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Abstract. In this paper we consider entire weak solutions u of the equations for stationary

flows of shear thickening fluids in the plane and prove Liouville theorems in case of finite energy or

under suitable integrability assumptions on u.

1. Introduction

In this paper, we prove different types of Liouville theorems for entire weak
solutions u : R2 → R

2, π : R2 → R of the following system

(1.1)

{

−div[T (ε(u))] + uk∂ku+Dπ = 0,

div u = 0 in R
2,

which describes the stationary flow of an incompressible generalized Newtonian fluid.
In equation (1.1), u denotes the velocity field, π the pressure function, uk∂ku the con-
vective term, and T represents the deviatoric part of the stress tensor. As usual ε(u)
is the symmetric derivative of u, i.e. ε(u) = 1

2
(Du+ (Du)T ) = 1

2
(∂iu

k + ∂ku
i)1≤i,k≤2.

Assume that the tensor T is the gradient of a potential H : S2 → R defined on
the space S2 of all symmetric (2× 2) matrices, where H is of the special form

(1.2) H(ε) = h(|ε|),

for a nonnegative function h of class C2. Thus we have

(1.3) T (ε) = DH(|ε|) = µ(|ε|)ε, µ(t) =
h′(t)

t
,

which means that the viscosity coefficient may depend on ε, and system (1.1) de-
scribes the motion of a generalized Newtonian fluid. For further mathematical and
physical explanations, we refer to Ladyzhenskaya [Lad69], Galdi [Gal94a, Gal94b],
Malek, Necas, Rokyta and Ruzicka [MNRR96], and Fuchs and Seregin [FS00]

If µ(t) is an increasing function, we call the fluid shear thickening. If µ(t) is a
decreasing function, we call the fluid shear thinning. Clearly, if µ(t) = constant, then
(1.1) reduces to the stationary Navier–Stokes equations for incompressible Newtonian
fluids.

The study of Liouville type theorems for Navier–Stokes equations goes back to
the work of Gilbarg and Weinberger [GW78]. They showed that entire solutions
u of the stationary Navier–Stokes equations in the plane are constants under the
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condition
´

R2 |Du|2 dx < ∞. For the unstationary backwards Navier–Stokes equa-
tions in 2D, recently, Koch, Nadirashvili, Seregin and Sverak [KNSS09] showed that
u(x, t) = b(t) on R

2 × (−∞, 0) provided the solutions are bounded. Clearly, this
result implies Liouville’s theorem for the stationary Navier–Stokes equations, that is,
bounded solutions to the stationary Navier–Stokes equations are constants.

For degenerate power law fluids, Bildhauer, Fuchs and Zhang [BFZ13] got similar
Liouville type theorems as described above. For the stationary Navier–Stokes equa-
tion, they showed that u(x) is a constant provided u(x) = o(|x|α), for some α < 1

3
at

infinity. Later, Jin and Kang [JK14] improved the regularity of weak solutions and
used their result to get partially similar Liouville type theorems. For a survey of Li-
ouville type theorems for generalized Newtonian fluids, the readers are recommended
to see the paper [Fuc14].

In the whole paper, we will concentrate on the following type of shear thickening
fluids with potential h satisfying the next conditions:

(A1)
h is strictly increasing and convex

together with h′′(0) > 0 and lim
t→0

h(t)
t

= 0.

(A2)
(doubling property) there exists a constant a > 0

such that h(2t) ≤ ah(t) for all t ≥ 0.

(A3) we have h′(t)
t

≤ h′′(t) for any t ≥ 0.

For general potentials h satisfying (A1)–(A3), very recently Fuchs [Fuc12b] show-
ed that bounded solutions u of (1.1) must be constants provided u satisfies the
asymptotic condition |u− u∞| → 0 at infinity, for some vector u∞ ∈ R

2. Later, the
author [Zha13] removed the above assumption on u at infinity and showed that any
bounded solution u of (1.1) must be a constant vector .

Under the hypothesis that the flow is slow (which means that the convective term
vanishes ) and that energy is finite, i.e.

´

R2 h(|Du|) dx < ∞, Fuchs [Fuc12b] showed
that the velocity field u is a constant vector. In this note, we remove the additional
constraint that the flow is slow and prove the following theorem which is an extension
of the result of Gilbarg and Weinberger in the setting of shear thickening fluids.

Theorem 1.1. Let u ∈ C1(R2,R2) be an entire weak solution to (1.1) i.e.

(1.4)

ˆ

R2

T (ε(u)) : ε(ϕ) dx−

ˆ

R2

ukui∂kϕ
i dx = 0

for all ϕ ∈ C∞
0 (R2,R2) with divϕ = 0, and let u satisfy the condition

´

R2 h(|Du|) dx
< ∞. Then u is a constant vector.

Next we consider other classes of Liouville theorems for solutions of (1.1). Re-
cently, Fuchs [Fuc12b] showed that the solution is identical zero under the conditions:
´

R2 h(|ε(u)|) dx < ∞ and
´

R2 |u|
2 dx < ∞. Now we improve this result and obtain

more general types of Liouville theorems.
Before stating Theorem 1.2, we first introduce some notations. If h satisfies the

conditions (A1), (A2) and (A3), from [Fuc12b] we know h′(t) ≤ C(h(t)
1
τ + 1) for

some τ ∈ (1, 2] (see Lemma 2.1 in the Section 2 ). Let τ ′ be the conjugate exponent
of τ s.t. 1

τ
+ 1

τ ′
= 1 and τ ⋆ = τ ′−2

4−τ ′
provided 2 ≤ τ ′ < 4. For the Navier–Stokes case
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h(t) = ν
2
t2, obviously, we can choose τ = 2; for general case h(t) = µt2(1+t)m, m > 0,

we can choose 1 < τ = m+2
m+1

< 2.

Theorem 1.2. Suppose u ∈ C1(R2,R2) is an entire weak solution of (1.1). Then

the following results hold:

(a) If 3
2
≤ τ ≤ 2 (2 ≤ τ ′ ≤ 3) and u ∈ Lp(R2,R2) for some p > 1, then u is

identically zero.

