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Abstract. We are concerned with the following Schrödinger–Poisson equation with critical
nonlinearity:

{

−ε2∆u+ V (x)u + ψu = λ|u|p−2u+ |u|4u in R
3,

−ε2∆ψ = u2 in R
3, u > 0, u ∈ H1(R3),

where ε > 0 is a small positive parameter, λ > 0, 3 < p ≤ 4. Under certain assumptions on the
potential V , we construct a family of positive solutions uε ∈ H1(R3) which concentrates around a
local minimum of V as ε→ 0. Subcritical growth Schrödinger–Poisson equation

{

−ε2∆u + V (x)u + ψu = f(u) in R
3,

−ε2∆ψ = u2 in R
3, u > 0, u ∈ H1(R3),

has been studied extensively, where the assumption for f(u) is that f(u) ∼ |u|p−2u with 4 < p < 6

and satisfies the Ambrosetti–Rabinowitz condition which forces the boundedness of any Palais–

Smale sequence of the corresponding energy functional of the equation. The more difficult critical

case is studied in this paper. As g(u) := λ|u|p−2u + |u|4u with 3 < p ≤ 4 does not satisfy the

Ambrosetti–Rabinowitz condition (∃µ > 4, 0 < µ
´ u

0
g(s) ds ≤ g(u)u), the boundedness of Palais–

Smale sequence becomes a major difficulty in proving the existence of a positive solution. Also, the

fact that the function g(s)
s3

is not increasing for s > 0 prevents us from using the Nehari manifold

directly as usual. The main result we obtained in this paper is new.

1. Introduction and main result

In this paper, we study the following Schrödinger–Poisson equation with critical
nonlinearity:

(1.1)

{

−ε2∆u+ V (x)u+ ψu = λ|u|p−2u+ |u|4u in R
3,

−ε2∆ψ = u2 in R
3, u > 0, u ∈ H1(R3),
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where ε > 0 is a small positive parameter, λ > 0, 3 < p ≤ 4. We assume that the
potential V satisfies:

(V1) V ∈ C(R3,R) and inf
x∈R3

V (x) = α > 0;

(V2) There is a bounded domain Λ such that

V0 := inf
Λ
V < min

∂Λ
V.

We also set M := {x ∈ Λ: V (x) = V0}. Without loss of generality, we may assume
that 0 ∈ M.

Problem (1.1) is a variant of the following Schrödinger–Poisson problem

(1.2)











~2

2m
∆v − v − ωφv + f(v) = 0 in R

3,

∆φ+ 4πωv2 = 0 in R
3,

v, φ > 0, v, φ→ 0 as |x| → ∞,

where ~, m, ω > 0, v, φ : R3 → R, f : R → R. This equation arises in Quantum
Mechanics: in 1998, Benci and Fortunato [7] firstly introduced it as a model to
describe the interaction of a charged particle with the electrostatic field. In (1.2), m
denotes the mass of the particle, ω denotes the electric charge and ~ is a constant
which is known under the name of Planck’s constant. The unknowns of the equation
are the wave function v associated to the particle and the electric potential φ. The
presence of the nonlinear term f(v) simulates the interaction effect among many
particles.

In the last years, there has been a great deal of works dealing with the Schrödinger–
Poisson equations by means of variational tools.

Benci and Fortunato [7] considered the eigenvalue problem for (1.2) of the fol-
lowing form

(1.3)











−1
2
∆u− φu = ωu in Ω,

∆φ = 4πu2 in Ω,

u(x) = 0, φ(x) = g on ∂Ω, ‖u‖L2(Ω) = 1, ω > 0,

where Ω is a bounded set in R
3 and g is a smooth function on the closure Ω̄. They used

a constrained minimization argument to show that, there is a sequence (ωn, un, φn)
with {ωn} ⊂ R, ωn → ∞ and un, φn real functions, solving (1.3).

D’April and Mugnai [18] used a related Pohozaev’s identity to show that there
does not exist nontrivial solutions of the following Schrödinger–Poisson equation

{

−∆u+ u+ λφu = |u|p−2u in R
3,

−∆φ = u2 in R
3,

for p ≤ 2 or p ≥ 6.
D’April and Mugnai [17] used Symmetric Mountain-Pass theorem (see [2]) to

show that the following Klein–Gordon–Maxwell equation
{

−∆u+ [m2 − (ω + eφ)2]u− |u|p−2u = 0 in R
3,

−∆φ + e2u2φ = −eωu2 in R
3

has infinitely many symmetric solutions (un, φn) ∈ H1(R3)×D1,2(R3) with un 6= 0,
φn 6= 0 under the conditions:
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(i) m > ω and 4 ≤ p < 6;
(ii) m

√
p− 2 >

√
2ω > 0 and 2 < p < 4.

Meanwhile, they used Mountain-Pass theorem (see [2]) to show that the Schrödinger–
Poisson equation

{

−∆u + u+ φu = |u|p−2u in R
3,

−∆φ = u2 in R
3

has at least a radially symmetric solution (u, φ) ∈ H1(R3) × D1,2(R3) with u 6= 0
and φ 6= 0.

Ruiz [43] considered the following Schrödinger–Poisson equation:

(1.4)

{

−∆u + u+ λφu = up−1 in R
3,

−∆φ = u2 in R
3,

where λ > 0 is a positive parameter and 2 < p < 6. Ruiz proved that when 2 < p < 3
(respectively p = 3), (1.4) has at least two (respectively one) positive solutions for
λ > 0 small by using the Mountain-Pass theorem (see [2]) and Ekeland’s variational
principle (see [21]) and (1.4) has no nontrivial solution if 2 < p ≤ 3, λ > 1

4
. For the

case 3 < p < 6, it was shown in [43] that there is a positive radial nontrivial solution
to (1.4) by using the constrained minimization method on a new manifold which is
obtained by combining the usual Nehari manifold and the Pohozaev’s identity.

Salvatore [45] studied the following Schrödinger–Poisson equation:

(1.5)

{

−∆u+ u+ λφu = |u|p−2u+ g(x) in R
3,

−∆φ = u2 in R
3,

where λ > 0, p ∈ (4, 6) and g(x) = g(|x|) ∈ L2(R3). The author used Three Critical
Points theorem to show that (1.5) has at least three radially symmetric solutions for
‖g‖L2 small.

Wang and Zhou [49] studied the following problem

(1.6)

{

−∆u + V (x)u+ λφu = f(x, u) in R
3,

−∆φ = u2 in R
3, lim

|x|→∞
φ(x) = 0,

where λ > 0, the nonlinearity f(x, s) is asymptotically linear with respect to s at
infinity. Under certain assumptions on V and f , they prove that (1.6) has a positive
solution for λ small and has no any nontrivial solution for λ large.

Azzollini, D’Avenia and Pomponio [5] used a technique due to Jeanjean ([29]
Theorem 1.1) to show that the equation

{

−∆u+ qφu = g(u) in R
3,

−∆φ = qu2 in R
3

has a nontrivial positive radial solution (u, φ) ∈ H1(R3) ×D1,2(R3) for q > 0 small
where the nonlinear term g satisfies:

(g1) g ∈ C(R,R);
(g2) −∞ < lim

s→0+
g(s)/s ≤ lim

s→0+
g(s)/s = −m < 0;

(g3) −∞ ≤ lim
s→+∞

g(s)/s5 ≤ 0;
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(g4) ∃ξ > 0 such that

G(ξ) :=

ˆ ξ

0

g(s) ds > 0.

Note that the hypotheses on g was firstly introduced by Berestycki and Lions, in
their celebrated paper [9].

Mugnai [35] proved that for any ω > 0, there exist λ > 0 such that the following
Schrödinger–Poisson equation

(1.7)

{

−∆u + ωu− λuφ+Wu(x, u) = 0 in R
3,

−∆φ = u2 in R
3

has a nontrivial radial function (u, φ) ∈ H1(R3)×D1,2(R3) by using the minimization
argument on an appropriate manifold when the nonlinear term W : R3 × R → R

satisfies:

(W1) W : R3 × R → [0,∞) is such that the derivative Wu : R
3 × R → R is a

Carathéodory function, W (x, s) = W (|x|, s) for a.e. x ∈ R
3 and for every

s ∈ R, and W (x, 0) =Wu(x, 0) = 0 for a.e. x ∈ R
3;

(W2) ∃C1, C2 > 0 and 1 < q < p < 5 such that |Wu(x, s)| ≤ C1|s|q + C2|s|p for
every s ∈ R and a.e. x ∈ R

3;
(W3) ∃k ≥ 2 such that 0 ≤ sWu(x, s) ≤ kW (x, s) for every s ∈ R and a.e. x ∈ R

3.

Recently, Jiang and Zhou [30] studied the Schrödinger–Poisson equation

(1.8)

{

−∆u + (1 + µg(x))u+ λφu = |u|p−2u in R
3,

−∆φ = u2 in R
3, lim

|x|→∞
φ(x) = 0,

where λ, µ are positive parameters, p ∈ (2, 6), g(x) ∈ L∞(R3) is nonnegative, g(x) ≡
0 on a bounded domain in R

3 and lim|x|→∞ g(x) = 1. They used a priori estimate
and approximation methods to show that (1.8) with p ∈ (2, 3) has a ground state
solution if µ large and λ small. Meanwhile, they also proved that (1.8) with p ∈ [4, 6)
has a nontrivial solution for any λ > 0 and µ large.

As far as we know, there is no result on the existence of positive ground state
solutions for (1.4) when the nonlinearity up−1(2 < p < 6) is replaced by λ|u|p−2u +
|u|4u(3 < p ≤ 4). In this paper, we will fill this gap.

We note that problem (1.2) with ω = 0 and ~2

2m
= 1 is motivated by the search for

standing wave solutions for the nonlinear Schrödinger equation, which is one of the
main subjects in nonlinear analysis. Different approaches have been taken to deal
with this problem under various hypotheses on the potentials and the nonlinearities
(see [9, 10] and so on).

Our motivation to study (1.1) mainly comes from the results of perturbed Schrö-
dinger equations, i.e.,

(1.9) −ε2∆u+ V (x)u = |u|q−2u, x ∈ R
N ,

where 2 < q < 2N/(N − 2), N ≥ 1.
Many mathematicians proved the existence, concentration and multiplicity of

solutions for (1.9).
Floer and Weinstein [23] studied (1.9) in the case where N = 1, q = 4, V ∈ L∞

with inf V > 0. They construct a single peak solution which concentrates around any
given non-degenerate critical point of the potential V . Y. G. Oh [36, 37] extended
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this result in higher dimensions when 2 < q < 2N/(N − 2) and the potential V
belongs to a Kato class which means that V satisfies the following condition:

(V )a V ≡ a or V > a and (V − a)−
1
2 ∈ Lip(RN) for some a ∈ R.

Furthermore, Oh [38] proved the existence of multi-peak solutions which concentrate
around any finite subsets of the non-degenerate critical points of V . The arguments
in [23, 36, 37, 38] are mainly based on a Lyapunov–Schmidt reduction.

