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Abstract. The analogue of Fermat’s last theorem for function fields has been investigated
by many scholars recently, and Gundersen–Hayman [6] collected the best lower estimates that are
known for FC(n), where FC(n) is the smallest positive integer k such that the equation

fn
1
+ fn

2
+ . . .+ fn

k = 1

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in C, and C is the ring of mero-
morphic functions M , rational functions R, entire functions E or polynomials P , respectively. In
this paper, we investigate a difference analogue of this problem for the rings of M,R,E, P with
certain conditions, and obtain lower bounds for GC , where GC(n) is the smallest positive integer k
such that the equation

f1(z)f1(z + c) · · · f1(z + (n− 1)c) + . . .+ fk(z)fk(z + c) · · · fk(z + (n− 1)c) = 1

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in C.

1. Introduction

According to the famous Fermat’s last theorem, which was proved by Wiles [21]
and by Taylor–Wiles [19], there do not exist nonzero rational numbers x, y, and an
integer n, where n ≥ 3, such that

xn + yn = 1.

There are natural analogues of Fermat’s last theorem in complex function theory.
For example, let M , R, E and P denote the rings of meromorphic functions, rational
functions, entire functions and polynomials, respectively. Thus if C is equal to M ,
R, E or P , and n is an integer satisfying n ≥ 2, then FC(n) denotes the smallest
positive integer k such that the equation

(1.1) fn
1 + fn

2 + · · ·+ fn
k = 1

has a solution consisting of k nonconstant functions f1, f2, . . . , fk in C. Hence, the
smallest k depends on n.

Many scholars have investigated this and related problems, for details please see
[3, 4, 12, 14, 15, 18, 20, 23, 25] etc. Gundersen–Hayman [6] collected the best lower
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estimates that are known for every n as follows:

FP (n) > 1/2 +
√

n+ 1/4; FR(n) >
√
n+ 1;

FM(n) ≥
√
n + 1; FE(n) ≥ 1/2 +

√
n+ 1/4.

A natural difference analogue of the Taylor series expansion is the factorial series
[17, p. 272], which suggests to consider the difference monomial x(x−1) · · · (x−n+1)
as a discrete analogue of xn. Similar correspondence occurs frequently in the theory
of difference equations as well, and can be seen for example by comparing the Riccati
equation and its difference analogue.

The purpose of this paper is to formulate and study a difference analogue of
Fermat’s last theorem for function fields M,R,E, P . We will consider the difference
equation

(1.2) f1f 1 · · · f
[n−1]

1 + f2f2 · · ·f
[n−1]

2 + · · ·+ fkfk · · · f
[n−1]

k = 1,

where f
[i]

stands for f(z + ic), c is a nonzero constant and i is a positive integer,
and denote by GC the smallest positive integer k such that the equation (1.2) has a
solution consisting of k nonconstant functions f1, . . . , fk in C.

We need the following definition and notations in order to state our results.

Definition 1.1. [24] Let f and g be meromorphic functions and a be a complex
number. Let zn (n = 1, 2, . . .) be zeros of f − a. If zn (n = 1, 2, . . .) are also zeros of
g − a (ignoring multiplicity), we denote

f = a⇒ g = a or g = a⇐ f = a.

Let ν(n) be the multiplicity of the zero zn. If zn (n = 1, 2, . . .) are also ν(n) (n =
1, 2, . . .) multiple zeros of g − a at least, we write

f = a→ g = a or g = a← f = a.

If f = a ⇋ g = a, it is said that f and g share a CM; If f = a ⇔ g = a, it is said
that f and g share a IM; If f = a→ f = a except for at most finitely many a-points
of f , it is said that a is an exceptional paired value of f with the separation c (as
defined in [8]).

Let M̃ be the collection of all nonconstant meromorphic functions of hyper-order

< 1 such that any finite collection {f1, . . . , fk} ⊂ M̃ satisfies the following properties

(i) fi and 1/fj (i, j = 1, . . . , k, i 6= j) have no common zeros;

(ii) fi =∞⇋ f i =∞ for all i = 1, . . . , k;
(iii) 0 is an exceptional paired value of fi for all i = 1, . . . , k.

In the case of meromorphic functions, compared to the lower bound of FM , we
obtain a corresponding result about GM̃ .

Theorem 1.2. Let n (≥ 2) be an integer. Then

GM̃(n) ≥
√
n + 1.

Let Ẽ be the collection of all nonconstant entire functions of hyper-order < 1 such

that any finite collection {f1, . . . , fk} ⊂ Ẽ satisfies the property that fi = 0⇒ f i = 0
for all i = 1, . . . , k.

