composition with
surjective Möbius transformations from the inside, so is A1.

Theorem 11 and Example 1 in [21] directly prove that A1  L∞. Now, define
the sequence {an} of points in the unit disk by

an =
1

n2 + 1
+

n2e
i
n

n2 + 1
, n = 1, 2, . . .

and consider the corresponding (infinite) Blaschke product b1 as in (2) with zeros
{an}.

Since ζ = 1 is the only set of accumulation points of {an}, by [22, Ch. II, Thm. 6.1]
we have that b1 extends to be analytic on the complement of

{1} ∩ {1/an : n = 1, 2, . . .}.

Hence, b1 has angular derivative at ζ for all ζ 6= 1. To prove that b1 has angular
derivative at ζ = 1 as well, we use Frostman’s theorem [20] which says that a Blaschke
product with zeros {an} has angular derivative at ζ = 1 if and only if

(4.2)
∞∑

n=0

1− |an|
2

|1− an|2
<∞.
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A straightforward calculation shows that 1−|an|2

|1−an|2
= 1/n2. This proves that b1 ∈ Q1,

hence [H∞, b1] ⊂ A1. Since H∞ + C = [H∞, b] if and only if b is a finite Blaschke
product (see [12]) we conclude that H∞ + C  A1.

Example 4.3. For z, w ∈ D, we let

ρ(z, w) =

∣∣∣∣
z − w

1− wz

∣∣∣∣

be the pseudo-hyperbolic distance of z and w. It is easy to check that for any au-
tomorphism φ of the disk the following equality holds for any pair of points z, w in
D:

ρ(φ(z), φ(w)) = ρ(z, w).

A infinite Blaschke product of the form (2) is called an interpolating Blaschke

product if its zero set {an}
∞
n=1 satisfies

inf
n

∏

n 6=m

ρ(an, am) = δ > 0.

In the case when

lim
n→∞

∏

n 6=m

ρ(an, am) = 1,

we say that the Blaschke product is thin (or sparse). Note that B is a thin Blaschke
product if and only if B ◦ φ is a thin Blaschke product for any surjective Möbius
transformation φ of the disk.

Define Q2 = {b : b is a thin Blaschke product} and consider A2 = [H∞, Q2].
Again, both H∞ and Q2 are invariant under compositions with surjective Möbius
transformations from the inside, hence, so is A2. This algebra A2 was analyzed in
[25] where the author proves the equality A2 = H∞+E, E being the smallest (closed)
C∗ subalgebra of L∞ containing Q2; that is E = [Q2, Q2]. Note that this directly
proves that H∞ + C  A2, however, we can give another proof of this latter fact as
follows.

Consider the Blaschke product b2 with zeros at the points an = 1 − 1/22
n

, n =
1, 2, . . .. Since

lim
n→∞

1− |an+1|

1− |an|
= 0,

we get that b2 is a thin Blaschke product (see the comment after Proposition 1.1 in
[23]) and therefore, [H∞, b2] ⊂ A2.

On the other hand, the series in (4.2) for our choice of {an} diverges. Thus, b2 is
an (infinite thin) Blaschke product which does not have angular derivative at ζ = 1.

Bearing in ming that b2 is an infinite Blaschke product, we can argue as in the
previous example to get that H∞ + C  A2.

It was proved in [25] that any Blaschke product b with b ∈ A2 must be a finite
product of thin Blaschke products. Not every Blaschke product has this property so
that A2  L∞.

Theorem 4.4. Let Y ⊂ H∞(D) be a subspace which is preserved as a set when

composing the functions with surjective Möbius transformation of the disk from the
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inside. Let A ⊂ L∞(∂D) be the sub-C∗-algebra generated by Y . Then A is ω∗-

convex-transitive with respect to the group of weighted composition operators of the

form

f̃ 7→ ũ(̃f ◦ φ)

where ũ ∈ A is a.e. unimodular and φ is a Möbius transformation of the unit disk

onto itself.