Rabinowitz [41] studied (1.9) under the conditions:

(V3) V∞ = lim inf
|x|→∞

V (x) > V0 = inf
x∈RN

V (x) > 0.

Rabinowitz proved that (1.9) possesses a positive ground state solution for ε > 0
small by using the Mountain Pass Theorem (see [2]).

The concentration behavior for the family of positive ground state solutions,
which was obtained in [41], was proved by Wang [48]. Wang proved that the positive
ground state solutions of (1.9) must concentrate at global minima of V as ε → 0.

Under the same condition (V3) on V (x), Cingolani and Lazzo [16] proved the mul-
tiplicity of positive ground state solutions for (1.9) by using Ljusternik–Schnirelmann
theory (see [15], for example).

del Pino and Felmer [39] studied (1.9) with the conditions on V replaced by (V1)
and (V2). They proved that (1.9) possesses a positive bound state solution for ε > 0
small which concentrates around the local minima of V in Λ as ε→ 0.

Gui [25] studied (1.9) under the conditions (V1) and

(V4) There exist k disjoint bounded regions Ω1, . . . ,Ωk such that

V0 := inf
Ωi

V < min
∂Ωi

V, i = 1, . . . , k.

Gui showed that (1.9) possesses a positive classial bound state solution for ε > 0
small which exactly possesses k local maximum Pε,1, . . . , Pε,k satisfying Pε,i ∈ Ωi and
lim
ε→0

V (Pε,i) = inf
Ωi

V .

D’Aprile and Wei [19] studied (1.2) and extended the method in [23, 36, 37, 38,
38], which was based on Lyapunov–Schmidt reduction, to conclude a similar result
in the Schrödinger–Poisson equation (1.2).

Under the same condition (V3) on V (x), X. He [26] studied (1.1) with the non-
linearity replaced by f(u), where f ∈ C1(R+,R+) and satisfies the Ambrosetti-
Rabinowitz condition ((AR) condition in short)

∃µ > 4, 0 < µ

ˆ u

0

f(s) ds ≤ f(u)u,

lims→0
f(s)
s3

= 0, lim|s|→∞
f(s)
|s|q

= 0 for some 3 < q < 5 and f(s)
s3

is strictly increasing

for s > 0. They obtained the existence, concentration and multiplicity of solutions
for (1.9) by the same arguments as in [41, 48, 16].

For more results, we can refer to [1, 3, 4, 8, 14, 20, 44, 47] and the references
therein.

Our main result is the following:

Theorem 1.1. Let (V1), (V2) hold. There exist λ∗ > 0 and ε∗ > 0 such that

for each λ ∈ [λ∗,∞) and ε ∈ (0, ε∗), (1.1) possesses a positive solution uε ∈ H1(R3)
such that
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(i) there exists a maximum point xε of uε such that

lim
ε→0

dist(xε,M) = 0;

(ii) ∃C1, C2 > 0, such that

uε(x) ≤ C1 exp
(

−C2

ε
|x− xε|

)

,

where C1, C2 are independent of ε.

We note that, to the best of our knowledge, there is no result on the existence
and concentration of positive bound state solutions for Schrödinger–Poisson type
equation with the nonlinearity λ|u|p−2u+ |u|4u(3 < p ≤ 4).

The proof of Theorem 1.1 is based on variational method. The main difficulties
in proving Theorem 1.1 lie in two aspects: (i) The nonlinearity λ|u|p−2u+ |u|4u with

p ∈ (3, 4] does not satisfy (AR) condition and the fact that the function λup−1+u5

u3 is
not increasing for u > 0 prevent us from obtaining a bounded Palais–Smale sequence
((PS) sequence in short) and using the Nehari manifold respectively. The arguments
in [39] can not be applied in this paper. (ii) The unboundedness of the domain R

3

and the nonlinearity λ|u|p−2u + |u|4u(3 < p ≤ 4) with the critical Sobolev growth
lead to the lack of compactness. As we will see later, the above two aspects prevent
us from using the variational method in a standard way.

To overcome these difficulties, inspired by [12, 22], we use a version of quantitative
deformation lemma due to Figueiredo, Ikoma and Santos Junior (see Proposition 4.6
below) to construct a special bounded (PS) sequence and recover the compactness
by using a penalization method which was firstly introduced in [13].

To complete this section, we sketch our proof.
Firstly, we need to consider the existence of ground state solutions of the associ-

ated “limiting problem” of (1.1), which is given as

(1.10)











−∆u+ au+ φu = λ|u|p−2u+ |u|4u in R
3,

−∆φ = u2 in R
3, u > 0, u ∈ H1(R3),

a > 0, 3 < p ≤ 4,

with the corresponding energy functional

Ia(u) =
1

2

ˆ

R3

|∇u|2 + a

2

ˆ

R3

u2 +
1

16π

ˆ

R3

ˆ

R3

u2(x)u2(y)

|x− y| dx dy

− λ

p

ˆ

R3

(u+)
p − 1

6

ˆ

R3

(u+)
6
, u ∈ H1(R3).

In [28], Hirata, Ikoma and Tanaka studied the following Schrödinger equation

−∆u = g(u), u ∈ H1(RN)

with the corresponding energy functional

I(u) =
1

2

ˆ

RN

|∇u|2 −
ˆ

RN

G(u), u ∈ H1
r (R

N),

where G(u) =
´ u

0
g(s)ds and g satisfies the conditions due to the celebrated work

by Berestycki and Lions [9]. By studing the behavior of I(u(e−θx)) for θ ∈ R,
they constructed a (PS)c sequence {un}∞n=1 with an extra property P (un) → 0 as
n → ∞ where c is the mountain pass level of I and P (u) = 0 is the corresponding



Schrödinger–Poisson equations in R
3 involving critical Sobolev exponents 735

Pohozaev’s identity and then proved that the (PS)c sequence is bounded. But for the
Schrödinger–Poisson equation (1.10), one still need something more than P (un) → 0
as n→ ∞.

For the critical case (1.10), the constrained minimization on a new manifold due
to Ruiz [43] seems to be difficult to be applied directly.

Motivated by [28], by studying the behavior of Ia(e
2θu(eθx)) for θ ∈ R, we

construct a (PS)ca sequence {un}∞n=1 with an extra property Ga(un) → 0 as n → ∞
where ca is the mountain pass level of Ia, Ga(u) = 2 〈I ′a(u), u〉−Pa(u) and Pa(u) = 0
is the Pohozaev’s identity of (1.10) (see Proposition 3.4 below). From this fact, the
boundedness of the (PS)ca sequence is proved easily. Proceeding by the standard
arguments, the existence of ground state solution (1.10) follows (see Proposition 3.8
below). Denoting Sa the set of ground state solutions U of (1.10) satisfying U(0) =
maxx∈R3 U(x), we then show that Sa is compact in H1(R3) (see Proposition 3.9
below).

To study (1.1), we will work with the following equivalent equation

(1.11)

{

−∆u+ V (εx)u+ φu = λ|u|p−2u+ |u|4u in R
3,

−∆φ = u2 in R
3, u > 0, u ∈ H1(R3).

Note that a solution of (1.11) is in fact a critical point of the following functional

Iε(u) =
1

2

ˆ

R3

|∇u|2 + 1

2

ˆ

R3

V (εx)u2 +
1

16π

ˆ

R3

ˆ

R3

u2(x)u2(y)

|x− y|

− λ

p

ˆ

R3

(u+)
p − 1

6

ˆ

R3

(u+)
6
, u ∈ Hε,

where Hε := {v ∈ H1(R3) |
´

R3 V (εx)v
2 <∞} endowed with the norm

‖v‖Hε
:=

(
ˆ

R3

|∇v|2 +
ˆ

R3

V (εx)v2
)1/2

.

Unlike [26], where the minimum of V (x) is global and the nonlinear term f(u)
satisfies the (AR) condition, the Mountain Pass Theorem can be used globally, here
in the present paper, the condition (V2) is local and 3 < p ≤ 4, we need to use
a penalization method introduced in [13], which helps us to overcome the obstacle
caused by the non-compactness due to the unboundedness of the domain and the
lack of (AR) condition. To this end, we should modify the energy functional.

Following [12], we set Jε : Hε → R be given by

Jε(v) = Iε(v) +Qε(v),

where

Qε(v) =

(
ˆ

R3

χεv
2 − 1

)2

+

and

χε(x) =

{

0 if x ∈ Λ/ε,

ε−1 if x /∈ Λ/ε.

It will be shown that the functional Qε will acts as a penalization to force the con-
centration phenomena to occur inside Λ (see Lemma 4.3 below).

Using a version of quantitative deformation lemma due to Figueiredo, Ikoma
and Santos Junior (see Proposition 4.6 below) to construct a special bounded and
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convergent (PS) sequence of Jε in a neighborhood of the compact set SV0 for ε > 0
small, i.e., Jε possesses a critical point vε. To verify the critical point vε of Jε is indeed
a solution of the original problem (1.11), we need to establish a uniform estimate on
L∞-norm of vε (independent of ε) by using the idea of Brezis–Kato type argument
and the Moser iteration technique (see also [31, 53] and Lemma 2.4 below).

Moreover, for the critical case, the existence and concentration phenomenon of
problem (1.1) has not been studied so far by variational methods. In the present
paper, we will adopt some ideas of Byeon and Jeanjean [12] to study the existence
and concentration of positive solutions for equation (1.1) with critical growth. But
the method of Byeon and Jeanjean [12] can not be used directly and more careful
analysis is needed. For this aspect, we refer to [6, 42, 51].

This paper is organized as follows, in Section 2, we give some preliminary results.
In Section 3, we analyze the “limiting problem” (1.10) and show the existence of
ground state solutions. In Section 4, we prove the main result Theorem 1.1.

2. Preliminaries

In the following, we recall that by the Lax–Milgram theorem, for each u ∈
H1(R3), there exists a unique φu ∈ D1,2(R3) such that −∆φu = u2. Moreover,
φu can be expressed as

φu(x) =
1

4π

ˆ

R3

u2(y)

|x− y| dy.

The function φu has the following property, see [14] and [43].

Lemma 2.1. For any u ∈ H1(R3), we have

(i) ‖φu‖2D1,2(R3) =

ˆ

R3

φuu
2 ≤ C ‖u‖4L12/5(R3) ≤ C ‖u‖4H1(R3);

(ii) φu ≥ 0;

(iii) If un⇀ u inH1(R3), then φun⇀ φu inD1,2(R3) and

ˆ

R3

φuu
2 ≤ lim

n→∞

ˆ

R3

φunu
2
n;

(iv) If y ∈ R
3 and ũ(x) = u(x + y), then φũ(x) = φu(x + y) and

ˆ

R3

φũũ
2 =

ˆ

R3

φuu
2.

Define N : H1(R3) → R by

N(u) =

ˆ

R3

φuu
2.

Then, the functional N and its derivatives N ′ and N ′′ possess Brezis–Lieb splitting
property, which is similar to the well-known Brezis–Lieb’s Lemma (see [11]) and can
be stated as the following form (see [17, 52]).