Particularly, for the case of entire functions, analogously to the lower bound of
FE, we give a better lower estimate for GẼ .
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Theorem 1.3. Let n (≥ 2) be an integer. Then

GẼ(n) ≥ 1/2 +
√
n + 1/4.

The condition that hyper-order is less than 1 cannot be deleted. For example,
take f(z) = exp{ez}, c = iπ and n = 2. Since 0 and∞ are Picard exceptional values
of f(z), they are automatically also exceptional paired values of f(z). Moreover, the
function also satisfies the conditions f = 0 ⇒ f = 0 and f = ∞ ⇒ f = ∞. The
hyper-order of f(z) is 1, and

f(z) · f(z + c) = exp{ez} · exp{ez+iπ} = exp{ez} · exp{−ez} = 1.

But k = 1 is strictly less than 1/2 +
√
2 + 1/4 = 3+1

2
= 2 and

√
2 + 1 (> 1).

The following example shows the sharpness of the bound of GC , where C is equal

to M̃ and Ẽ.

Example 1.4. Let c = 2π, f1 = sin z and f2 = cos z. Then f 1 = sin(z + 2π) =
sin z f 2 = cos(z + 2π) = cos z. Clearly fi (i = 1, 2) satisfy fi = 0⇒ f i = 0 and

f1f 1 + f2f2 = sin2 z + cos2 z = 1.

Also, 0 is an exceptional paired value of fi for i = 1, 2. Thus we have GM̃(2) ≤ 2
and GẼ(2) ≤ 2. On the other hand, by Theorems 1.2 and 1.3, we have GC(n) > 1

for C = M̃, Ẽ. Therefore, GM̃(2) = GẼ(2) = 2.

Let R̃ be the collection of all nonconstant rational functions such that any fi-

nite collection {f1, . . . , fk} ⊂ R̃ satisfies the property that zeros and poles are of
multiplicity positive integer multiple of n.

In the case of rational functions, compared to the lower bound for FR, we get a
corresponding estimate for GR̃.

Theorem 1.5. Let n (≥ 2) be an integer. Then

GR̃(n) >
√
n+ 1.

Let P̃ be the collection of all nonconstant polynomial functions such that any

finite collection {f1, . . . , fk} ⊂ P̃ satisfies the property that zeros are of multiplicity
no less than n.

Also, as an analogue to the entire case, for the case of polynomials, we give a
better lower estimate for GP̃ .

Theorem 1.6. Let n (≥ 2) be an integer. Then

GP̃ (n) > 1/2 +
√

n+ 1/4.

2. Lemmas

The following lemma on the growth of non-decreasing real-valued functions is a
generalization of [9, Lemma 2.1]. It implies that shifting a characteristic or a counting
function does not affect its growth significantly, provided that the hyper-order of the
function is strictly less than one.
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Lemma 2.1. [10] Let T : [0,+∞) → [0,+∞) be a non-decreasing continuous
function and let s ∈ (0,∞). If the hyper-order of T is strictly less than one, i.e.,

lim sup
r→∞

log log T (r)

log r
= ς < 1

and δ ∈ (0, 1− ς), then

T (r + s) = T (r) + o

(
T (r)

rδ

)
,

where r runs to infinity outside of a set of finite logarithmic measure.

Recently, Halburd, Korhonen and Tohge generalized the difference analogue of
Logarithmic Derivative Lemma of meromorphic functions of finite order (see [2, 7])
into meromorphic functions of hyper-order strictly less than one.

Lemma 2.2. [10] Let f be a non-constant meromorphic function, ε > 0 and
c ∈ C. If the hyper-order of T (r, f), i.e., σ2 = σ2(f) < 1, then

m

(
r,
f(z + c)

f(z)

)
= o

(
T (r, f)

r1−σ2−ε

)

for all r outside of a set of finite logarithmic measure.

Throughout the remainder of the paper, we let d(P ) denote the degree of P , and
let d(P ) denote the number of distinct zeros of P , where P ( 6≡ 0) is a polynomial.
The following lemma is an application of Cartan’s theorem.

Lemma 2.3. [6] Let g1, g2, · · · , gp be linearly independent entire functions, where
p ≥ 2. Suppose that for each complex number z we have

(2.1) max{|g1(z)|, |g2(z)|, . . . , |gp(z)|} > 0,

and set gp+1 = g1 + g2 + . . .+ gp. We distinguish two cases.

(a) Suppose that all the quotients gj/gm are rational functions. Then there exist
polynomials h1, h2, . . . , hp+1, and an entire function φ, such that

gj = hje
φ, j = 1, 2, . . . , p+ 1.