(b) If 4
3
< τ < 3

2
(3 < τ ′ < 4) and u ∈ Lp(R2,R2) for some p > τ ′ − 2, then u is

identically zero.

(c) If 1 < τ ≤ 4
3
(τ ′ ≥ 4) and u ∈ Lτ ′(R2,R2), then u vanishes.

In the setting of the stationary Navier–Stokes equations, (a) clearly implies the
following corollary.

Corollary 1.3. Let u ∈ C1(R2,R2) be an entire weak solution to the stationary

Navier-Stokes equations in the plane, i.e.
ˆ

R2

Du : Dϕ dx−

ˆ

R2

ukui∂kϕ
i dx = 0

for all ϕ ∈ C∞
0 (R2,R2) with divϕ = 0, and assume that u ∈ Lp(R2,R2) for some

p > 1. Then u must be the zero vector.

We first comment on the regularity assumption on the solutions. As we know,
for general h satisfying (A1)–(A3), C1,α regularity of solutions is an open problem.
But in some special case, such as h(t) = t2(1+ t)m, m ≥ 0, the solution u belongs to
the space C1,α, see e.g. [BFZ05]. For the further discussion about regularity of the
solutions of (1.1) the readers are recommended to see the paper [Fuc12a]. Therefore
the regularity assumptions on u in the above theorems are reasonable in some sense.

Secondly, we need to say some words about the proof of the theorems. For ob-
taining Theorem 1.1, in the special case h(t) = ν

2
t2, Gilbarg and Weinberger [GW78]

used the idea that the vorticity ω = ∂x1u
2 − ∂x2u

1 satisfies the elliptic equation
−△ω + u · Dω = 0, which implies that ω = 0 by the maximum principle. Fur-
thermore, u is a harmonic field and the Liouville theorem for harmonic functions
implies that u must be a constant vector. But now, due to nonlinearity of the item
div[T (ε(u))], this approach does not work. In the spirit of [Fuc12b], [FZ12] and
[Zha13], we will instead show energy estimates for the second order derivatives from
which we deduce that

ˆ

R2

D2H(ε(u))(ε(∂ku), ε(∂ku)) dx = 0,

which implies that u must be a constant vector under the condition
´

R2 h(|Du|)dx <

∞.
On the other hand, the strategy for proving 1.2 is as follow: if p is “sufficiently”

small, we directly use the local energy estimate for the first order derivatives to control
the local integral of |u|q for q large enough. Hence by applying an iteration technique
it follows that

´

R2 |u|
q dx = 0. If p is large “enough” , we will take the derivatives of

the equations and use a Caccioppoli-type inequality to obtain a locally finite energy
estimate for the second order derivatives , from which, by Sobolev imbedding theorem
it follows that u ∈ L∞(R2,R2). Thus, in view of the recent result of [Zha13], u must
be a constant vector.
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Our notation are standard. Throughout this paper, the convention of summation
with respect to indices repeated twice is used. All constants are denoted by the
symbol C, and C may change from line to line. Whenever it is necessary we will
indicate the dependence of C on parameters. As usual QR(x0) denotes the open
square with center x0 and side length 2R, and the symbols : , · will be used for
the scalar product of matrices and vectors respectively. |· | denotes the associated
Euclidean norms.

Our paper is organized as follows: in Section 2 we present some auxiliary results,
in Section 3 we give the proof of Theorem 1.1 and in Section 4 we give the proof of
Theorem 1.2.

2. Auxiliary results

2.1. Properties of the function h. The following properties of the function
h follow from (A1)–(A3) in an elementary way, see [Fuc12b]:

(i) µ(t) = h′(t)
t

is an increasing function.
(ii) we have h(0) = h′(0) = 0 and

(2.1) h(t) ≥
1

2
h′′(0)t2.

Moreover,

(2.2)
h′(t)

t
≥ lim

s→0

h′(s)

s
= h′′(0) > 0.

(iii) The function h satisfies the balancing condition, i.e.

(2.3)
1

a
h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0.

(iv) For some exponent m ≥ 2 and a constant C ≥ 0 it holds

(2.4) h(t) ≤ C(1 + tm), h′(t) ≤ C(1 + tm−1), t ≥ 0.

From the assumptions on h and the definition of H stated in (1.2) we deduce the
following estimate valid for all ε, σ ∈ S2

(2.5)
h′(|ε|)

|ε|
|σ|2 ≤ D2H(ε)(σ, σ) ≤ h′′(|ε|)|σ|2,

from which, together with (2.2), it follows that

(2.6) D2H(ε)(σ, σ) ≥ h′′(0)|σ|2.

The next lemma is taken from Lemma 2.5 in [Fuc12b].

Lemma 2.1. There is a number τ ∈ (1, 2] such that

h′(t) ≤ C(h(t)
1
τ + 1)

or equivalently

|DH(|ε(u)|)| ≤ C(H(|ε(u)|)
1
τ + 1)

holds for all t ≥ 0 and ε ∈ S2. Moreover we even have the sharper estimate

h′(t) ≤ C(h(t)
1
τ + t), t ≥ 0.

Remark 2.2. If h(t) = ν
2
t2, obviously, we can choose τ = 2; for general case

h(t) = µt2(1 + t)m, m > 0, we can choose 1 < τ = m+2
m+1

< 2.
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2.2. Divergence equation and Korn’s inequality. First, we recall a standard
result concerning the “divergence equation”, see e.g. [Gal94a], [Gal94b] or [FS00].

Lemma 2.3. Consider a function f ∈ Lq(QR(z)) for some q > 1 such that
´

QR(z)
f dx = 0. Then there exists a field v ∈ W

1,q
0 (QR(z),R

2) and a constant C(q)

independent of QR(z) such that we have div v = f on QR(z) together with the

estimate
ˆ

QR(z)

|Dv|q dx ≤ C(q)

ˆ

QR(z)

|f |q dx.