Lemma 2.2. Let un ⇀ u in H1(R3) and un → u a.e. in R
3, then, as n→ ∞,

(i) N(un − u) = N(un)−N(u) + o(1);
(ii) N ′(un−u) = N ′(un)−N ′(u)+o(1) in H−1(R3) and N ′ : H1(R3) → H−1(R3)

is weakly sequentially continuous;

(iii) N ′′(un − u) = N ′′(un) − N ′′(u) + o(1) in L(H1(R3), H−1(R3)) and N ′′(u) ∈
L(H1(R3), H−1(R3)) is compact for any u ∈ H1(R3).
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Lemma 2.3. (General Minimax Principle) [50, Theorem 2.8] Let X be a Banach

space. LetM0 be a closed subspace of the metric spaceM and Γ0 ⊂ C(M0, X). Define

Γ := {γ ∈ C(M,X) : γ |M0 ∈ Γ0} .
If ϕ ∈ C1(X,R) satisfies

∞ > c := inf
γ∈Γ

sup
u∈M

ϕ(γ(u)) > a := sup
γ0∈Γ0

sup
u∈M0

ϕ(γ0(u)),

then, for every ε ∈ (0, (c−a)/2), δ > 0 and γ ∈ Γ such that supM ϕ◦γ ≤ c+ ε, there

exists u ∈ X such that

(a) c− 2ε ≤ ϕ(u) ≤ c+ 2ε,
(b) dist(u, γ(M)) ≤ 2δ,
(c) ‖ϕ′(u)‖ ≤ 8ε/δ.

Consider the following equation

(2.1) −∆u+ Vn(x)u = fn(x, u) in R
3,

where {Vn} is a sequence of continuous functions satisfying for some positive constant
α independent of n such that

Vn(x) ≥ α > 0 for all x ∈ R
3

and fn(x, t) is a Carathéodory function such that for any δ > 0, there exists Cδ > 0
and

|fn(x, t)| ≤ δ|t|+ Cδ|t|5, ∀(x, t) ∈ R
3 ×R,

where δ is independent of n.
From the process of proof of Theorem 1 in [53] and Theorem 1.11 in [31], we have

the following lemma:

Lemma 2.4. Assume that {vn} is a sequence of weak solutions to (2.1) satisfying

‖vn‖H1(R3) ≤ C for n ∈ N.

(i) If {|vn|6} is uniformly integrable in any bounded domain in R
3, then for any

x0 ∈ R
3, ∃R0(x0) > 0 such that

‖vn‖L∞(BR0(x0)/4
(x0)) ≤ C(R0(x0)),

where R0(x0) and C(R0(x0)) are independent of n.

(ii) If {|vn|6} is uniformly integrable near ∞, i.e., ∀ε > 0, ∃R > 0, for any r > R,
´

R3\Br(0)
|vn|6 < ε, then

lim
|x|→∞

vn(x) = 0 uniformly for n.

Proof. See Lemma 2.10 of [27]. �

Lemma 2.5. [42] Let R be a positive number and {un} a bounded sequence in

H1(RN)(N ≥ 3). If

lim
n→∞

sup
x∈RN

ˆ

BR(x)

|un|2N/(N−2) = 0,

then un → 0 in L2N/(N−2)(RN) as n→ ∞.
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Lemma 2.6. [6, Lemma 2.7] Let {un} ⊂ H1
loc
(RN), N ≥ 3, be a sequence of

functions such that

un ⇀ 0 in H1(RN).

Suppose that there exist a bounded open set Q ⊂ R
N and a positive constant γ > 0

such that
ˆ

Q

|∇un|2 ≥ γ > 0,

ˆ

Q

|un|2N/(N−2) ≥ γ > 0.

Moreover, suppose that

∆un + |un|4/(N−2)un = χn,

where χn ∈ H−1(RN) and

|〈χn, ϕ〉| ≤ εn‖ϕ‖H1(RN ), ∀ϕ ∈ C∞
c (U),

where U is an open neighborhood of Q and {εn} is a sequence of positive numbers

converging to 0. Then there exist a sequence of points {yn} ⊂ R
N and a sequence of

positive numbers {σn} such that

vn(x) := σ(N−2)/2
n un(σnx+ yn)

converges weakly in D1,2(RN) to a nontrivial solution v of

−∆u = |u|4/(N−2)u, u ∈ D1,2(RN).

Moreover,

yn → ȳ ∈ Q̄ and σn → 0.

The following lemma is a special case of Lemma 8.17 in [24] for ∆.

Lemma 2.7. [24, Lemma 8.17] Let Ω be an open subset of RN(N ≥ 2). Suppose

that t > N , h ∈ Lt/2(Ω) and u ∈ H1(Ω) satisfies −∆u(x) ≤ h(x), x ∈ Ω in the weak

sense. Then for any ball B2r(y) ⊂ Ω,

sup
Br(y)

u ≤ C
(

∥

∥u+
∥

∥

L2(B2r(y))
+ ‖h‖Lt/2(B2r(y))

)

,

where C = C(N, t, r) is independent of y.

3. The limiting problem

The following equation for a > 0

(3.1)

{

−∆u+ au+ φu = λ|u|p−2u+ |u|4u in R
3,

−∆φ = u2 in R
3, u > 0, u ∈ H1(R3)

is the limiting equation of (1.1).
We define the energy functional for the limiting problem (3.1) by

Ia(u) =
1

2

ˆ

R3

|∇u|2+a
2

ˆ

R3

u2+
1

4

ˆ

R3

φuu
2−λ

p

ˆ

R3

(u+)
p−1

6

ˆ

R3

(u+)
6
, u ∈ H1(R3).

In view of [40], if u ∈ H1(R3) is a weak solution to problem (3.1), then we have the
following Pohozaev’s identity:

(3.2) Pa(u) =
1

2

ˆ

R3

|∇u|2+3

2
a

ˆ

R3

u2+
5

4

ˆ

R3

φuu
2−3

p
λ

ˆ

R3

(u+)
p−1

2

ˆ

R3

(u+)
6
= 0.
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As in [43], we introduce the following manifold

Ma := {u ∈ H1(R3)\{0} | Ga(u) = 0},
where

Ga(u) =
3

2

ˆ

R3

|∇u|2 + 1

2
a

ˆ

R3

u2 +
3

4

ˆ

R3

φuu
2 − (2p− 3)

p
λ

ˆ

R3

(u+)
p − 3

2

ˆ

R3

(u+)
6
.

It is clear that

(3.3) Ga(u) = 2 〈I ′a(u), u〉 − Pa(u),

where Pa(u) is given in (3.2).

Remark 3.1. If u ∈ H1(R3) is a nontrivial weak solution to (3.1), then by (3.2),
(3.3), we see that u ∈ Ma.

Lemma 3.2. For any u ∈ H1(R3)\{0}, there is a unique t̃ > 0 such that ut̃ ∈
Ma, where ut̃(x) := t̃2u(t̃x). Moreover, Ia(ut̃) = max

t>0
Ia(ut).

Proof. For any u ∈ H1(R3)\{0} and t > 0, set ut(x) := t2u(tx). Consider

γ(t) := Ia(ut) =
1

2
t3
ˆ

R3

|∇u|2 + 1

2
at

ˆ

R3

u2 +
1

4
t3
ˆ

R3

φuu
2

− λ

p
t2p−3

ˆ

R3

(u+)
p − 1

6
t9
ˆ

R3

(u+)
6
.

Since 2p− 3 > 3, by elementary computations, γ(t) has a unique critical point t̃ > 0
corresponding to its maximum, i.e., γ(t̃) = max

t>0
γ(t) and γ′(t̃) = 0. Hence

3

2
t̃2
ˆ

R3

|∇u|2+ 1

2
a

ˆ

R3

u2+
3

4
t̃2
ˆ

R3

φuu
2− (2p− 3)

p
λt̃2p−4

ˆ

R3

(u+)
p− 3

2
t̃8
ˆ

R3

(u+)
6
= 0,

then Ga(ut̃) = 0, ut̃ ∈Ma and Ia(ut̃) = max
t>0

Ia(ut). �

Lemma 3.3. Ia possesses the Mountain-Pass geometry.

Proof. ∃ρ, δ > 0 small such that

Ia(u) =
1

2

ˆ

R3

|∇u|2 + 1

2
a

ˆ

R3

u2 +
1

4

ˆ

R3

φuu
2 − λ

p

ˆ

R3

(u+)
p − 1

6

ˆ

R3

(u+)
6

≥ 1

2
‖u‖2H1(R3) − Cλ ‖u‖pH1(R3) − C ‖u‖6H1(R3)

≥ δ > 0 for ‖u‖H1(R3) = ρ > 0.

Fix u ∈ H1(R3)\{0}, set ut(x) := t2u(tx),

Ia(ut) =
1

2
t3
ˆ

R3

|∇u|2 + 1

2
at

ˆ

R3

u2 +
1

4
t3
ˆ

R3

φuu
2 − λ

p
t2p−3

ˆ

R3

(u+)
p − 1

6
t9
ˆ

R3

(u+)
6
< 0

for t > 0 large, then ∃t0 > 0, set u0 := ut0 , I(u0) < 0. �

Hence we can define the Mountain-Pass level of Ia:

(3.4) ca := inf
γ∈Γa

sup
t∈[0,1]

Ia(γ(t)),

where the set of paths is defined as

(3.5) Γa :=
{

γ ∈ C([0, 1], H1(R3)) : γ(0) = 0 and Ia(γ(1)) < 0
}

.
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Next, we will construct a (PS) sequence {un}∞n=1 for Ia at the level ca that satisfies
Ga(un) → 0 as n→ ∞, i.e.,

Proposition 3.4. There exists a sequence {un}∞n=1 in H1(R3) such that, as

n→ ∞,

(3.6) Ia(un) → ca, I ′a(un) → 0, Ga(un) → 0.

Proof. We define the map Φ: R × H1(R3) → H1(R3) for θ ∈ R, v ∈ H1(R3)
and x ∈ R

3 by Φ(θ, v) = e2θv(eθx). For every θ ∈ R, v ∈ H1(R3), the functional
Ia ◦ Φ is computed as

Ia ◦ Φ(θ, v) =
1

2
e3θ
ˆ

R3

|∇v|2 + 1

2
aeθ
ˆ

R3

v2 +
1

4
e3θ
ˆ

R3

φvv
2

− λ

p
e(2p−3)θ

ˆ

R3

(v+)
p − 1

6
e9θ
ˆ

R3

(v+)
6
.

In view of Lemma 3.3, we can easily check that Ia ◦ Φ(θ, v) > 0 for all (θ, v) with
|θ|, ‖v‖H1(R3) small and (Ia ◦ Φ)(0, u0) < 0, i.e. Ia ◦ Φ possesses the Mountain-Pass
geometry in R×H1(R3). Hence we can define the Mountain-Pass level of Ia ◦ Φ:

(3.7) c̃a := inf
γ̃∈Γ̃a

sup
t∈[0,1]

(Ia ◦ Φ)(γ̃(t)),

where the set of paths is defined as

(3.8) Γ̃a :=
{

γ̃ ∈ C([0, 1],R×H1(R3)) : γ̃(0) = (0, 0) and (Ia ◦ Φ)(γ̃(1)) < 0
}

.