Then hp+1 = h1 + h2 + . . .+ hp and

(2.2) max{d(h1), d(h2), . . . , d(hp)} ≤ (p− 1)

{
p+1∑

j=1

d(hj)−
1

2
p

}
.

In particular, if all the functions g1, g2, . . . , gp are polynomials, then

(2.3) max{d(g1), d(g2), . . . , d(gp)} ≤ (p− 1)

{
p+1∑

j=1

d(gj)−
1

2
p

}
.

(b) Suppose that at least one quotient gj/gm is a transcendental function. Set

N(r) = sup
1≤j≤p+1

N(r, 0, gj).

Then

(2.4)
N(r)

log r
→∞, as r →∞,
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and we have

(2.5) (1 + o(1))N(r) ≤ (p− 1)

p+1∑

j=1

N(r, 0, gj) as r →∞ n.e.

where n.e. stands for nearly everywhere, which always means the inequality
holds in the real axis outside of a finite logarithmic measure.

The following lemma tells us that if f1, . . . , fk is a collection of functions for which
the minimum GC(n) = k is attained, then the corresponding terms on the left hand
side of (1.2) must be linearly independent.

Lemma 2.4. Let n (≥ 2) be an integer. Suppose the equation (1.2) has a solu-
tion consisting of k nonconstant functions f1, . . . , fk in C. If GC(n) = k, then the

functions fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly independent.

Proof. If fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly dependent, then there exists
complex constants αi (i = 1, . . . , k), not all of which are 0, such that

(2.6) α1f1 · · · f
[n−1]

1 + · · ·+ αkfk · · · f
[n−1]

k = 0.

Without loss of generality, we suppose that αi0 (i0 ∈ {1, . . . , k}) 6= 0. Then from
(2.6) we can get that

fi0 · · · f
[n−1]

i0 =
α1

αi0

· f1 · · · f
[n−1]

1 + · · ·+ αi0−1

αi0

fi0−1 · · · f
[n−1]

i0−1

+
αi0+1

αi0

fi0+1 · · · f
[n−1]

i0+1 + · · ·+ αk

αi0

· fk · · · f
[n−1]

k .
(2.7)

Substituting (2.7) into (1.2), we get that

(1 +
α1

αi0

) · f1 · · · f
[n−1]

1 + · · ·+ (1 +
αi0−1

αi0

)fi0−1 · · · f
[n−1]

i0−1

+ (1 +
αi0+1

αi0

)fi0+1 · · · f
[n−1]

i0+1 + · · ·+ (1 +
αk

αi0

)fk · · · f
[n−1]

k = 1.
(2.8)

We set

(2.9) gj =

(
1 +

αj

αi0

)1/n

fj , j = 1, . . . , i0 − 1, i0 + 1, . . . , k.

Substituting (2.9) into (2.8), we then have

g1 · · · g[n−1]
1 +g2 · · · g[n−1]

2 + · · ·+gi0−1 · · · g[n−1]
i0−1 +gi0+1 · · · g[n−1]

i0+1 + · · ·+gk · · · g[n−1]
k = 1,

where gj(j = 1, . . . , i0 − 1, i0 + 1, . . . , k) are non-constant functions in C. Thus we
have GC(n) = k − 1, a contradiction with the assumption k = GC(n). Thus the

functions fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly independent. �

3. Proof of Theorem 1.3

Suppose that f1, f2, . . . , fk are nonconstant entire functions satisfying (1.2).
From the assumption fi = 0⇒ f i = 0, we can get that fi(z) are transcendental.

Since if there exists a z0 such that fi(z0) = 0, then fi(z0+jc) = 0, where i = 1, 2, . . . , k
and j = 1, 2, . . ., so fi(z) has infinitely many zeros. Thus fi(z) is transcendental. If
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fi(z) has no zeros, then 0 is a Picard exceptional value of non-constant entire function
fi(z), which implies that fi(z) is transcendental.

Firstly we prove that k ≥ 2.

If k = 1, then we have f1 · · · f
[n−1]

1 = 1. Since f1 is a transcendental entire
function, then from Lemma 2.2 and σ2(f1) < 1, we have

nT (r, f1) = T (r, fn
1 ) = T

(
r,

1

fn
1

)
+O(1) = T

(
r,
f1 · · · f

[n−1]

1

fn−1
1

)
+O(1)

= m

(
r,
f 1 · · ·f

[n−1]

1

fn−1
1

)
+N

(
r,
f 1 · · · f

[n−1]

1

fn−1
1

)
+O(1)

≤ N

(
r,

1

fn−1
1

)
+ S(r, f1) ≤ (n− 1)T (r, f1) + S(r, f1),

a contradiction. Thus we have k ≥ 2.