We have the following Korn-type inequalities (compare [Tem83]):

Lemma 2.4. There is an absolute constant C such that for all v ∈ W
1,2
0 (QR(z),

R
2) it holds

ˆ

QR(z)

|Dv|2 dx ≤ C

ˆ

QR(z)

|ε(v)|2 dx

and for any v ∈ W 1,2(QR(z),R
2) we have

ˆ

QR(z)

|Dv|2 dx ≤ C

(
ˆ

QR(z)

|ε(v)|2 dx+
1

R2

ˆ

QR(z)

|v|2 dx

)

.

2.3. Ladyzhenskaya’s inequality and the Sobolev–Poincaré estimate.

We start with a version of the Sobolev inequality in the plane, see [GT83].

Lemma 2.5. Let x0 ∈ R
2, R > 0 and u ∈ W 1,2(QR(x0)). Then, for any q > 1,

there exists a constant C(q) depending only on q such that the following inequality

holds
(

1

R2

ˆ

QR(x0)

|u|q dx

)
1
q

≤ C(q)

{(
ˆ

QR(x0)

|Du|2 dx

)
1
2

+

(

1

R2

ˆ

QR(x0)

|u|2 dx

)
1
2
}

.

We believe that the following result exists somewhere, because it is an easy
consequence of Ladyzhenskaya’s inequality. However, it is hard to trace, so we will
state and prove it below.

Lemma 2.6. Suppose v ∈ W 1,2(QR(x0)). Then there exists a constant C0 inde-

pendent of R, x0 such that
ˆ

QR(x0)

|v|4 dx ≤ C0

{
ˆ

QR(x0)

|v|2 dx

ˆ

QR(x0)

|Dv|2 dx+
1

R2

(
ˆ

QR(x0)

|v|2 dx

)2}

.

Proof. For any x0 ∈ R
2 and u ∈ W 1,2(Q1(x0)), there exists an extension ũ ∈

W
1,2
0 (Q2(x0)) of u s.t.

(2.7) ‖ũ‖L2(Q2(x0)) ≤ C‖u‖L2(Q1(x0))

and

(2.8) ‖ũ‖
W

1,2
0 (Q2(x0))

≤ C‖u‖W 1,2(Q1(x0)),

where C is an absolute constant. We refer the reader to [Eva98].
Moreover, by Ladyzhenskaya’s inequality (see [Lad69], Lemma 1 on p. 8) we have

(2.9)

ˆ

Q2(x0)

|ũ|4 dx ≤ 2

ˆ

Q2(x0)

|ũ|2 dx

ˆ

Q2(x0)

|Dũ|2 dx.
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Putting together the estimates (2.7), (2.8) and (2.9) we deduce
ˆ

Q2(x0)

|ũ|4 dx ≤ C

(
ˆ

Q1(x0)

|Du|2 dx+

ˆ

Q1(x0)

|u|2 dx

)
ˆ

Q1(x0)

|u|2d x

≤ C

{
ˆ

Q1(x0)

|u|2 dx

ˆ

Q1(x0)

|Du|2 dx+

(
ˆ

Q1(x0)

|u|2 dx

)2}

,

from which it follows that

(2.10)

ˆ

Q1(x0)

|u|4 dx ≤ C

{
ˆ

Q1(x0)

|u|2dx

ˆ

Q1(x0)

|Du|2 dx+

(
ˆ

Q1(x0)

|u|2 dx

)2}

.

Now, if u(x) ∈ W 1,2(QR(x0)) and v(x) := u(Rx), then v ∈ W 1,2(Q1(x0)). Apply-
ing (2.10) and recalling the change of variable formula we end up with
ˆ

QR(x0)

|u|4 dx ≤ C

{
ˆ

QR(x0)

|u|2 dx

ˆ

QR(x0)

|Du|2 dx+
1

R2

(
ˆ

QR(x0)

|u|2 dx

)2}

. �

2.4. A lemma of Gilbarg and Weinberger. The following result is due to
Gilbarg and Weinberger, see Lemma 2.1 in [GW78].

Lemma 2.7. Let f ∈ C1 in {x ∈ R
2 | |x| = r > r0 > 0} with finite Dirichlet

integral in the sense that
ˆ

r>r0

|Df |2 dx dy < ∞.

Then

lim
r→∞

1

log r

ˆ 2π

0

f(r, θ)2 dθ = 0.

2.5. A lemma of Giaquinta and Modica. The following ε-lemma goes back
to the work of Giaquinta and Modica [GM82]. Recently, Fuchs and the author proved
some generalizations of the ε-lemma in [FZ12]. For proving our results, we need the
following more general type of the ε-lemma.

Lemma 2.8. Let f, f1, . . . , fl denote non-negative functions from the space

L1
loc(R

2). Suppose further that we are given exponents α1, . . . , αl > 0, β1, . . . , βl > 1.
Suppose that, for any x0 ∈ R

2, Q = Q2R(x0), we can find δ > 0 depending on

α1, . . . , αl > 0 such that

ˆ

Qr(z)

f dx ≤ δ

ˆ

Q2r(z)

f dx+ C(δ)

l
∑

j=1

r−αj

(
ˆ

Q2r(z)

fj dx

)βj

holds for any choice Q2r(z) ⊂ Q2R(x0). Then there is a constant C independent of δ

and R with the property

ˆ

QR(x0)

f dx ≤ C

l
∑

j=1

R−αj

(
ˆ

Q2R(x0)

fj dx

)βj

.

Remark 2.9. The proof of Lemma 2.8 is almost the same as that of the corre-
sponding statement in the appendix of [FZ12] with the slight difference that

´

Q2r(z)
fj

dx has to be replaced by (
´

Q2r(z)
fj dx)

βj . For overcoming this minor difficulty , we
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just need to notice the validity of the estimate
(
ˆ

Q2r(z)

fj dx

)βj

≤

(
ˆ

Q2R(x0)

fj dx

)βj−1 ˆ

Q2r(z)

fj dx.

2.6. A Liouville theorem. We recall the following Liouville theorem for
solutions of (1.1) established in [Zha13], which plays an important role in proving
Theorem 1.2.