As Γa = {Φ ◦ γ̃ : γ̃ ∈ Γ̃a}, the Mountain-Pass levels of Ia and Ia ◦ Φ coincide, i.e.,
ca = c̃a.

By Lemma 2.3, we see that there exists a sequence {(θn, vn)}n∈N in R×H1(R3)
such that as n→ ∞,

(Ia ◦ Φ)(θn, vn) → ca,(3.9)

(Ia ◦ Φ)′(θn, vn) → 0 in R×H1(R3))−1,(3.10)

θn → 0.(3.11)

Indeed, set ε = εn := 1
n2 , δ = δn := 1

n
in Lemma 2.3, (3.9), (3.10) are direct

conclusions from (a), (c) of Lemma 2.3, we just need to verify (3.11). In view of
(3.4), (3.5), for ε = εn := 1

n2 , ∃γn ∈ Γa, such that

sup
t∈[0,1]

Ia(γn(t)) ≤ ca +
1

n2
.

Set γ̃n(t) = (0, γn(t)), then

sup
t∈[0,1]

Ia ◦ Φ(γ̃n(t)) = sup
t∈[0,1]

Ia(γn(t)) ≤ ca +
1

n2
.

By (b) of Lemma 2.3, there exists (θn, vn) ∈ R×H1(R3) such that dist((θn, vn), (0, γn(t))) ≤
2
n
, then (3.11) holds.

For every (h, w) ∈ R×H1(R3),

(3.12) 〈(Ia ◦ Φ)′(θn, vn), (h, w)〉 = 〈I ′a(Φ(θn, vn)),Φ(θn, w)〉+Ga(Φ(θn, vn))h.

Taking h = 1, w = 0 in (3.12), we get

Ga(Φ(θn, vn)) → 0 as n→ ∞.
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Denote un := Φ(θn, vn), we have

Ga(un) → 0 as n→ ∞.

For any v ∈ H1(R3), set w(x) = e−2θnv(e−θnx), h = 0 in (3.12), we get

〈I ′a(un), v〉 = o(1)
∥

∥e−2θnv(e−θnx)
∥

∥

H1(R3)
= o(1)‖v‖H1(R3)

for θn → 0 as n → ∞, i.e., I ′a(un) → 0 in (H1(R3))−1 as n → ∞. Hence, we have
got a bounded sequence {un}∞n=1 ⊂ H1(R3) that satisfies (3.6). �

Moreover, using the same argument as in [41], we can prove

(3.13) ca = inf
u∈H1(R3)\{0}

max
t>0

Ia(ut) = inf
u∈Ma

Ia(u) > 0.

For the Mountain-Pass level ca for Ia, we have the following estimate:

Lemma 3.5.

ca <
1

3
S

3
2

for λ > 0 large, where S is the best Sobolev constant for the embedding D1,2(R3) →֒
L6(R3).

Proof. Let ϕ ∈ C∞
c (B2(0)) satisfying ϕ ≡ 1 on B1(0) and 0 ≤ ϕ ≤ 1 on B2(0).

Given δ > 0, we set ψδ(x) := ϕ(x)wδ(x), where

wδ(x) = (3δ)
1
4

1

(δ + |x|2)
1
2

satisfies

(3.14)

ˆ

R3

|∇wδ|2 =
ˆ

R3

|wδ|6 = S
3
2 .

We see that

(3.15)

ˆ

R3\B1(0)

|∇ψδ|2 = O(δ1/2) as δ → 0.

Let Xδ :=
´

R3 |∇vδ|2, where vδ := ψδ/(
´

B2(0)
|ψδ|6)

1
6 . We find

(3.16) Xδ ≤ S +O(δ1/2) as δ → 0.

In view of Lemma 3.2, there exists tδ > 0 such that supt≥0 Ia((vδ)t) = Ia((vδ)tδ).

Hence
dIa((vδ)t)

dt
|t=tδ = 0, that is

3

2
t2δ

ˆ

R3

|∇vδ|2 +
1

2
a

ˆ

R3

v2δ +
3

4
t2δ

ˆ

R3

φvδv
2
δ −

(2p− 3)

p
λt2p−5

δ

ˆ

R3

vpδ −
3

2
t8δ

ˆ

R3

v6δ = 0

which implies

(3.17) t8δ ≤ t2δXδ +
1

3
a

ˆ

R3

v2δ +
1

2
t2δ

ˆ

R3

φvδv
2
δ .

Direct calculations show that

(3.18)

ˆ

R3

v2δ = O(δ1/2),

(
ˆ

R3

v
12/5
δ

)5/3

= O(δ).

(3.16), (3.17), (3.18) and Lemma 2.1 (i) imply that |tδ| ≤ C1, where C1 is independent
of δ > 0 small.
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We can assume that there is a positive constant C2 such that tδ ≥ C2 > 0 for
δ > 0 small. Otherwise, we could find a sequence δn → 0 as n→ ∞ such that tδn → 0
as n → ∞. Now, up to a subsequence, we have (vδn)tδn → 0 in H1(R3) as n → ∞.
Therefore

0 < ca ≤ sup
t≥0

Ia((vδn)t) = Ia((vδn)tδn ) → Ia(0) = 0,

which is a contradiction.
Denote g(t) = t3

2

´

R3 |∇vδ|2 − t9

6

´

R3 v
6
δ , it is easy to check that

sup
t>0

g(t) =
1

3

(
ˆ

R3

|∇vδ|2
)

3
2

≤ 1

3

(

S +O(δ1/2)
)3/2 ≤ 1

3
S

3
2 +O(δ1/2).

Thus

I((vδ)tδ)

=
1

2
t3δ

ˆ

R3

|∇vδ|2 +
1

2
tδ

ˆ

R3

v2δ +
1

4
t3δ

ˆ

R3

φvδv
2
δ −

λ

p
t2p−3
δ

ˆ

R3

vpδ −
1

6
t9δ

ˆ

R3

v6δ

≤ sup
t>0

g(t) + C

ˆ

R3

v2δ + C

(
ˆ

R3

v
12/5
δ

)5/3

− Cλ

ˆ

R3

vpδ

≤ 1

3
S

3
2 +O(δ1/2) + C

ˆ

R3

v2δ − Cλ

ˆ

R3

vpδ ,

(3.19)

where we have used (3.18).
From (3.19), to complete the proof, it suffices to show that

(3.20) lim
δ→0+

1

δ1/2

[

C

ˆ

B1(0)

v2δ − Cλ

ˆ

B1(0)

vpδ

]

= −∞

and

(3.21) lim
δ→0+

1

δ1/2

[

C

ˆ

B2(0)\B1(0)

v2δ − Cλ

ˆ

B2(0)\B1(0)

vpδ

]

≤ C.

To this end, we find

1

δ1/2
Cλ

ˆ

B1(0)

vpδ ≥ Cλ

δ1/2

ˆ

B1(0)

δp/4

(δ + |x|2)p/2
x′=x/δ1/2

≥ Cλ

δ
1
2

ˆ

B
1/δ1/2

(0)

δ
p
4

(δ + δ|x′|2)
p
2

δ
3
2 ≥ Cλδ1−

p
4

ˆ

B
1/δ1/2

(0)

1

(1 + |x′|2)p/2
.

Since p ∈ (3, 4], choosing λ = 1/δ and combining with (3.18), (3.20) holds.
Since

1

δ1/2

[
ˆ

B2(0)\B1(0)

v2δ − Cλ

ˆ

B2(0)\B1(0)

vpδ

]

≤ C

δ1/2

ˆ

B2(0)\B1(0)

v2δ ≤ C,

where we have used (3.18), then (3.21) holds. �

Lemma 3.6. Every sequence {un}∞n=1 satisfying (3.6) is bounded in H1(R3).
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Proof. By (3.6), we have

ca + o(1) = Ia(un)−
1

2p− 3
Ga(un) =

p− 3

2p− 3

ˆ

R3

|∇un|2 +
p− 2

2p− 3
a

ˆ

R3

|un|2

+
p− 3

2(2p− 3)

ˆ

R3

φunu
2
n +

6− p

3(2p− 3)

ˆ

R3

(u+n )
6
,

we get the upper bound of ‖un‖H1(R3). �

Lemma 3.7. There is a sequence {xn} ⊂ R
3 and R > 0, β > 0 such that

ˆ

BR(xn)

u2n ≥ β,

where {un} is the sequence given in (3.6).

Proof. Assume the contrary that the lemma does not hold. By the Vanishing
Theorem [33, Lemma 1.1], it follows that as n→ ∞,

ˆ

R3

|un|s → 0 for all 2 < s < 6 and

ˆ

R3

φunu
2
n → 0.

Using 〈I ′a(un), un〉 = o(1), we get
ˆ

R3

|∇un|2 + a

ˆ

R3

u2n −
ˆ

R3

(u+n )
6
= o(1).

By Ia(un) → ca, we have

(3.22)
1

2

ˆ

R3

|∇un|2 +
1

2
a

ˆ

R3

u2n −
1

6

ˆ

R3

(u+n )
6
= ca + o(1).

Let l ≥ 0 be such that

(3.23)

ˆ

R3

|∇un|2 + a

ˆ

R3

u2n → l

and

(3.24)

ˆ

R3

(u+n )
6 → l.

It is easy to check that l > 0, otherwise ‖un‖H1(R3) → 0 as n→ ∞ which contradicts

to ca > 0. From (3.22), (3.23), (3.24), we get ca =
1
3
l.

Now, using the definition of the constant S, we have
ˆ

R3

|∇un|2 +
ˆ

R3

u2n ≥ S
(

ˆ

R3

(u+n )
6
)

1
3
.

Letting n→ ∞ in the above inequality, we achieve that l ≥ S3/2. Hence

ca =
1

3
l ≥ 1

3
S

3
2 ,

which contradicts to Lemma 3.5. �

We have the following proposition:

Proposition 3.8. (3.1) has a positive ground state solution ũ ∈ H1(R3).
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Proof. Let {un} be the sequence given in (3.6) and ca be the Mountain-Pass
value for Ia respectively. Denote ũn(x) = un(x + xn), where {xn} is the sequence
given in Lemma 3.7. Using standard argument, up to a subsequence, we may assume
that there is a ũ ∈ H1(R3) such that

(3.25)











ũn ⇀ ũ in H1(R3),

ũn → ũ in Ls
loc
(R3) for all 1 ≤ s < 6,

ũn → ũ a.e. in R
3.

By Lemma 3.7, ũ is nontrivial. Moreover, ũ satisfies

(3.26) −∆u+ au+ φuu = λ(u+)p−1 + (u+)5 in R
3

and Ga(ũ) = 0. By (3.13), we have

ca ≤ Ia(ũ) = Ia(ũ)−
1

3
Ga(ũ) =

1

3
a

ˆ

R3

ũ2 +
2p− 6

3p
λ

ˆ

R3

(ũ+)
p
+

1

3

ˆ

R3

(ũ+)
6

≤ lim
n→∞

1

3
a

ˆ

R3

ũ2n +
2p− 6

3p
λ

ˆ

R3

(ũ+n )
p
+

1

3

ˆ

R3

(ũ+n )
6
= lim

n→∞

[

Ia(ũn)−
1

3
Ga(ũn)

]

= lim
n→∞

[

Ia(un)−
1

3
Ga(un)

]

= ca.