From Lemma 2.4, we know that if fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly depen-
dent, then we have GE(n) 6= k. Since GE(n) ≤ k, so we have GE(n) < k. This

means that if fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly dependent, then we can shorten
the equation (1.2). Thus, in order to get the smallest k, from Lemma 2.4 we assume

that the functions fi · · · f
[n−1]

i (i = 1, . . . , k) are linearly independent.

Next we prove that at least one fi · · · fi
[n−1]

is transcendental. Since fi0 is

transcendental, also fn
i0

is transcendental. If fi0 · · · f
[n−1]

i0
is polynomial, we write

fi0 · · · f
[n−1]

i0
= p(z). Thus from Lemma 2.2 and the fact that fi0 is a transcendental

entire function with σ2(fi0) < 1, we get

nT (r, fi0) + S(r, fi0) = T (r, fn
i0) + S(r, fi0) = T

(
r,
p(z)

fn
i0

)

= T

(
r,
f i0 · · · f

[n−1]

i0

fn−1
i0

)
≤ (n− 1)T (r, fi0) + S(r, fi0),

a contradiction. So it follows that fi0 · · · f
[n−1]

i0 is transcendental. Dividing equation

(1.2) by fi0 · · · f
[n−1]

i0 , it therefore follows that at least one quotient

fj · · · f
[n−1]

j /fi0 · · · f
[n−1]

i0
(j 6= i0)

must be transcendental. Next we apply Lemma 2.3 with gj = fjf j · · · f
[n−1]

j , j =
1, . . . , k. Assumption (2.1) is satisfied for this set of functions, since otherwise we
would get an immediate contradiction with (1.2). Then from Lemma 2.3, we find
that

(3.1) (1 + o(1))N(r) ≤ (k − 1)

k∑

j=1

N
(
r, 0, fj · · · f

[n−1]

j

)
as r →∞ n.e.,

where N(r) = sup1≤j≤k N
(
r, 0, fj · · · f

[n−1]

j

)
. Since σ2(fi) < 1, we have

(3.2) lim sup
r→∞

log logN(r, 0, fi)

log r
≤ σ2(fi) < 1.
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By the assumption fi = 0⇒ f i = 0, from (3.1), (3.2) and Lemma 2.1, we get

(1 + o(1))N(r) ≤ (k − 1)
k∑

j=1

N(r, 0, f
[n−1]

j )

≤ (k − 1)
k∑

j=1

N(r + (n− 1)|c|, 0, fj)

= (k − 1)

k∑

j=1

(1 + o(1))N(r, 0, fj)

≤ (k − 1)
1

n

k∑

j=1

(1 + o(1))N(r, 0, fj · · · f
[n−1]

j )

≤ (k − 1)(1 + o(1))
k

n
N(r), r →∞ n.e.

(3.3)

From (2.4) in Lemma 2.3, we have N(r) → ∞ as r → ∞. Hence from (3.3), we see
that n ≤ k2 − k. This proves Theorem 1.3. �

4. Proof of Theorem 1.2

Suppose that each fi is a nonconstant meromorphic function. Next we prove that
fi is transcendental.

Since zero is an exceptional paired value of fi, then we get that either fi has no
zeros or it has infinitely many zeros. From fi(z) and fi(z + c) share ∞ CM, we get
that fi has no poles or it has infinitely many poles. Now we only need to consider the
case when fi has no zeros and poles (in other cases, fi is transcendental obviously).
But now, since 0 and∞ are Picard exceptional values of a nonconstant meromorphic
function fi, it follows that fi is transcendental.

Next we prove that at least one fi · · · fi
[n−1]

is transcendental. Since fi0 is tran-

scendental, then we have that fn
i0 is transcendental. Suppose that fi0 · · · f

[n−1]

i0 is
polynomial, say, p(z). Since fi0 is a transcendental meromorphic function with hyper-
order less than 1, then from Lemma 2.2 we get

nT (r, fi0) + S(r, fi0) = T (r, fn
i0
) + S(r, fi0) = T

(
r,
p(z)

fn
i0

)

= N

(
r,
f i0 · · · f

[n−1]

i0

fn−1
i0

)
+ S(r, fi0).

(4.1)

By the assumption that 0 is an exceptional paired value of fi0, we have

(4.2) N

(
r,
f i0 · · · f

[n−1]

i0

fn−1
i0

)
≤ N

(
r, f i0

)
+ · · ·+N

(
r, f

[n−1]

i0

)
+ S(r, fi0).