Lemma 2.10. Suppose that u ∈ C1(R2,R2)
⋂

L∞(R2,R2) is an entire weak

solution of (1.1). Then u is a constant vector.

3. Proof of Theorem 1.1

In view of u ∈ C1(R2,R2) and with the help of the ellipticity estimate (2.5), by
standard difference quotient technique we have that u ∈ W

2,2
loc (R

2,R2), see [Fuc12b],
[Zha13]. The proof of Theorem 1.1 is divided into the following three lemmas.

Lemma 3.1. Let u ∈ C1(R2,R2) be an entire weak solution of (1.1) satisfying

the condition
´

R2 h(|Du|) dx < ∞. Then, for any x0 ∈ R
2, R > 0, the following

energy estimate of the solution holds
ˆ

QR(x0)

W dx ≤ C

{

1

R2

ˆ

Q2R(x0)

h(|ε(u)|) dx+
1

R2

ˆ

Q2R(x0)

|Du|2 dx

+

(

1 +
1

R2m

)

+
1

R3

ˆ

Q2R(x0)

|u| dx

}

,

(3.1)

where W = D2H(ε(u))(ε(∂ku), ε(∂ku)), m > 0 denotes a suitable positive number

defined by the condition (2.4), C is a constant independent of x0, R.

Proof. For any cut-off function η ∈ C∞
0 (R2) with 0 ≤ η ≤ 1, the following

estimate is obtained in [Zha13](see (3.9) in this reference)
ˆ

R2

D2H(ε(u))(ε(∂ku), ε(∂ku))η
2 dx

≤ C

{
ˆ

R2

h(|ε(u)|)|Dη|2 dx+

ˆ

R2

h′(|ε(u)|)2(|Dη|2 + |D2η|) dx

+

ˆ

R2

|Du|2(|Dη|2 + |D2η|) dx+

ˆ

R2

|Du|2|u||Dη| dx

}

.

(3.2)

Now, for any x ∈ Q2R(x0), r > 0 such that Q2r(x) ⊂ Q2R(x0) and η ∈ C∞
0 (Q 3

2
r(x))

satisfying η = 1 in Qr(x) and 0 ≤ η ≤ 1, |Dη| ≤ 4
r
, |D2η| ≤ 16

r2
, we deduce from (3.2)

that
ˆ

Qr(x)

Wdx ≤ C

{

1

r2

ˆ

Q 3
2 r

(x)

h(|ε(u)|) dx+
1

r2

ˆ

Q 3
2 r

(x)

h′(|ε(u)|)2 dx

+
1

r2

ˆ

Q 3
2 r

(x)

|Du|2 dx+
1

r

ˆ

T 3
2 r

(x)

|Du|2|u| dx

}

,

(3.3)

where T 3
2
r(x) = Q 3

2
r(x) \Qr(x).
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For the term 1
r2

´

Q 3
2 r

(x)
h′(|ε(u)|)2 dx, the following estimate has been obtained in

formula (3.16) of [Zha13], where L denotes some positive number:

1

r2

ˆ

Q 3
2 r

(x)

h′(|ε(u)|)2 dx ≤ Ch′(L)2 + C
1

L2

1

r4

(
ˆ

Q2r(x)

h(|ε(u)|) dx

)2

+ C
1

r2
1

L2

ˆ

Q2r(x)

h(|ε(u)|) dx

ˆ

Q2r(x)

W dx.

(3.4)

Choosing L = 1

ε
1
2 r

, ε < 1, we deduce from (3.4) that

1

r2

ˆ

Q 3
2 r

(x)

h′(|ε(u)|)2 dx ≤ Ch′

(

1

ε
1
2 r

)2

+ C
1

r2

(
ˆ

Q2r(x)

h(|ε(u)|) dx

)2

+ Cε

ˆ

Q2r(x)

h(|ε(u)|) dx

ˆ

Q2r(x)

W dx.

(3.5)

It remains to discuss the term 1
r

´

T 3
2 r

(x)
|u||Du|2 dx. Letting A = −

´

T 3
2 r

(x)
|Du|2 dx

and B = −

´

T 3
2 r

(x)
u dx, we have

1

r

ˆ

T 3
2 r

(x)

|Du|2|u| dx ≤
1

r

ˆ

T 3
2 r

(x)

||Du|2 −A||u− B| dx

+
1

r
|B|

ˆ

T 3
2 r

(x)

|Du|2 dx+
1

r
|A|

ˆ

T 3
2 r

(x)

|u−B| dx.

(3.6)

Using the definitions of A, B and applying Young’s inequality in (3.6) we obtain, for
ε > 0,

1

r

ˆ

T 3
2 r

(x)

|Du|2|u| dx ≤ ε

ˆ

T 3
2 r

(x)

||Du|2 −A|2 dx+
1

ε

1

r2

ˆ

T 3
2 r

(x)

|u− B|2 dx

+
C

r3

ˆ

T 3
2 r

(x)

|Du|2d x

ˆ

T 3
2 r

(x)

|u| dx.

(3.7)

Applying Poincaré’s inequality in (3.7) we find

1

r

ˆ

T 3
2 r

(x)

|Du|2|u| dx ≤ ε

(
ˆ

T 3
2 r

(x)

D(|Du|2) dx

)2

+
1

ε

ˆ

T 3
2 r

(x)

|Du|2 dx

+
C

r3

ˆ

T 3
2 r

(x)

|Du|2 dx

ˆ

T 3
2 r

(x)

|u| dx,

(3.8)

from which, together with Hölder’s inequality, it follows that

1

r

ˆ

T 3
2 r

(x)

|Du|2|u| dx ≤ ε

ˆ

T 3
2 r

(x)

|Du|2 dx

ˆ

T 3
2 r

(x)

|D2u|2 dx

+
1

ε

ˆ

T 3
2 r

(x)

|Du|2 dx+
C

r3

ˆ

T 3
2 r

(x)

|Du|2 dx

ˆ

T 3
2 r

(x)

|u| dx.