Hence Ia(ũ) = ca and I ′a(ũ) = 0. By the standard elliptic estimate and strong
maximum principle, ũ(x) > 0 for all x ∈ R

3. In view of (3.13), ũ is in fact a positive
ground state solution of (3.1). �

Let Sa the set of ground state solutions U of (3.1) satisfying U(0) = maxx∈R3 U(x).
Then, we obtain the following compactness of Sa.

Proposition 3.9. For each a > 0, Sa is compact in H1(R3).

Proof. For any U ∈ Sa, we have

ca = Ia(U)−
1

2p− 3
Ga(U)

=
p− 3

2p− 3

ˆ

R3

|∇U |2 + p− 2

2p− 3
a

ˆ

R3

U2 +
p− 3

2(2p− 3)

ˆ

R3

φUU
2 +

6− p

3(2p− 3)

ˆ

R3

U6.

Thus Sa is bounded in H1(R3).
For any sequence {Uk} ⊂ Sa, up to a subsequence, we may assume that there is

a U0 ∈ H1(R3) such that

(3.27) Uk ⇀ U0 in H1(R3)

and U0 satisfies

−∆U0 + aU0 + φU0U0 = λUp−1
0 + U5

0 in R
3, U0 ≥ 0.

Next, we will show that U0 is nontrivial. First, we claim that, up to a subsequence,

(3.28) Uk → U0 in L6
loc
(R3).

Indeed, in view of (3.27), we may assume that

|∇Uk|2 ⇀ |∇U0|2 + µ and U6
k ⇀ U6

0 + ν,
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where µ and ν are two bounded nonnegative measures on R
3. By the Concentration

Compactness Principle II [34, Lemma 1.1], we obtain an at most countable index set
Γ, sequence {xi} ⊂ R

3 and {µi}, {νi} ⊂ (0,∞) such that

(3.29) µ ≥
∑

i∈Γ

µiδxi
, ν =

∑

i∈Γ

νiδxi
and S(νi)

1
3 ≤ µi.

It suffices to show that for any bounded domain Ω, {xi}i∈Γ ∩ Ω = ∅. Suppose,
by contradiction, that xi ∈ Ω for some i ∈ Γ. Define, for ρ > 0, the function
ψρ(x) := ψ(x−xi

ρ
) where ψ is a smooth cut-off function such that ψ = 1 on B1(0),

ψ = 0 on R
3\B2(0), 0 ≤ ψ ≤ 1 and |∇ψ| ≤ C. We suppose that ρ is chosen in such

a way that the support of ψρ is contained in Ω. Using 〈I ′a(Uk), ψρUk〉 = 0, we see
ˆ

R3

|∇Uk|2ψρ +

ˆ

R3

(∇Uk · ∇ψρ)Uk + a

ˆ

R3

U2
kψρ +

ˆ

R3

φUk
U2
kψρ

= λ

ˆ

R3

Up
kψρ +

ˆ

R3

U6
kψρ.

(3.30)

Since

lim
k→∞

∣

∣

∣

∣

ˆ

R3

(∇Uk · ∇ψρ)Uk

∣

∣

∣

∣

≤ lim
k→∞

(

ˆ

R3

|∇Uk|2
)

1
2 ·

(

ˆ

R3

U2
k |∇ψρ|2

)
1
2

≤ C
(

ˆ

R3

U2
0 |∇ψρ|2

)
1
2 ≤ C

(

ˆ

B2ρ(xi)

U6
0

)
1
6
(

ˆ

B2ρ(xi)

|∇ψρ|3
)

1
3

≤ C
(

ˆ

B2ρ(xi)

U6
0

)
1
6 → 0 as ρ→ 0,

(3.31)

(3.32) lim
k→∞

ˆ

R3

|∇Uk|2ψρ ≥
ˆ

R3

|∇U0|2ψρ + µi → µi as ρ→ 0,

(3.33) lim
k→∞

λ

ˆ

R3

Up
kψρ = λ

ˆ

R3

Up
0ψρ → 0 as ρ→ 0,

and

(3.34) lim
k→∞

ˆ

R3

U6
kψρ =

ˆ

R3

U6
0ψρ + νi → νi as ρ→ 0.

We obtain from (3.30) that µi ≤ νi. Combining with (3.29), we have νi ≥ S3/2. On
the other hand,

ca = Ia(Uk)−
1

3
Ga(Uk) =

1

3
a

ˆ

R3

U2
k +

2p− 6

3p

ˆ

R3

Up
k +

1

3

ˆ

R3

U6
k ≥ 1

3
νi ≥

1

3
S

3
2 ,

which contradicts to Lemma 3.5, then (3.28) holds.
From (3.28), {U6

k} is uniformly integrable in any bounded domain in R
3. By

Lemma 2.4 (i), ‖Uk‖L∞

loc
(R3) ≤ C. In view of [46], ∃α ∈ (0, 1) such that ‖Uk‖C1,α

loc
(R3) ≤

C, and using Schauder’s estimate, we have

‖Uk‖C2,α
loc

(R3) ≤ C.

By the Arzela–Ascoli’s Theorem, we have

Uk(0) → U0(0) as k → ∞.
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Since ∆Uk(0) ≤ 0, from (3.1), we can check that ∃b > 0 such that Uk(0) ≥ b > 0,
then U0(0) ≥ b > 0, this means that U0 is nontrivial.

Since

ca ≤ Ia(U0)−
1

2p− 3
Ga(U0)

=
p− 3

2p− 3

ˆ

R3

|∇U0|2 +
p− 2

2p− 3
a

ˆ

R3

U2
0 +

p− 3

2(2p− 3)

ˆ

R3

φU0U
2
0 +

6− p

3(2p− 3)

ˆ

R3

U6
0

= lim
k→∞

p− 3

2p− 3

ˆ

R3

|∇Uk|2 +
p− 2

2p− 3
a

ˆ

R3

U2
k +

p− 3

2(2p− 3)

ˆ

R3

φUk
U2
k

+
6− p

3(2p− 3)

ˆ

R3

U6
k = lim

k→∞

[

Ia(Uk)−
1

2p− 3
Ga(Uk)

]

= ca,

which means that Ia(U0) = ca and Uk → U0 in H1(R3). This completes the proof
that Sa is compact in H1(R3). �

4. Proof of Theorem 1.1

(1.1) can be rewritten as

(4.1)

{

−∆v + V (εx)v + φv = λ|v|p−2v + |v|4v in R
3,

−∆φ = v2 in R
3, v > 0, v ∈ H1(R3),

and the corresponding energy functional is

Iε(v) =
1

2

ˆ

R3

|∇v|2+1

2

ˆ

R3

V (εx)v2+
1

4

ˆ

R3

φvv
2− 1

p
λ

ˆ

R3

(v+)
p− 1

6

ˆ

R3

(v+)
6
, v ∈ Hε,

where Hε := {v ∈ H1(R3) |
´

R3 V (εx)v
2 <∞} endowed with the norm

‖v‖Hε
:=

(
ˆ

R3

|∇v|2 +
ˆ

R3

V (εx)v2
)1/2

.

We define

χε(x) =

{

0 if x ∈ Λ/ε,

ε−1 if x /∈ Λ/ε,

and

Qε(v) =

(
ˆ

R3

χεv
2 − 1

)2

+

.

Finally, set Jε : Hε → R be given by

Jε(v) = Iε(v) +Qε(v).

Note that this type of penalization was firstly introduced in [13]. It is standard to
show that Jε ∈ C1(Hε,R). To find solutions of (4.1) which concentrate around the
local minimum of V in Λ as ε→ 0, we shall search critical points of Jε for which Qε

is zero.
Let cV0 = IV0(w) for w ∈ SV0 and 10δ = dist{M,R3\Λ}, we fix a β ∈ (0, δ) and

a cut-off function ϕ ∈ C∞
c (R3) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1 for |x| ≤ β, ϕ(x) = 0

for |x| ≥ 2β and |∇ϕ| ≤ C/β. We will find a solution of (4.1) near the set

Xε :=

{

ϕ(εx− x′)w

(

x− x′

ε

)

: x′ ∈ Mβ, w ∈ SV0

}
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for sufficiently small ε > 0, where Mβ := {y ∈ R
3 : infz∈M |y − z| ≤ β}. Similarly,

for A ⊂ Hε, we use the notation

Aa :=
{

u ∈ Hε : inf
v∈A

‖u− v‖Hε
≤ a

}

.

For U∗ ∈ SV0 arbitrary but fixed, we define Wε,t(x) := t2ϕ(εx)U∗(tx), we will show
that Jε possesses the Mountain-Pass geometry.

Denote U∗
t := t2U∗(tx), we have

IV0(U
∗
t ) =

1

2
t3
ˆ

R3

|∇U∗|2 + 1

2
V0t

ˆ

R3

(U∗)2 +
1

4
t3
ˆ

R3

φU∗(U∗)2

− 1

p
λt2p−3

ˆ

R3

(U∗)p − 1

6
t9
ˆ

R3

(U∗)6 → −∞ as t→ ∞,

then ∃t0 > 0 such that IV0(U
∗
t0
) < −3.

We can easily check that Qε(Wε,t0) = 0, then

Jε(Wε,t0) = Iε(Wε,t0) =
1

2

ˆ

R3

|∇Wε,t0 |2 +
1

2

ˆ

R3

V (εx)W 2
ε,t0

+
1

4

ˆ

R3

φWε,t0
W 2

ε,t0
− 1

p
λ

ˆ

R3

W p
ε,t0 −

1

6

ˆ

R3

W 6
ε,t0

x̃=t0x=
1

2
t30

ˆ

R3

∣

∣

∣

ε

t0
∇ϕ

( ε

t0
x̃
)

U∗(x̃) + ϕ
( ε

t0
x̃
)

∇U∗(x̃)
∣

∣

∣

2

dx̃

+
1

2
t0

ˆ

R3

V
( ε

t0
x̃
)

ϕ2
( ε

t0
x̃
)

(U∗(x̃))2

+
1

4
t30

ˆ

R3

φϕ( ε
t0

x̃)U∗(x̃)ϕ
2
( ε

t0
x̃
)

(U∗(x̃))2

− 1

p
λt2p−3

0

ˆ

R3

ϕp
( ε

t0
x̃
)

(U∗(x̃))p − 1

6
t90

ˆ

R3

ϕ6
( ε

t0
x̃
)

(U∗(x̃))6

= IV0(U
∗
t0
) + o(1) < −2 for ε > 0 small,

(4.2)

where we have used the Dominated Convergence Theorem and Lemma 2.2 (i).
Using the Sobolev’s Imbedding Theorem, we have

Jε(u) ≥ Iε(u) ≥
1

2
‖u‖2Hε

− 1

p
λ

ˆ

R3

|u|p − 1

6

ˆ

R3

|u|6

≥ 1

2
‖u‖2Hε

− C · λ ‖u‖pHε
− C ‖u‖6Hε

> 0

for ‖u‖Hε
small since p > 2.