From σ2(fi0) < 1, we have

lim sup
r→∞

log logN(r, fi0)

log r
≤ σ2(fi0) < 1.
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Thus by a simple observation, Lemma 2.1, (4.1) and (4.2) we get

nT (r, fi0) ≤ N(r + |c|, fi0) + · · ·+N(r + (n− 1)|c|, fi0) + S(r, fi0)

≤ N(r, fi0) + · · ·+N(r, fi0) + S(r, fi0)

≤ (n− 1)T (r, fi0) + S(r, fi0),

which yields a contradiction. So we have that fi0 · · · f
[n−1]

i0
is transcendental.

As in the proof of Theorem 1.3, by dividing with fi0 · · · f
[n−1]

i0 on both sides of

(1.2), we obtain that at least one quotient
fj ···f

[n−1]
j

fi0 ···f
[n−1]
i0

(j 6= i0) must be transcendental.

For every meromorphic function fi(i = 1, 2, . . . , k) with σ2(fi) < 1, there exists
linearly independent entire functions gi and hi with no common zeros such that

(4.3) fi(z) =
gi(z)

hi(z)
.

Since entire functions gi and hi have no common zeros, we have that gi and fi have
the same zeros and that hi and 1/fi have the same zeros. Thus we have

(4.4) λ2(gi) = lim sup
r→∞

log+ log+ N(r, 0, gi)

log r
= λ2(fi) ≤ σ2(fi) < 1

and

(4.5) λ2(hi) = lim sup
r→∞

log+ log+ N(r, 0, hi)

log r
= λ2

(
1

fi

)
≤ σ2(fi) < 1.

Substituting (4.3) into (1.2), and multiplying both sides by h1 · · ·h
[n−1]

1 h2 · · ·h
[n−1]

2

· · ·hk · · ·h
[n−1]

k , we have

(4.6) l1 + l2 + · · ·+ lk = lk+1,

where

l1 = g1 · · · g[n−1]
1 h2 · · ·h

[n−1]

2 · · ·hk · · ·h
[n−1]

k ,

l2 = g2 · · · g[n−1]
2 h1 · · ·h

[n−1]

1 h3 · · ·h
[n−1]

3 · · ·hk · · ·h
[n−1]

k ,

· · ·

lk = gk · · · g[n−1]
k h1 · · ·h

[n−1]

1 h2 · · ·h
[n−1]

2 · · ·hk−1 · · ·h
[n−1]

k−1 ,

lk+1 = h1 · · ·h
[n−1]

1 · · ·hk · · ·h
[n−1]

k .

(4.7)

We now define a function d(z) as follows.
Case 1. Suppose that li (i = 1, . . . , k) have infinitely many non-zero common

zeros. Let {an} be the non-zero common zeros of li (i = 1, . . . , k) such that |an| → ∞
(otherwise, if |an| < M as n→∞, it would follow that li ≡ 0). If {pn} is any sequence
of non-negative integers such that for all r > 0,

∞∑

n=1

(r/|an|)1+pn <∞,
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then from the Weierstrass theorem, we have that the function

d(z) =

∞∏

n=1

Epn(z/an)

is entire with zeros only at points an, where

Epn =

{
(1− z), if pn = 0,

(1− z) exp
(

z1

1
+ z2

2
+ · · ·+ zpn

pn

)
, otherwise.

If the number z0 occurs in the sequence {an} exactly m times, then function d(z) has
a zero at z = z0 of multiplicity m.

Case 2. Suppose that li (i = 1, . . . , k) have finitely many non-zero common zeros.
We set d(z) =

∏n0

n=1(z − an).
Suppose also that li (i = 1, . . . , k) have a common zero at z = 0 of order m ≥ 0

(a zero of order m = 0 at z = 0 means f(0) 6= 0).
With d(z) defined according to Cases 1 and 2, let

(4.8) l̃i(z) =
li(z)

zmd(z)
, i = 1, . . . , k + 1.

Then for each complex number z ∈ C, we have max{|l̃1(z)|, |l̃2(z)|, . . . , |l̃k(z)|} > 0
and

(4.9) l̃1 + l̃2 + · · ·+ l̃k = l̃k+1,

where l̃i(z) (i = 1, . . . , k + 1) are entire functions.
From (4.7), (4.8) and (4.3), we obtain that

(4.10)
l̃j

l̃i0
=

gj · · · g[n−1]
j

hj · · ·h
[n−1]

j

· hi0 · · ·h
[n−1]

i0

gi0 · · · g
[n−1]
i0

=
fj · · · f

[n−1]

j

fi0 · · · f
[n−1]

i0

,

j = 1, . . . , i0−1, i0+1, . . . , n. In the beginning of the proof, we obtained that at least

one quotient
fj ···f

[n−1]
j

fi0 ···f
[n−1]
i0

(j 6= i0) must be transcendental, thus it follows from (4.10)

that at least one
l̃j

l̃i0
(j 6= i0) must be transcendental.