(3.9)
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Combining (3.3), (3.5) and (3.9) and observing the inequality |D2u(x)| ≤ C|Dε(x)|
≤ CW (x) we deduce that

ˆ

Qr(x)

W dx

≤ Cε

ˆ

T 3
2 r

(x)

|Du|2 dx

ˆ

Q2r(x)

W dx+ Cε

ˆ

Q2r(x)

h(|ε(u)|) dx

ˆ

Q2r(x)

W dx

+
C

r2

ˆ

Q2r(x)

h(|ε(u)|) dx+
C

r2

ˆ

Q2r(x)

|Du|2 dx+ Ch′

(

1

ε
1
2 r

)2

+
C

r2
(

ˆ

Q2r(x)

h(|ε(u)|) dx)2 +
C

ε

ˆ

T 3
2 r

(x)

|Du|2 dx

+
C

r3

ˆ

T 3
2 r

(x)

|Du|2 dx

ˆ

T 3
2 r

(x)

|u| dx.

(3.10)

Since
´

R2 |Du|2 dx ≤ C
´

R2 h(|Du|) dx < ∞, choosing ε small enough and letting

δ := Cε < 1
2

we find from (3.10) that
ˆ

Qr(x)

W dx ≤ δ

ˆ

Q2r(x)

W dx+
C

r2

ˆ

Q2r(x)

h(|ε(u)|) dx+
C

r2

ˆ

Q2r(x)

|Du|2 dx

+ C

ˆ

T 3
2 r

(x)

|Du|2 dx+ Ch′

(

1

ε
1
2 r

)2

+
C

r3

ˆ

Q 3
2 r

(x)

|u| dx.
(3.11)

In view of the condition (2.4) and on account of the inequality
´

R2 |Du|2 dx ≤
C
´

R2 h(|Du|) dx < ∞ it follows that
ˆ

Qr(x)

W dx ≤ δ

ˆ

Q2r(x)

W dx+
C

r2

ˆ

Q2r(x)

h(|ε(u)|) dx+
C

r2

ˆ

Q2r(x)

|Du|2 dx

+ C(1 +
1

rm
) +

C

r3

ˆ

Q2r(x)

|u| dx.

(3.12)

By Lemma 2.6 we end up with
ˆ

QR(x0)

W dx ≤ C

{

1

R2

ˆ

Q2R(x0)

h(|ε(u)|) dx+
1

R2

ˆ

Q2R(x0)

|Du|2 dx

+

(

1 +
1

Rm

)

+
1

R3

ˆ

Q2R(x0)

|u| dx

}

,

(3.13)

and (3.13) corresponds to our claim (3.1). �

Lemma 3.2. Let u satisfy the same conditions as stated in Lemma 3.1. Then

the following estimate holds

(3.14)

ˆ

R2

D2H(ε(u))(ε(∂ku), ε(∂ku)) dx < ∞,

and in conclusion

(3.15)

ˆ

R2

|D2u|2 dx < ∞.



898 Guo Zhang

Proof. Since
´

R2 h(|Du|) dx =: M < ∞, for R > 1, (3.13) gives

(3.16)

ˆ

QR(x0)

W dx ≤ C(M) +
C

R3

ˆ

Q2R(x0)

|u| dx.

Since u ∈ C1(R2,R2) and
´

R2 |Du|2dx ≤ C
´

R2 h(|Du|)dx < ∞, using Lemma 2.3
we deduce that

(3.17) lim sup
R→∞

1

R3

ˆ

Q2R(x0)

|u|dx = 0.

Letting R → ∞ in (3.16) we have

(3.18)

ˆ

R2

Wdx < ∞.

Since |D2u(x)| ≤ C|Dε(u)(x)|, (3.18) implies (3.15). Thus, the proof is complete. �

Lemma 3.3. Let u satisfy the same conditions as stated in Lemma 3.1. Then

we have

(3.19)

ˆ

R2

W dx = 0,

hence, u must be a constant vector.

Proof. From
´

R2 |Du|2 dx ≤ C
´

R2 h(|Du|) dx < ∞, it follows that lim
r→∞

´

T 3
2 r

(x)

|Du|2 dx = 0. In view of the condition h′(0) = 0 and (3.17), taking x = 0 in (3.11)
and letting r → ∞ in (3.11) we have

(3.20)

ˆ

R2

W+, dx ≤
1

2

ˆ

R2

W dx,

from which, together with the estimate (3.18), it follows that

(3.21)

ˆ

R2

Wdx = 0.

Obviously, (3.22) implies W (x) = 0. From the relation |D2u(x)|2 ≤ C|Dε(x)|2 ≤
CW (x), we know that D2u(x) = 0. Therefore u must be an affine function. On
the other hand, in view of the inequality

´

R2 |Du|2 dx ≤ C
´

R2 h(|Du|) dx < ∞, we
obtain Du(x) = 0, thus, u is a constant vector. �

4. Proof of 1.2

Under the integrability condition of |u|p, for obtaining a Liouville type theorem
for the solutions u of (1.1), we should verify that the first order derivatives energy
quantity as well as the second order derivatives energy term are controlled by the
integral of |u|p. The details are stated below and the proof of 1.2 is broken into the
following four lemmas.
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Lemma 4.1. Let u ∈ C1(R2,R2) be an entire weak solution of (1.1). Then, for

any x0 ∈ R
2, R > 0, the following energy estimate holds
ˆ

QR(x0)

h(|ε(u)|) dx ≤ C

{

1

Rτ ′

ˆ

Q2R(x0)

|u|τ
′

dx+
1

R2

ˆ

Q2R(x0)

|u|2 dx

+
1

R2

(
ˆ

Q2R(x0)

|u|2 dx

)2}

.

(4.1)

Proof. For any x0 ∈ R
2, R > 0 and x ∈ Q2R(x0), r > 0 s.t. Q2r(x) ⊂ Q2R(x0),

we choose the cut-off function η ∈ C∞
0 (Q 3

2
r(x)) as done in the proof of Lemma 3.1

and find a solution ̟ to the following equation

(4.2) div̟ = div(uη2) = u ·Dη2 on Q2r(x)

s.t.