Hence, we can define the Mountain-Pass value of Jε as follows,

cε := inf
γ∈Γε

max
s∈[0,1]

Jε(γ(s)),

where Γε := {γ ∈ C([0, 1], Hε) | γ(0) = 0, γ(1) =Wε,t0}.
Lemma 4.1.

lim
ε→0

cε ≤ cV0 .
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Proof. Denote Wε,0 = limt→0Wε,t in Hε sense, then Wε,0 = 0. Thus, setting
γ(s) := Wε,st0 (0 ≤ s ≤ 1), we have γ(s) ∈ Γε, then

cε ≤ max
s∈[0,1]

Jε(γ(s)) = max
t∈[0,t0]

Jε(Wε,t)

and we just need to verify that

lim
ε→0

max
t∈[0,t0]

Jε(Wε,t) ≤ cV0.

Indeed, similar to (4.2), we have

max
t∈[0,t0]

Jε(Wε,t) = max
t∈[0,t0]

IV0(U
∗
t ) + o(1) ≤ max

t∈[0,∞)
IV0(U

∗
t ) + o(1)

= IV0(U
∗) + o(1) = cV0 + o(1). �

Lemma 4.2.

lim
ε→0

cε ≥ cV0 .

Proof. Assuming the contrary that limε→0 cε < cV0 , then, there exist δ0 > 0,
εn → 0 and γn ∈ Γεn satisfying Jεn(γn(s)) < cV0 − δ0 for s ∈ [0, 1]. We can fix an εn
such that

(4.3)
1

2
V0εn(1 + (1 + cV0)

1/2) < min{δ0, 1}.

Since Iεn(γn(0)) = 0 and Iεn(γn(1)) ≤ Jεn(γn(1)) = Jεn(Wεn,t0) < −2, we can find an
sn ∈ (0, 1) such that Iεn(γn(s)) ≥ −1 for s ∈ [0, sn] and Iεn(γn(sn)) = −1. Then, for
any s ∈ [0, sn],

Qεn(γn(s)) = Jεn(γn(s))− Iεn(γn(s)) ≤ 1 + cV0 − δ0,

this implies that
ˆ

R3\(Λ/εn)

γ2n(s) ≤ εn(1 + (1 + cV0)
1/2) for s ∈ [0, sn].

Then, for s ∈ [0, sn],

Iεn(γn(s)) = IV0(γn(s)) +
1

2

ˆ

R3

(V (εnx)− V0)γ
2
n(s)

≥ IV0(γn(s)) +
1

2

ˆ

R3\(Λ/εn)

(V (εnx)− V0)γ
2
n(s)

≥ IV0(γn(s))−
1

2
V0εn(1 + (1 + cV0)

1/2),

then

IV0(γn(sn)) ≤ Iεn(γn(sn)) +
1

2
V0εn(1 + (1 + cV0)

1/2)

= −1 +
1

2
V0εn(1 + (1 + cV0)

1/2) < 0

and recalling (3.4), we have

max
s∈[0,sn]

IV0(γn(s)) ≥ cV0 .
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Hence, we deduce that

cV0 − δ0 ≥ max
s∈[0,1]

Jεn(γn(s)) ≥ max
s∈[0,1]

Iεn(γn(s)) ≥ max
s∈[0,sn]

Iεn(γn(s))

≥ max
s∈[0,sn]

IV0(γn(s))−
1

2
V0εn(1 + (1 + cV0)

1/2),

i.e., 0 < δ0 ≤ 1
2
V0εn(1 + (1 + cV0)

1/2), which contradicts to (4.3). �

Lemma 4.1 and Lemma 4.2 imply that

lim
ε→0

(

max
s∈[0,1]

Jε(γε(s))− cε
)

= 0,

where γε(s) = Wε,st0 for s ∈ [0, 1]. Denote

c̃ε := max
s∈[0,1]

Jε(γε(s)),

we see that cε ≤ c̃ε and limε→0 cε = limε→0 c̃ε = cV0 .
In order to state the next lemma, we need some notations. For each R > 0, we

regard H1
0 (BR(0)) as a subspace of Hε. Namely, for any u ∈ H1

0 (BR(0)), we extend
u by defining u(x) = 0 for |x| > R, then ‖·‖Hε

is equivalent to the standard norm

of H1
0 (BR(0)) for each R > 0, ε > 0. Using ‖·‖Hε

, for each T ∈ (H1
0 (BR(0)))

−1, we
define

‖T‖∗,ε,R := sup
{

Tu : u ∈ H1
0 (BR(0)), ‖u‖Hε

≤ 1
}

.

Note also that ‖·‖∗,ε,R is equivalent to the standard norm of (H1
0 (BR(0)))

−1.
We use the notation

Jα
ε := {u ∈ Hε : Jε(u) ≤ α}

and fix a R0 > 0 such that BR0(0) ⊃ Λ.
Inspired by [51], we have the following lemma and this lemma is a key for the

proof of Theorem 1.1:

Lemma 4.3. (i) There exists a d0 > 0 such that for any {εi}∞i=1, {Rεi},
{uεi} with

(4.4)







lim
i→∞

εi = 0, Rεi ≥ R0/εi, uεi ∈ Xd0
εi

∩H1
0 (BRεi

(0)),

lim
i→∞

Jεi(uεi) ≤ cV0 and lim
i→∞

‖J ′
εi(uεi)‖∗,εi,Rεi

= 0,

then there exists, up to a subsequence, {yi}∞i=1 ⊂ R
3, x0 ∈ M, U ∈ SV0 such

that

lim
i→∞

|εiyi − x0| = 0 and lim
i→∞

‖uεi − ϕ(εix− εiyi)U(x − yi)‖Hεi
= 0.

(ii) If we drop {Rεi} and replace (4.4) by

(4.5) lim
i→∞

εi = 0, uεi ∈ Xd0
εi
, lim

i→∞
Jεi(uεi) ≤ cV0 and lim

i→∞
‖J ′

εi(uεi)‖(Hεi )
−1 = 0,

then the same conclusion holds.

Proof. We only prove (i). The proof of (ii) is similar. For notational brevity, we
write ε for εi, and still use ε after taking a subsequence. By the definition of Xd0

ε ,
there exist {Uε} ⊂ SV0 and {xε} ⊂ Mβ such that

∥

∥

∥
uε − ϕ(εx− xε)Uε

(

x− xε
ε

)
∥

∥

∥

Hε

≤ 3

2
d0.
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Since SV0 and Mβ are compact, there exist U0 ∈ SV0, x0 ∈ Mβ such that Uε → U0

in H1(R3) and xε → x0 as ε→ 0. Thus, for ε > 0 small,

(4.6)
∥

∥

∥
uε − ϕ(εx− xε)U0

(

x− xε
ε

)
∥

∥

∥

Hε

≤ 2d0.

Step 1. We claim that

(4.7) lim
ε→0

sup
y∈Aε

ˆ

B1(y)

|uε|6 = 0,

where Aε = B3β/ε(xε/ε)\Bβ/2ε(xε/ε). If the claim is true, by Lemma 2.5, we see that

(4.8) lim
ε→0

ˆ

Bε

|uε|6 = 0,

where Bε = B2β/ε(xε/ε)\Bβ/ε(xε/ε). Indeed, since

sup
y∈Aε

ˆ

B1(y)

|uε|6 ≥ sup
y∈R3

ˆ

B1(y)

|uε · χA1
ε
|6,

where A1
ε = B(3β/ε)−1(xε/ε)\B(β/2ε)+1(xε/ε), then

lim
ε→0

sup
y∈R3

ˆ

B1(y)

|uε · χA1
ε
|6 = 0.

By Lemma 2.5, we have
ˆ

R3

|uε · χA1
ε
|6 → 0 as ε → 0.

Since A1
ε ⊃ Bε for ε > 0 small, (4.8) holds.

Next, we will prove (4.7). Assuming the contrary, there exists r > 0 such that

lim
ε→0

sup
y∈Aε

ˆ

B1(y)

|uε|6 = 2r > 0,

then there exists yε ∈ Aε such that for ε > 0 small,
´

B1(yε)
|uε|6 ≥ r > 0. Note

also that yε ∈ Aε, there exists x∗ ∈ M4β ⊂ Λ such that εyε → x∗ as ε → 0. Set
vε(x) := uε(x+ yε), then, for ε > 0 small,

(4.9)

ˆ

B1(0)

|vε|6 ≥ r > 0,

up to a subsequence, vε ⇀ v in H1(R3) and v satisfies

−∆v + V (x∗)v + φvv = λvp−1 + v5 in R
3, v ≥ 0.

Case 1. If v 6= 0, then

cV (x∗) ≤ IV (x∗)(v)−
1

3
GV (x∗)(v) =

1

3
V (x∗)

ˆ

R3

v2 +
2p− 6

3p
λ

ˆ

R3

vp +
1

3

ˆ

R3

v6,

we have

‖V ‖L∞(Λ̄)

ˆ

R3

v2 +
2p− 6

p
λ

ˆ

R3

vp +

ˆ

R3

v6

≥ V (x∗)

ˆ

R3

v2 +
2p− 6

p
λ

ˆ

R3

vp +

ˆ

R3

v6 ≥ 3cV (x∗) ≥ 3cV0 .
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Hence, for sufficiently large R,

lim
ε→0

[

‖V ‖L∞(Λ̄)

ˆ

BR(yε)

u2ε +
2p− 6

p
λ

ˆ

BR(yε)

upε +

ˆ

BR(yε)

u6ε

]

= lim
ε→0

[

‖V ‖L∞(Λ̄)

ˆ

BR(0)

v2ε +
2p− 6

p
λ

ˆ

BR(0)

vpε +

ˆ

BR(0)

v6ε

]

≥
[

‖V ‖L∞(Λ̄)

ˆ

BR(0)

v2 +
2p− 6

p
λ

ˆ

BR(0)

vp +

ˆ

BR(0)

v6
]

≥ 1

2

[

‖V ‖L∞(Λ̄)

ˆ

R3

v2 +
2p− 6

p
λ

ˆ

R3

vp +

ˆ

R3

v6
]

≥ 3

2
cV0 > 0.

On the other hand, by the Sobolev’s Imbedding Theorem and (4.6),

‖V ‖L∞(Λ̄)

ˆ

BR(yε)

u2ε +
2p− 6

p
λ

ˆ

BR(yε)

upε +

ˆ

BR(yε)

u6ε

≤ Cd0 + C

ˆ

BR(yε)

∣

∣

∣
ϕ(εx− xε)U0

(

x− xε
ε

)
∣

∣

∣

2

+ Cλ

ˆ

BR(yε)

∣

∣

∣
ϕ(εx− xε)U0

(

x− xε
ε

)
∣

∣

∣

p

+ C

ˆ

BR(yε)

∣

∣

∣
ϕ(εx− xε)U0

(

x− xε
ε

)

∣

∣

∣

6

≤ Cd0 + C

ˆ

BR(yε−
xε
ε
)

|U0(x)|2 + Cλ

ˆ

BR(yε−
xε
ε
)

|U0(x)|p

+ C

ˆ

BR(yε−
xε
ε
)

|U0(x)|6 = Cd0 + o(1),

(4.10)

where o(1) → 0 as ε → 0, and we have used the fact that |yε − xε

ε
| ≥ β/2ε. This

leads to a contradiction if d0 is small enough.