Next, we prove k ≥ 2. If not, k = 1, then we have l̃1 = l̃2, thus l1 = l2, i.e.

f1 · · · f
[n−1]

1 = 1. Since σ2(f1) < 1, we have

lim sup
r→∞

log logN(r, f1)

log r
≤ σ2(f1) < 1.

Combining this with the fact that 0 is an exceptional paired value of transcendental
meromorphic function f1, from Lemma 2.2 and Lemma 2.1, we have

nT (r, f1) = T

(
r,

1

fn
1

)
+O(1) = T

(
r,
f 1 · · · f

[n−1]

1

fn−1
1

)
+O(1)

≤ N

(
r,
f 1

f1

)
+ · · ·+N

(
r,
f
[n−1]

1

f1

)
+ S(r, f1)
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≤ N
(
r, f1

)
+ · · ·+N

(
r, f

[n−1]

1

)
+ S(r, f1)

≤ (n− 1)N(r, f1) + S(r, f1) ≤ (n− 1)T (r, f1) + S(r, f1),

a contradiction. Thus we have k ≥ 2.
In order to get the smallest k, we assume that the functions l̃1, . . . , l̃k are linearly

independent. Otherwise, if the functions l̃1, . . . , l̃k are linearly dependent, then there
exists α1, . . . , αk, not all of which are zeros, such that

(4.11) α1 l̃1 + · · ·+ αk l̃k = 0.

Without loss of generality, we suppose that αi0 6= 0. Then from (4.11), we have

(4.12) l̃i0 =
α1

αi0

l̃1 + · · ·+
αi0−1

αi0

l̃i0−1 +
αi0+1

αi0

l̃i0+1 + · · ·+
αk

αi0

l̃k.

Dividing (4.12) by l̃k+1 on both sides, from (4.7) and (4.8) we have that

fi0 · · · f
[n−1]

i0 =
α1

αi0

f1 · · · f
[n−1]

1 + · · ·+ αi0−1

αi0

fi0−1 · · · f
[n−1]

i0−1

+
αi0+1

αi0

fi0+1 · · · f
[n−1]

i0+1 + · · ·+ αk

αi0

fk · · · f
[n−1]

k .

This gives that f1 · · · f
[n−1]

1 , . . . , fk · · · f
[n−1]

k are linearly dependent, which contradicts

with Lemma 2.4. So in order to get the smallest k, we assume that l̃1, . . . , l̃k are
linearly independent.

Thus we can apply Lemma 2.3 to (4.9), and this yields

(4.13) (1 + o(1))N(r) ≤ (k − 1)

k+1∑

j=1

N(r, 0, l̃j) as r →∞ n.e.,

where N(r) = sup1≤j≤k+1N(r, 0, l̃j). Since fi = gi/hi, where gi and hi are entire

functions with no common zeros, from fi and f i share ∞ CM, we get that hi and
hi share 0 CM. Also, from 0 is an exceptional paired value of fi, we get that 0 is an
exceptional paired value of gi.

Next we analyze the multiplicity of zeros of h1 · · ·h
[n−1]

1 · · ·hj−1 · · ·h
[n−1]

j−1 hj+1 · · ·
h
[n−1]

j+1 · · ·hk · · ·h
[n−1]

k /(zmd(z))). From (4.7) and (4.6), we know that all the zeros of
zmd(z) arise from the zeros of at least one hi (i = 1, . . . , k). Since fi and 1/fj do
not have common zeros, we have that gi and hj do not have common zeros. Since hi

and hi share 0 CM, so we have that gi · · · g[n−1]
i and hj · · ·h

[n−1]

j do not have common

zeros. Thus gi · · · g[n−1]
i and h1 · · ·h

[n−1]

1 · · ·hk · · ·h
[n−1]

k do not have common zeros.
So we have that the common zeros of l1, . . . , lk (i.e., the zeros of zmd(z)) arise from
the common zeros of

h1 · · ·h
[n−1]

1 · · ·hi−1 · · ·h
[n−1]

i−1 hi+1 · · ·h
[n−1]

i+1 · · ·hk · · ·h
[n−1]

k (i = 1, . . . , k).