(4.3) spt̟ ⊂ Q 3
2
r(x)

and for any q > 1, the following estimate holds

(4.4) ‖̟‖W 1,q(Q 3
2 r

(x)) ≤ C(q)‖u ·Dη2‖Lq(Q 3
2 r

(x)).

Taking the test function ϕ = uη2 −̟ in (1.1) we obtain
ˆ

R2

DH(ε(u)) : ε(uη2) dx−

ˆ

R2

DH(ε(u)) : ε(̟) dx−

ˆ

R2

uiuj

∂i(u
jη2) dx+

ˆ

R2

uiuj∂i̟
j dx = 0.

(4.5)

Hence,
ˆ

R2

DH(ε(u)) : ε(u)η2 dx = −

ˆ

R2

DH(ε(u)) : u⊗Dη2 dx+

ˆ

R2

DH(ε(u))

: ε(̟) dx+

ˆ

R2

uiuj∂i(u
jη2) dx−

ˆ

R2

uiuj∂i̟
j dx

=: I + II + III + IV.

(4.6)

Recalling the definition of H and the properties of η and applying Lemma 2.4 and
Young’s inequality, for any 0 < δ < 1, we have

I ≤

ˆ

R2

h′(|ε(u)|)|u||Dη| dx≤ C

ˆ

R2

(

h(|ε(u)|)
1
τ + |ε(u)|

)

|u||Dη| dx

≤ δ

ˆ

Q 3
2 r

(x)

h(|ε(u)|) dx+ C(τ, δ)

{

1

r2

ˆ

Q 3
2 r

(x)

|u|2 dx+
1

rτ
′

ˆ

Q 3
2 r

(x)

|u|τ
′

dx

}

.
(4.7)

Using the same way to deal with II, we obtain

II ≤δ

ˆ

Q 3
2 r

(x)

h(|ε(u)|) dx+ C(τ, δ)

{

1

r2

ˆ

Q 3
2 r

(x)

|ε(̟)|2 dx

+
1

rτ
′

ˆ

Q 3
2 r

(x)

|ε(̟)|τ
′

dx

}

.

(4.8)
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Putting together the estimates (4.4) and (4.8) we find

(4.9) II ≤ δ

ˆ

Q 3
2 r

(x)

h(|ε(u)|) dx+ C(τ, δ)

{

1

r2

ˆ

Q 3
2 r

(x)

|u|2 dx+
1

rτ
′

ˆ

Q 3
2 r

(x)

|u|τ
′

dx

}

.

For III, using the condition divu = 0 and Young’s inequality we deduce by integra-
tion by parts that, for any ε > 0,

III =

ˆ

R2

uiuj∂i(u
jη2) dx =

ˆ

R2

uiuj∂iu
jη2 dx+

ˆ

R2

uiujuj∂iη
2 dx

=

ˆ

R2

|u|2

2
u ·Dη2 ≤

C

r

ˆ

Q 3
2 r

(x)

|u|3 dx

≤ ε

ˆ

Q 3
2 r

(x)

|u|4 dx+
C

εr2

ˆ

Q 3
2 r

(x)

|u|2 dx.

(4.10)

It remains to deal with IV . By Young’s inequality and (4.4) we have

(4.11) IV ≤ ε

ˆ

Q 3
2 r

(x)

|u|4 dx+
C

εr2

ˆ

Q 3
2 r

(x)

|u|2 dx.

Furthermore, from Lemma 2.5 it follows that

(4.12)

ˆ

Q 3
2 r

(x)

|u|4 dx ≤ C0

ˆ

Q 3
2 r

(x)

|u|2 dx

ˆ

Q 3
2 r

(x)

|Du|2 dx+
C0

r2





ˆ

Q 3
2 r

(x)

|u|2 dx





2

.

Choosing ε =
δ

C0(1 +
´

Q 3
2 r

(x)
|u|2dx)

, we have the following valid estimate for III

and IV ,

III, IV

≤ δ

ˆ

Q 3
2 r

(x)

|Du|2 dx+ C(δ)







1

r2

ˆ

Q 3
2 r

(x)

|u|2 dx+
1

r2





ˆ

Q 3
2 r

(x)

|u|2 dx





2





.
(4.13)

Now, we want to give an appropriate control for the term
´

Q 3
2 r

(x)
|Du|2 dx. Choosing

the cut-off function ξ s.t. ξ ∈ C∞
0 (Q2r(x)), 0 ≤ ξ ≤ 1, ξ = 1 on Q 3

2
r(x) and |Dξ| ≤ 4

r
,

we deduce from Lemma 2.2 that

ˆ

Q 3
2 r

(x)

|Du|2 dx ≤

ˆ

Q2r(x)

|D(uξ)|2 dx ≤ C

ˆ

Q2r(x)

|ε(uξ)|2 dx

≤ C

ˆ

Q2r(x)

|ε(u)|2 dx+
C

r2

ˆ

Q2r(x)

|u|2 dx.

(4.14)
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Putting together the estimates (4.6), (4.7), (4.9), (4.13) and (4.14) and using the
relation h(ε(u)) ≥ 1

2
h′′(0)|ε(u)|2, h′′(0) > 0 we have

ˆ

R2

DH(ε(u)) : ε(u)η2 dx ≤ Cδ

ˆ

Q2r(x)

h(|ε(u)|) dx

+ C(δ, τ)

{

1

rτ
′

ˆ

Q 3
2 r

(x)

|u|τ
′

dx+
1

r2

ˆ

Q2r(x)

|u|2 dx+
1

r2

(
ˆ

Q2r(x)

|u|2 dx

)2}

.