Proof. The argument is an adaptation of the proof of Theorem 4.1.
It is clear that the a.e. unimodular functions of A are exactly all the unitary

elements. By the C∗-structure of the space this set is invariant under complex conju-
gation. Therefore multiplication from the right with a unimodular function induces
a surjective linear isometry on A. Then the Russo–Dye theorem implies that the
closed convex hull of these points is the closed unit ball of A. We will use this fact
analogously as in the application of Theorem 2.2.

The rest of the argument runs similarly as in the proof of Theorem 4.1. �

Observe that if Y contains the identity mapping z 7→ z, then the Stone–Weierstrass
theorem yields that A then already contains the space of continuous functions C. This
means that there are typically quite many unimodular functions.

Remark 4.5. Let Y ⊂ H∞(D) be a closed unital subalgebra generated by a
set of inner functions and conformally invariant. Then NY is a uniform algebra ω∗-
convex-transitive with respect to the group of weighted composition operators of the
form

f̃ 7→ ψ̃(̃f ◦ φ)

where |ψ̃| = 1 a.e. and φ is an automorphism of the unit disk.
The argument is similar as above, applying the fact that the closed convex hull

of {ab : a, b ∈ Y inner} is the closed unit ball of NY, see [28] or [22, p. 195].

For example, if Y above coincides with the subalgebra generated by finite Blaschke
products, then NY = C. The convex-transitivity of this complex space is known, al-
beit not with respect to such an isometry subgroup.

Example 4.6. Let Y ⊂ H∞ be the subset consisting of elements y ∈ H∞ such
that y extends continuously to m-almost every θ ∈ ∂D (using the radial limits). This
set clearly includes the disk algebra and it also contains many Blaschke products
(interpolating or not) and singular inner functions. It is easy to verify that Y is a
Banach algebra. Let Z be any conformally invariant Banach algebra generated by
{I, I : I ∈ I} where I is a collection of inner functions of Y containing {1, z}. Then
Z is convex-transitive (in the norm topology) with respect to the isometry group
of weighted composition operators, similarly as above. By virtue of the regularity
property of the space it follows easily that 1∂D ∈ conv(GZ(x)) for any x ∈ SZ. On
the other hand, by the previous remark we get y ∈ conv(GZ(1∂D)) for any y ∈ SZ.

Note that Z consists of functions extending continuously to the boundary almost
everywhere. Therefore H∞ 6⊂ Z. We suspect that if I is the collection of all inner
functions of Y , then the corresponding Z coincides with NY (so that NY would be
convex-transitive).
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5. Discussion

After Proposition 3.2 we raised the question whether it suffices to take the norm
closure of the convex hull in the statement. We feel this question is rather intriguing.
Recall that in the proof of this proposition we were able to pick a weak-star continuous
functional F in the Hahn–Banach separation by virtue of the weak-star closure. We
now show how the argument applied fails if weak-star continuity is not imposed.

Example 5.1. There exists F ∈ (L∞(T))∗, ‖F‖ = 1, F /∈ L1(T), (in particular,
F 6= 1T) such that

F (f) = F (ψζf) for all ζ = ei
2π
n , f ∈ L∞(T), n ∈ N.

Indeed, let I be the collection of all measurable subsets I ⊂ T having strictly
positive Lebesgue measure. Let Gn ⊂ T, n ≥ 1, be finite subgroups generated by
{ei

2π
k : 1 ≤ k ≤ n}.
For each k ∈ N let Ik ∈ I be a Gk-invariant set with measure 0 < m(Ik) ≤ 2−k.

For each n ∈ N let

Jn =

∞⋃

k=n

Ik.

Note that the Jn sets are Gn-invariant and have measure 0 < m(Jn) ≤ 2−n+1.
Let U be a free ultrafilter over N and put

F (f) := lim
n,U

−

ˆ

Jn

f, f ∈ L∞(T),

(limit with respect to ultrafilter, see e.g. [26]). It is easy to see that this defines an
element F ∈ (L∞(T))∗ with the required properties.
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