On the existence of solutions of a Fermat-type difference equation 917

From hi and hi share 0 CM, thus we have

N

(
r, 0,

h1 · · ·h
[n−1]

1 · · ·hi−1 · · ·h
[n−1]

i−1 hi+1 · · ·h
[n−1]

i+1 · · ·hk · · ·h
[n−1]

k

zmd(z)

)

≥ nN

(
r, 0,

h1 · · ·h
[n−1]

1 · · ·hi−1 · · ·h
[n−1]

i−1 hi+1 · · ·h
[n−1]

i+1 · · ·hk · · ·h
[n−1]

k

zmd(z)

)
,

i.e.,

(4.14) N
(
r, 0, l̃i/gi · · · g[n−1]

i

)
≥ nN

(
r, 0, l̃i/gi · · · g[n−1]

i

)
.

From above analysis, we also have

N(r, 0, l̃k+1) = N(r, 0, h1 · · ·h
[n−1]

1 · · ·hk · · ·h
[n−1]

k /(zmd(z)))

≥ nN
(
r, 0, h1 · · ·h

[n−1]

1 · · ·hk · · ·h
[n−1]

k /(zmd(z))
)

= nN(r, 0, l̃k+1).

(4.15)

From (4.14), (4.15), (4.13) and 0 is the exceptional paired value of gi, we obtain
that

(1 + o(1))N(r) ≤ (k − 1)

(
k∑

j=1

N

(
r, 0,

l̃j

gj · · · g[n−1]
j

· gj · · · g[n−1]
j

)
+N(r, 0, l̃k+1)

)

≤ (k − 1)

(
k∑

j=1

(
N
(
r, 0, gj · · · g[n−1]

j

)
+N

(
r, 0,

l̃j

gj · · · g[n−1]
j

))
+N(r, 0, l̃k+1)

)

≤ (k − 1)

(
k∑

j=1

(
N(r, 0, g

[n−1]
j ) +

1

n
N

(
r, 0,

l̃j

gj · · · g[n−1]
j

))
+

1

n
N(r, 0, l̃k+1)

)

≤ (k − 1)

(
k∑

j=1

(
N(r + (n− 1)|c|, 0, gj)+

1

n
N

(
r, 0,

l̃j

gj · · · g[n−1]
j

))
+

1

n
N(r, 0, l̃k+1)

)
.

From (4.4), we have

lim sup
r→∞

log logN(r, 0, gi)

log r
≤ λ2(gi) < 1.

Thus by Lemma 2.1, and from 0 is an exceptional paired value of gi, we have

(1 + o(1))N(r)

≤ (k − 1)

(
k∑

j=1

(
N(r, 0, gj) +

1

n
N

(
r, 0,

l̃j

gj · · · g[n−1]
j

))
+

1

n
N(r, 0, l̃k+1)

)

≤ (k − 1)
1

n

(
k∑

j=1

(
N(r, 0, gj · · · g[n−1]

j ) +N

(
r, 0,

l̃j

gj · · · g[n−1]
j

))

+N(r, 0, l̃k+1)

)
.

(4.16)
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Since l̃j , gj and
l̃j

gj ···g
[n−1]
j

are all entire functions, we have

(4.17) N(r, 0, gj · · · g[n−1]
j ) +N

(
r, 0,

l̃j

gj · · · g[n−1]
j

)
= N

(
r, 0, l̃j

)
.

Therefore, combining (4.16) with (4.17), we have

(4.18) (1 + o(1))N(r) ≤ (k − 1)
1

n

( k+1∑

j=1

N(r, 0, l̃j)

)
≤ (k − 1)

1

n
(k + 1)N(r),

as r →∞ n.e. From Lemma 2.3, we get that N(r)→∞ as r →∞ n.e. Combining
this with (4.18), we obtain that n ≤ k2 − 1. �

5. Proof of Theorem 1.6

Suppose that f1, . . . , fk are nonconstant polynomial functions whose zeros are of
multiplicity no less than n.

First, we prove that k > 1. If k = 1, then from (1.2) we have that

deg(f1 . . . f
[n−1]

1 ) = n deg(f1) = deg 1 = 0,

a contradiction. Thus we have k ≥ 2.
In order to get the smallest k, we can assume using Lemma 2.4 that the polyno-

mial functions fi . . . f
[n−1]

i (i = 1, . . . , k) are linearly independent.