Case 2. If v = 0, i.e., vε ⇀ 0 in H1(R3), then vε → 0 in Ls
loc
(R3) for s ∈

[1, 6). Thus, by (4.9) and the Sobolev’s Imbedding H1
loc
(R3) →֒ Ls

loc
(R3), ∃C > 0

(independent of ε) such that, for ε > 0 small,

(4.11)

ˆ

B1(0)

|∇vε|2 ≥ Cr1/3 > 0.

Now we claim that

(4.12) lim
ε→0

sup
ϕ∈C∞

c (B2(0)),‖ϕ‖H1(R3)=1

|〈ρε, ϕ〉| = 0,

where ρε = ∆vε + (v+ε )
5 ∈ (H1(R3))−1. It is easy to check that for ε > 0 small,

´

R3 χε(x)uε(x)ϕ(x− yε) ≡ 0 uniformly for any ϕ ∈ C∞
c (B2(0)). Thus for any ϕ ∈

C∞
c (B2(0)) with ‖ϕ‖H1(R3) = 1,

〈ρε, ϕ〉 = −〈J ′(uε), ϕ(x− yε)〉+
ˆ

R3

V (εx)uε(x)ϕ(x− yε) +

ˆ

R3

φuε(x)uε(x)ϕ(x− yε)

− λ

ˆ

R3

(u+ε )
p−1

(x)ϕ(x− yε) = J1 + J2 + J3 + J4.
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In view of the facts that ‖J ′
ε(uε)‖∗,ε,Rε

→ 0, suppϕ ⊂ B2(0), supx∈B2(0) V (εx+εyε) ≤
C uniformly for all ε > 0 small, vε → 0 in Ls

loc
(R3) for s ∈ [1, 6) and Lemma 2.1, we

have

|J1| ≤ ‖J ′
ε(uε)‖∗,ε,Rε

‖ϕ(x− yε)‖Hε
= o(1)‖ϕ(x− yε)‖Hε

≤ o(1)‖ϕ(x− yε)‖H1(R3) → 0,

|J2| ≤ sup
x∈B2(0)

V (εx+ εyε)

(
ˆ

B2(0)

|vε|2
)1/2(ˆ

B2(0)

ϕ2

)1/2

→ 0,

|J3| =
∣

∣

∣

∣

ˆ

R3

φvεvεϕ

∣

∣

∣

∣

≤
(
ˆ

R3

|φvε|6
)1/6(ˆ

B2(0)

|vε|3
)1/3(ˆ

B2(0)

ϕ2

)1/2

≤ C ‖vε‖2L12/5(R3)

(
ˆ

B2(0)

|vε|3
)1/3(ˆ

B2(0)

ϕ2

)1/2

→ 0

and

|J4| = λ

∣

∣

∣

∣

ˆ

R3

(v+ε )
p−1

ϕ

∣

∣

∣

∣

≤ λ

(
ˆ

B2(0)

|vε|p
)(p−1)/p(ˆ

B2(0)

|ϕ|p
)1/p

→ 0

as ε → 0 uniformly for all ϕ ∈ C∞
c (B2(0)) with ‖ϕ‖H1(R3) = 1, i.e., (4.12) holds.

In view of Lemma 2.6, we see from (4.9), (4.11) and (4.12) that, there exist

ỹε ∈ R
3 and σε > 0 with ỹε → ỹ ∈ B1(0), σε → 0 as ε→ 0 such that

wε(x) := σ1/2
ε vε(σεx+ ỹε)⇀ w in D1,2(R3)

and w ≥ 0 is a nontrivial solution of

(4.13) −∆u = u5, u ∈ D1,2(R3).

It is well known that

w(x) =
31/4δ1/2

(δ2 + |x− x0|2)1/2

for some δ > 0, x0 ∈ R
3 and

(4.14)

ˆ

R3

|∇w|2 =
ˆ

R3

w6 = S3/2,

then ∃R > 0 such that
ˆ

BR(0)

w6 ≥ 1

2

ˆ

R3

w6 =
1

2
S3/2 > 0.

On the other hand,

(4.15)

ˆ

BR(0)

w6 ≤ lim
ε→0

ˆ

BR(0)

w6
ε = lim

ε→0

ˆ

BσεR(ỹε)

v6ε = lim
ε→0

ˆ

BσεR(ỹε+yε)

u6ε ≤ lim
ε→0

ˆ

B2(yε)

u6ε,

where we have used the facts that σε → 0 and ỹε → ỹ ∈ B1(0) as ε → 0.
Similar to (4.10), we can check that (4.15) leads to a contradiction for d0 > 0

small. Hence (4.7) holds.
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For any s ∈ (2, 6), using the Interpolation Inequality for Lp norms and (4.8), we
have
(4.16)
ˆ

Bε

|uε|s ≤
(
ˆ

Bε

|uε|2
)

3
2
− s

4
(
ˆ

Bε

|uε|6
)

s
4
− 1

2

≤ C

(
ˆ

Bε

|uε|6
)

s
4
− 1

2

→ 0 as ε → 0.

It follows that

(4.17) lim
ε→0

ˆ

Bε

|uε|s = 0 for all s ∈ (2, 6].

Step 2. Let uε,1(x) = ϕ(εx−xε)uε(x), uε,2(x) = (1−ϕ(εx−xε))uε(x). By (4.17)
and direct computations, we can check that

ˆ

R3

(u+ε )
s
=

ˆ

R3

((uε,1)
+)

s
+

ˆ

R3

((uε,2)
+)

s
+ o(1), s ∈ (2, 6],

ˆ

R3

|∇uε|2 ≥
ˆ

R3

|∇uε,1|2 +
ˆ

R3

|∇uε,2|2 + o(1),

ˆ

R3

V (εx)|uε|2 ≥
ˆ

R3

V (εx)|uε,1|2 +
ˆ

R3

V (εx)|uε,2|2,
ˆ

R3

φuε(uε)
2 ≥
ˆ

R3

φuε,1(uε,1)
2 +

ˆ

R3

φuε,2(uε,2)
2,

Qε(uε,1) = 0, Qε(uε,2) = Qε(uε) ≥ 0.

Hence we get,

(4.18) Jε(uε) ≥ Iε(uε,1) + Iε(uε,2) + o(1).

Next, we claim that ‖uε,2‖Hε
→ 0 as ε → 0. By (4.6), we have

‖uε,2‖Hε
≤

∥

∥

∥
uε,1 − ϕ(εx− xε)U0

(

x− xε
ε

)

∥

∥

∥

Hε

+ 2d0

=
∥

∥

∥
uε,1 − ϕ(εx− xε)U0

(

x− xε
ε

)

∥

∥

∥

Hε(B2β/ε(xε/ε))
+ 2d0

≤ ‖uε,2‖Hε(B2β/ε(xε/ε))
+ 4d0

= ‖uε,2‖Hε(B2β/ε(xε/ε)\Bβ/ε(xε/ε))
+ 4d0

≤ C‖uε‖Hε(B2β/ε(xε/ε)\Bβ/ε(xε/ε))
+ 4d0

≤ C
∥

∥

∥
ϕ(εx− xε)U0

(

x− xε
ε

)

∥

∥

∥

Hε(B2β/ε(xε/ε)\Bβ/ε(xε/ε))
+ Cd0

≤ C
∥

∥

∥
U0

(

x− xε
ε

)

∥

∥

∥

H1(B2β/ε(xε/ε)\Bβ/ε(xε/ε))
+ Cd0

≤ C‖U0‖H1(B2β/ε(0)\Bβ/ε(0))
+ Cd0 = Cd0 + o(1),

(4.19)

where o(1) → 0 as ε→ 0. Hence we have lim
ε→0

‖uε,2‖Hε
≤ Cd0.
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By (4.17) and the facts that 〈J ′
ε(uε), uε,2〉 → 0 as ε → 0 and 〈Q′

ε(uε), uε,2〉 =
〈Q′

ε(uε,2), uε,2〉 ≥ 0, we get
ˆ

R3

∇uε · ∇uε,2 +
ˆ

R3

V (εx)uεuε,2 +

ˆ

R3

φuεuεuε,2 + 〈Q′
ε(uε,2), uε,2〉

= λ

ˆ

R3

(u+ε )
p−1

uε,2 +

ˆ

R3

(u+ε )
5
uε,2 + o(1),

then

‖uε,2‖2Hε
≤ λ

ˆ

R3

|uε,2|p +
ˆ

R3

|uε,2|6 + o(1)

≤ Cλ ‖uε,2‖pHε
+ C ‖uε,2‖6Hε

+ o(1) ≤ 1

2
‖uε,2‖2Hε

+ C ‖uε,2‖6Hε
+ o(1),

i.e., ‖uε,2‖2Hε
≤ C ‖uε,2‖6Hε

+ o(1).
Taking d0 > 0 small, we have ‖uε,2‖Hε

= o(1). From (4.18), it holds that

(4.20) Jε(uε) ≥ Iε(uε,1) + o(1).

Step 3. Let w̃ε(x) = uε,1
(

x+ xε

ε

)

= ϕ(εx)uε
(

x+ xε

ε

)

, up to a subsequence,
∃w̃ ∈ H1(R3) such that

(4.21) w̃ε ⇀ w̃ in H1(R3)

and

(4.22) w̃ε → w̃ a.e. in R
3.

We claim that

(4.23) w̃ε → w̃ in L6(R3).

In view of Lemma 2.5, assuming the contrary that ∃r > 0 such that

lim
ε→0

sup
z∈R3

ˆ

B1(z)

|w̃ε − w̃|6 = 2r > 0.

Then, for ε > 0 small, there exists zε ∈ R
3 such that

(4.24)

ˆ

B1(zε)

|w̃ε − w̃|6 ≥ r > 0.

Case 1. {zε} is bounded, i.e., |zε| ≤ α for some α > 0, then for ε > 0 small,

(4.25)

ˆ

Bα+1(0)

|ṽε|6 ≥ r > 0,

where ṽε = w̃ε−w̃ and ṽε ⇀ 0 inH1(R3). Similarly as in Step 1, ∃C > 0 (independent
of ε), such that for ε > 0 small,

(4.26)

ˆ

Bα+1(0)

|∇ṽε|2 ≥ Cr1/3 > 0.