(4.15)

Recalling the definition of η and the condition (2.3) and choosing δ small enough we
obtain

ˆ

Qr(x)

h(|ε(u)|) dx ≤ Cδ

ˆ

Q2r(x)

h(|ε(u)|) dx+ C(τ)

{

1

rτ
′

ˆ

Q2r(x)

|u|τ
′

dx

+
1

r2

ˆ

Q2r(x)

|u|2 dx+
1

r2

(
ˆ

Q2r(x)

|u|2 dx

)2}

,

from which, together with Lemma 2.6, it follows that

ˆ

QR(x0)

h(|ε(u)|) dx ≤ C

{

1

Rτ ′

ˆ

Q2R(x0)

|u|τ
′

dx+
1

R2

ˆ

Q2R(x0)

|u|2 dx

+
1

R2

(
ˆ

Q2R(x0)

|u|2 dx

)2}

,

and (4.1) is established. �

Lemma 4.2. Let u ∈ C1(R2,R2) be an entire weak solution of (1.1) and assume

that 2 ≤ τ ′ < 4. Then, for any x0 ∈ R
2, R > 0 we have

ˆ

QR(x0)

h(|ε(u)|) dx ≤ C(τ)

{

1

R2

ˆ

Q2R(x0)

|u|2 dx+
1

Rτ̄

ˆ

Q2R(x0)

|u|2 dx

+
1

R2

(
ˆ

Q2R(x0)

|u|2 dx

)2

+
1

Rτ̄

(
ˆ

Q2R(x0)

|u|2 dx

)τ⋆+1}

.

(4.16)

where τ̄ = 2τ ′

4−τ ′
≥ 2 and τ ⋆ = τ ′−2

4−τ ′
.

Proof. Returning to (4.15), we just need to control 1
rτ

′

´

Q 3
2 r

(x)
|u|τ

′

dx. By Young’s

inequality we have, for any ε > 0,

(4.17)
1

rτ
′

ˆ

Q 3
2 r

(x)

|u|τ
′

dx ≤ ε

ˆ

Q 3
2 r

(x)

|u|4 dx+ C(τ)
1

ετ
⋆

1

rτ̄

ˆ

Q 3
2 r

(x)

|u|2 dx.

Moreover, by Lemma 2.5 we find

(4.18)

ˆ

Q 3
2 r

(x)

|u|4 dx ≤ C0

ˆ

Q 3
2 r

(x)

|u|2 dx

ˆ

Q 3
2 r

(x)

|Du|2 dx+C0
1

r2

(
ˆ

Q 3
2 r

(x)

|u|2 dx

)2

.
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Thus, putting together the estimates (4.17), (4.18) we have

1

rτ
′

ˆ

Q 3
2 r

(x)

|u|τ
′

dx ≤ εC0

ˆ

Q 3
2 r

(x)

|u|2 dx

ˆ

Q 3
2 r

(x)

|Du|2 dx

+ εC0
1

r2

(
ˆ

Q 3
2 r

(x)

|u|2 dx

)2

+ C(τ)
1

ετ
⋆

1

rτ̄

ˆ

Q 3
2 r

(x)

|u|2 dx.

(4.19)

Letting ε =
δ

C0(1 +
´

Q 3
2 r

(x)
|u|2dx)

and combining the estimates (4.15), (4.19), in

view of η = 1 in Qr(x), we end up with
ˆ

Qr(x)

h(|ε(u)|) dx ≤ Cδ

ˆ

Q2r(x)

h(|ε(u)|) dx+ δ

ˆ

Q 3
2 r

(x)

|Du|2 dx

+ C(τ, δ)

{

1

r2

ˆ

Q2r(x)

|u|2 dx+
1

rτ̄

ˆ

Q2r(x)

|u|2 dx

+
1

r2

(
ˆ

Q2r(x)

|u|2 dx

)2

+
1

rτ̄

(
ˆ

Q2r(x)

|u|2 dx

)τ⋆+1}

.

(4.20)

Now, we just need to repeat the steps after (4.13) in the proof of Lemma 4.1 and
Lemma 4.2 is established. �

Lemma 4.3. Let u ∈ C1(R2,R2) be an entire weak solution of (1.1), then the

following results hold:

(a) If 2 ≤ τ ′ ≤ 3 and u ∈ Lp(R2,R2), 1 < p < 2, then u must be the zero vector.

(b) If 3 < τ ′ < 4 and u ∈ Lp(R2,R2), τ ′ − 2 < p < 2, then u must vanish

identically.

Proof. For any q > 2, by Lemma 2.8 we have

(4.21)

ˆ

QR(x0)

|u|q dx ≤ C(q)

{

R2

(
ˆ

QR(x0)

|Du|2 dx

)
q

2

+
R2

Rq

(
ˆ

QR(x0)

|u|2 dx

)
q

2
}

,

from which, together with Lemma 2.8, it follows that

(4.22)

ˆ

QR(x0)

|u|q dx ≤ C(q)

{

R2

(
ˆ

QR(x0)

|ε(u)|2 dx

)
q

2

+
R2

Rq

(
ˆ

QR(x0)

|u|2 dx

)
q

2
}

.

Combining (4.16) and (4.22) we obtain

ˆ

QR(x0)

|u|q dx ≤ C(q)

{

R2

(
ˆ

QR(x0)

h(ε(u)) dx

)
q

2

+
R2

Rq

(
ˆ

QR(x0)

|u|2 dx

)
q

2
}

≤ C(τ, q)

{

R2

Rq

(
ˆ

Q2R(x0)

|u|2 dx

)
q

2

+
R2

Rτ̄
q

2

(
ˆ

Q2R(x0)

|u|2 dx

)
q

2

+
R2

Rq

(
ˆ

Q2R(x0)

|u|2 dx

)q

+
R2

Rτ̄ q

2

(
ˆ

Q2R(x0)

|u|2 dx

)
q

2
(τ⋆+1)}

.