Obviously, from (1.2) we can get that fi . . . f
[n−1]

i (i = 1, . . . , k) do not have
common zeros. Set d = max{d(f1), . . . , d(fk)}. Then for i = 1, . . . , n− 1, we have

max
{
d(f

[i]

1 ), . . . , d(f
[i]

k )
}
= d,

and d > 0. Choosing gj = fj · · · f
[n−1]

j (j = 1, . . . , k) and gk+1 = 1, we have that the
assumption (2.1) is satisfied. Thus, it follows by (2.3) in Lemma 2.3 that

n · d = n ·max{d(f1), . . . , d(fk)} = max
{
d(f1 . . . f

[n−1]

1 ), . . . , d(fk . . . f
[n−1]
k )

}

= max{d(g1), . . . , d(gk)} ≤ (k − 1)

{
k∑

j=1

d(gj)−
1

2
k

}

= (k − 1)

{
k∑

j=1

d(fj . . . f
[n−1]

j )− 1

2
k

}
.(5.1)

Since the zeros of f1, . . . , fk are of multiplicity no less than n, so by (5.1) we have

n · d ≤ (k − 1)

{
k∑

j=1

(d(fj) + . . .+ d(f
[n−1]

j ))− 1

2
k

}

≤ (k − 1)

{
k∑

j=1

1

n
(d(fj) + . . .+ d(f

[n−1]

j ))− 1

2
k

}

≤ (k − 1)

{
k · d− 1

2
k

}
< (k − 1)k · d,
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which yields n < k2 − k. �

6. Proof of Theorem 1.5

Suppose that f1, . . . , fk are nonconstant rational functions whose zeros and poles
are of multiplicity positive integer multiple of n, where n (≥ 2) is a positive integer.

Suppose that at least one fj is not polynomial. We set

(6.1) fj =
Pj

Qj
,

where Pj and Qj are polynomials without common zeros, and the zeros of Pj and Qj

are of multiplicity positive integer multiple of n. Substituting (6.1) into (1.2), then
we obtain that

(6.2) R1 +R2 + · · ·+Rk = Rk+1,

where

(6.3) Ri = Pi · · ·P
[n−1]

i Q1· · ·Q
[n−1]

1 · · ·Qi−1 · · ·Q
[n−1]

i−1 Qi+1 · · ·Q
[n−1]

i+1 · · ·Qk · · ·Q
[n−1]

k ,

i = 1, . . . , k, and

(6.4) Rk+1 = Q1 · · ·Q
[n−1]

1 · · ·Qk · · ·Q
[n−1]

k .

If R1, . . . , Rk have common zeros {zi} with multiplicities mi, then the number of
common zeros must be finite. We let d(z) =

∏
(z − zi)

mi , then d(z) is a polynomial.
By assumption, it follows that n|mi.

We set

(6.5) R̃i =
Ri

d
, i = 1, . . . , k + 1.

Then we have that R̃1, . . . , R̃k+1 are polynomials. Combining (6.2) with (6.5) we
have

(6.6) R̃1 + R̃2 + · · ·+ R̃k = R̃k+1,

where R̃1, . . . , R̃k have no common zeros. In addition, by n|mi and the assumption
that the zeros of Pj and Qj are of multiplicity positive integer multiple of n, it follows
from (6.3), (6.4) and (6.5) that

(6.7) N

(
r,

1

R̃i

)
≥ nN

(
r,

1

R̃i

)
, for i = 1, . . . , k + 1.

Next, we prove that k > 1. If k = 1, then we have R1 = R2. From (6.3) and
(6.4), it follows that

(6.8) P1 · · ·P
[n−1]

1 ≡ Q1 · · ·Q
[n−1]

1 .

Since P1 and Q1 have no common zeros, and zeros of P
[j]

1 and Q
[j]

1 are zeros of P1

and Q1 after shifting with jc in the same direction respectively, it follows that (6.8)
yields a contradiction.

In order to get the smallest k, we assume that the functions R̃1, . . . , R̃k are

linearly independent. Otherwise, if the functions R̃1, . . . , R̃k are linearly dependent,
then there exists α1, . . . , αk, not all of which are zeros, such that

(6.9) α1R̃1 + . . .+ αkR̃k = 0.
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Following a similar argument as in the proof of Theorem 1.2, we get that f1 · · · f
[n−1]

1 ,

. . . , fk · · · f
[n−1]

k are linearly dependent, which contradicts with the Lemma 2.4. So

in order to get the smallest k, we assume that R̃1, . . . , R̃k are linearly independent.

We set d′ = max{d(R̃1), . . . , d(R̃k)}. Then from (6.6), we know that

d(R̃k+1) = d(R̃1 + R̃2 + · · ·+ R̃k) ≤ max{d(R̃1), . . . , d(R̃k)} = d′.

Thus combining this with (6.7), we can apply Lemma 2.3 (a) to (6.6), and obtain

d′ ≤ (k − 1)

{
k+1∑

j=1

d(R̃j)−
1

2
k

}
≤ (k − 1)

{
(k + 1)

d′

n
− 1

2
k

}
< (k2 − 1)

d′

n
,

which yields n < k2 − 1. �
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