(4.23)
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On the other hand, for 1 < p < 2, Hölder’s inequality gives

(4.24)

ˆ

Q2R(x0)

|u|2 dx ≤

(
ˆ

Q2R(x0)

|u|p dx

)
1
p′
(
ˆ

Q2R(x0)

|u|q dx

)
1
q′

,

where 1
p′
=

1− 2
q

p( 1
p
− 1

q
)
, 1

q′
=

2
p
−1

q( 1
p
− 1

q
)
. Putting together the estimates (4.23) and (4.24) we

deduce
ˆ

QR(x0)

|u|q dx ≤ C(τ, q)

{

R2

Rq

(
ˆ

Q2R(x0)

|u|pdx

)
q

2p′
(
ˆ

Q2R(x0)

|u|q dx

)
q

2q′

+
R2

Rτ̄
q

2

(
ˆ

Q2R(x0)

|u|p dx

)
q

2p′
(
ˆ

Q2R(x0)

|u|q dx

)
q

2q′

+
R2

Rq

(
ˆ

Q2R(x0)

|u|p dx

)
q

p′
(
ˆ

Q2R(x0)

|u|q dx

)
q

q′

+
R2

Rτ̄
q

2

(
ˆ

Q2R(x0)

|u|p dx

)
q(τ⋆+1)

2p′
(
ˆ

Q2R(x0)

|u|q dx

)
q(τ⋆+1)

2q′
}

.

(4.25)

Since lim
q→∞

q

q′
= lim

q→∞

2
p
−1

1
p
− 1

q

= 2 − p and lim
q→∞

q(τ⋆+1)
2q′

= 2−p

4−τ ′
, if 2 ≤ τ ′ ≤ 3, 1 < p < 2

or 3 < τ ′ < 4, τ ′ − 2 < p < 2, then we always have 2 − p < 1 and 2−p

4−τ ′
< 1. Hence

we can choose q large enough s.t. q

q′
< 1, q(τ⋆+1)

2q′
< 1. Thus, for any δ > 0, using

Young’s inequality in (4.25) we have
ˆ

QR(x0)

|u|q dx ≤ δ

ˆ

Q2R(x0)

|u|q dx+ C(τ, δ, q)

{(

R2

Rq

)α1
(
ˆ

Q2R(x0)

|u|p dx

)β1

+

(

R2

Rτ̄
q

2

)α2
(
ˆ

Q2R(x0)

|u|p dx

)β2

+

(

R2

Rq

)α3
(
ˆ

Q2R(x0)

|u|p dx

)β3

+

(

R2

Rτ̄
q

2

)α4
(
ˆ

Q2R(x0)

|u|p dx

)β4
}

,

(4.26)

where αi, βi, 1 ≤ i ≤ 4, are positive numbers.
By Lemma 2.6 we obtain

ˆ

QR(x0)

|u|q dx ≤ C(τ, q)

{(

R2

Rq

)α1
(
ˆ

Q2R(x0)

|u|p dx

)β1

+

(

R2

Rτ̄
q

2

)α2
(
ˆ

Q2R(x0)

|u|p dx

)β2

+

(

R2

Rq

)α3
(
ˆ

Q2R(x0)

|u|p dx

)β3

+

(

R2

Rτ̄
q

2

)α4
(
ˆ

Q2R(x0)

|u|p dx

)β4
}

.

(4.27)

Letting R → ∞ in (4.27) and observing
´

R2 |u|
p dx < ∞ we deduce that

ˆ

R2

|u|q dx = 0,

therefore, u = 0, the proof is complete. �
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Lemma 4.4. Let u ∈ C1(R2,R2) be an entire weak solution of (1.1). Then the

following results hold

(a) If 2 ≤ τ ′ < 4 and u ∈ Lp(R2,R2), p ≥ 2, then u must the zero vector.

(b) If τ ′ ≥ 4 and u ∈ Lτ ′(R2,R2), then u vanishes identically.

Proof. For obtaining (a), we will first show that the integrals of h(|ε(u)|) and
|Du|2 are both locally uniformly bounded. In fact, for any x0 ∈ R

2, choosing R = 2
in (4.16) and recalling the conditions (2.1) and (2.2) we obtain

(4.28)

ˆ

Q2(x0)

|ε(u)|2 dx ≤ C

ˆ

Q2(x0)

h(|ε(u)|) dx ≤ C(‖u‖Lp, τ), ∀x0 ∈ R
2,

from which, together with Lemma 2.4, it follows

(4.29)

ˆ

Q2(x0)

|Du|2 dx ≤ C(‖u‖Lp, τ), ∀x0 ∈ R
2.

Secondly, observing that we just need the fact that the integrals of h(|ε(u)|) and
|Du|2 are both locally uniformly bounded in order to carry out the proof of Lemma
3.1 we deduce

ˆ

Q1(x0)

W dx ≤ C(‖u‖Lp, τ)

{
ˆ

Q2(x0)

h(|ε(u)|) dx

+

ˆ

Q2(x0)

|Du|2 dx+ 1 +

ˆ

Q2(x0)

|u| dx

}

.

(4.30)

Putting together the estimates (4.28), (4.29), (4.30) and recalling the condition u ∈
Lp(R2,R2), p ≥ 2 we have

(4.31)

ˆ

Q1(x0)

|D2u|2 dx ≤ C

ˆ

Q1(x0)

|Dε(u)|2 dx ≤ C

ˆ

Q1(x0)

W dx ≤ C(‖u‖Lp, τ),

where the inequality |D2u(x)| ≤ C|Dε(u)(x)| is used.
In view of (4.31) and Sobolev’s imbedding theorem we know u ∈ L∞(R2,R2).

Hence, by Lemma 2.7, we know that u must be a constant vector. Since u ∈
Lp(R2,R2), then u = 0.

Thus the proof of (a) is complete. For (b), observing Lemma 4.1 and the condition
u ∈ Lτ ′(R2,R2), we just need to repeat the above steps. �

Remark 4.1. If u ∈ C1(R2,R2) is an entire weak solution of (1.1) and
ˆ

R2

h(|ε(u)|) dx < ∞,

u may not be a constant vector. One counter example is given by u1 = −y, u2 = x.
But if the integrals of |u|p, p ≥ 1 and h(|ε(u)|) are both locally uniformly bounded,
then by Lemma 3.1 we know that u ∈ L∞(R2,R2). Hence u is a constant vector.
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