Now, we claim that

(4.27) lim
ε→0

sup
ϕ̃∈C∞

c (Bα+2(0)),‖ϕ̃‖H1(R3)=1

|〈ρ̃ε, ϕ̃〉| = 0,
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where ρ̃ε = ∆ṽε + (ṽ+ε )
5 ∈ (H1(R3))−1. It is easy to check that for ε > 0 small,

´

R3 χε(x)uε(x)ϕ̃
(

x− xε

ε

)

≡ 0 uniformly for all ϕ̃ ∈ C∞
c (Bα+2(0)). Hence, we have

o(1) =
〈

J ′
ε(uε), ϕ̃

(

x− xε
ε

)〉

=

ˆ

R3

∇uε
(

x+
xε
ε

)

· ∇ϕ̃

+

ˆ

R3

V (εx+ xε)uε

(

x+
xε
ε

)

ϕ̃+

ˆ

R3

φuε(x+
xε
ε
)uε

(

x+
xε
ε

)

ϕ̃

− λ

ˆ

R3

(

u+ε

(

x+
xε
ε

))p−1

ϕ̃− λ

ˆ

R3

(

u+ε

(

x+
xε
ε

))5

ϕ̃

=

ˆ

R3

∇w̃ε · ∇ϕ̃+

ˆ

R3

V (εx+ xε)w̃εϕ̃+

ˆ

R3

φw̃εw̃εϕ̃

− λ

ˆ

R3

(w̃+
ε )

p−1
ϕ̃− λ

ˆ

R3

(w̃+
ε )

5
ϕ̃+ o(1),

(4.28)

where we have used the fact that ‖uε,2‖Hε → 0 as ε → 0 and note that o(1) → 0 as
ε→ 0 uniformly for all ϕ̃ ∈ C∞

c (Bα+2(0)) with ‖ϕ̃‖H1(R3) = 1.

By (4.28) and the fact that xε → x0 ∈ Mβ as ε → 0, we see that w̃ ≥ 0 and
satisfies

(4.29) −∆w̃ + V (x0)w̃ + φw̃w̃ = λw̃p−1 + w̃5 in R
3.

By Lemma 2.2(ii) and direct computations, we can check that the following Brezis–
Lieb splitting properties hold, as ε→ 0,

(4.30)



















































ˆ

R3

(w̃+
ε )

5
ϕ̃− (ṽ+ε )

5
ϕ̃− (w̃)5ϕ̃→ 0,

ˆ

R3

(w̃+
ε )

p−1
ϕ̃− (ṽ+ε )

p−1
ϕ̃− (w̃)p−1ϕ̃→ 0,

ˆ

R3

φw̃εw̃εϕ̃− φṽε ṽεϕ̃− φw̃w̃ϕ̃→ 0,

ˆ

R3

∇w̃ε · ∇ϕ̃−∇ṽε · ∇ϕ̃−∇w̃ · ∇ϕ̃ = 0

and

(4.31)

ˆ

R3

(V (εx+ xε)w̃ε − V (x0)w̃)ϕ̃→ 0

uniformly for all ϕ̃ ∈ C∞
c (Bα+2(0)) with ‖ϕ̃‖H1(R3) = 1. From (4.28), (4.29), (4.30)

and (4.31), we can verify (4.27).
By Lemma 2.6, we see from (4.25), (4.26) and (4.27) that, there exist z̃ε ∈ R

3

and δε > 0 such that z̃ε → z̃ ∈ Bα+1(0), δε → 0 and

ŵε(x) := δ1/2ε ṽε(δεx+ z̃ε)⇀ ŵ(x) in D1,2(R3),

where ŵ ≥ 0 is a nontrivial solution of (4.13) and satisfies (4.14).
Since

ˆ

R3

|ŵ|6 ≤ lim
ε→0

ˆ

R3

|ŵε|6 = lim
ε→0

ˆ

R3

|ṽε|6

= lim
ε→0

ˆ

R3

|w̃ε|6 −
ˆ

R3

|w̃|6 ≤ lim
ε→0

ˆ

R3

|uε|6,
(4.32)
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then by (4.6) and the Sobolev’s Imbedding Theorem, we get
ˆ

R3

|uε|6 ≤ Cd0 +

ˆ

R3

∣

∣

∣
ϕ(εx− xε)U0

(

x− xε
ε

)

∣

∣

∣

6

≤ Cd0 +

ˆ

R3

U6
0 ,

and combining with (4.32), it holds that

(4.33)

ˆ

R3

|ŵ|6 ≤ Cd0 +

ˆ

R3

U6
0 .

Thus

cV0 = IV0(U0)−
1

3
GV0(U0) =

1

3

ˆ

R3

U2
0 +

2p− 6

3p
λ

ˆ

R3

Up
0 +

1

3

ˆ

R3

U6
0

≥ 1

3

ˆ

R3

|ŵ|6 − Cd0 ≥
1

3
S

3
2 − Cd0,

where we have used (4.14) and (4.33). Letting d0 → 0, we have

cV0 ≥
1

3
S

3
2 ,

which contradicts to Lemma 3.5.

Case 2. {zε} is unbounded. Without loss of generality, limε→0 |zε| = ∞. Then,
by (4.24),

(4.34) lim
ε→0

ˆ

B1(zε)

|w̃ε|6 ≥ r > 0,

i.e.,

lim
ε→0

ˆ

B1(zε)

∣

∣

∣
ϕ(εx)uε

(

x+
xε
ε

)
∣

∣

∣

6

≥ r > 0.

Since ϕ(x) = 0 for |x| ≥ 2β, we see that |zε| ≤ 3β/ε for ε > 0 small. If |zε| ≥ β/2ε,
then zε ∈ B3β/ε(0)\Bβ/2ε(0) and by Step 1, we get

lim
ε→0

ˆ

B1(zε)

|w̃ε|6 ≤ lim
ε→0

sup
z∈B3β/ε(0)\Bβ/2ε(0)

ˆ

B1(z)

∣

∣

∣
uε

(

x+
xε
ε

)
∣

∣

∣

6

= lim
ε→0

sup
z∈Aε

ˆ

B1(z)

|uε|6 = 0,

which contradicts to (4.34). Thus |zε| ≤ β/2ε for ε > 0 small. Assume that εzε →
z0 ∈ Bβ/2(0) and w̄ε(x) := w̃ε(x + zε) ⇀ w̄(x) in H1(R3). If w̄ 6= 0, we see that w̄
satisfies

−∆w̄ + V (x0 + z0)w̄ + φw̄w̄ = λw̄p−1 + w̄5 in R
3, w̄ ≥ 0.

Similarly as in Step 1 (4.10), we get a contradiction if d0 > 0 is small enough. Thus
w̄ ≡ 0, i.e.,

w̄ε ⇀ 0 in H1(R3).

By (4.34), we have

(4.35) lim
ε→0

ˆ

B1(0)

|w̄ε|6 ≥ r > 0

and similar as in Step 1, we can check that ∃C > 0 (independent of ε) such that for
ε > 0 small,

(4.36)

ˆ

B1(0)

|∇w̄ε|2 ≥ Cr1/3 > 0
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and

(4.37) lim
ε→0

sup
ϕ̄∈C∞

c (B2(0)),‖ϕ̄‖H1(R3)=1

|〈ρ̄ε, ϕ̄〉| = 0,

where ρ̄ε = ∆w̄ε + (w̄+
ε )

5 ∈ (H1(R3))−1. By Lemma 2.6 again, we see from (4.35),

(4.36) and (4.37) that ∃x̃ε ∈ R
3 and γε > 0 such that x̃ε → x̃ ∈ B1(0), γε → 0 as

ε→ 0 and

w∗
ε(x) := γ1/2ε w̄ε(γεx+ x̃ε)⇀ w∗(x) in D1,2(R3),

where w∗ ≥ 0 is a nontrivial solution of (4.13) and satisfies (4.14). Thus, ∃R > 0
such that

ˆ

BR(0)

|w∗|6 ≥ 1

2

ˆ

R3

|w∗|6 = 1

2
S

3
2 > 0.

On the other hand,

1

2
S

3
2 ≤
ˆ

BR(0)

|w∗|6 ≤ lim
ε→0

ˆ

BR(0)

|w∗
ε |6 = lim

ε→0

ˆ

BγεR(x̃ε)

|w̄ε|6

≤ lim
ε→0

ˆ

BγεR(x̃ε+zε+
xε
ε
)

|uε|6 ≤ lim
ε→0

ˆ

B2(zε+
xε
ε
)

|uε|6,

which contradicts to (4.6) for d0 > 0 small. Therefore

lim
ε→0

sup
z∈R3

ˆ

B1(z)

|w̃ε − w̃|6 = 0.

By Lemma 2.5, (4.23) holds. Similar to (4.16), using the Interpolation Inequality for
Lp norms, we have

(4.38) w̃ε → w̃ in Ls(R3), s ∈ (2, 6].

In view of (4.20) and recall that w̃ε(x) = uε,1
(

x+ xε

ε

)

, we have

1

2

ˆ

R3

|∇w̃ε|2 +
1

2

ˆ

R3

V (εx+ xε)w̃
2
ε +

1

4

ˆ

R3

φw̃εw̃
2
ε −

1

p
λ

ˆ

R3

(w̃+
ε )

p − 1

6

ˆ

R3

(w̃+
ε )

6

≤ cV0 + o(1).

By Lemma 2.1(iii), (4.21), (4.22) and (4.38), we get

1

2

ˆ

R3

|∇w̃|2 + 1

2

ˆ

R3

V (x0)w̃
2 +

1

4

ˆ

R3

φw̃w̃
2 − 1

p
λ

ˆ

R3

(w̃+)
p − 1

6

ˆ

R3

(w̃+)
6 ≤ cV0 ,

i.e.,

(4.39) IV (x0)(w̃) ≤ cV0 .

Since 〈J ′
ε(uε), uε,1〉 → 0, ‖uε,2‖Hε

→ 0 as ε→ 0 and 〈Q′
ε(uε), uε,1〉 ≡ 0 and together

with the fact that w̃ε(x) = uε,1
(

x+ xε

ε

)

, we get
ˆ

R3

|∇w̃ε|2 +
ˆ

R3

V (εx+ xε)w̃
2
ε +

ˆ

R3

φw̃εw̃
2
ε = λ

ˆ

R3

(w̃+
ε )

p
+

ˆ

R3

(w̃+
ε )

6
+ o(1),
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then by (4.29), we have
ˆ

R3

|∇w̃|2 +
ˆ

R3

V (x0)w̃
2 +

ˆ

R3

φw̃w̃
2

≤ lim
ε→0

ˆ

R3

|∇w̃ε|2 +
ˆ

R3

V (εx+ xε)w̃
2
ε +

ˆ

R3

φw̃εw̃
2
ε

= lim
ε→0

λ

ˆ

R3

(w̃+
ε )

p
+

ˆ

R3

(w̃+
ε )

6
= λ

ˆ

R3

(w̃+)
p
+

ˆ

R3

(w̃+)
6

=

ˆ

R3

|∇w̃|2 +
ˆ

R3

V (x0)w̃
2 +

ˆ

R3

φw̃w̃
2,

hence as ε → 0,

(4.40)

ˆ

R3

V (εx+ xε)w̃
2
ε →
ˆ

R3

V (x0)w̃
2

and

(4.41)

ˆ

R3

|∇w̃ε|2 →
ˆ

R3

|∇w̃|2.

In view of (4.6), (4.38) and the fact that ‖uε,2‖Hε
→ 0 as ε→ 0, taking d0 > 0 small,

we can check that w̃ 6= 0. By (4.29), we have

(4.42) IV (x0)(w̃) ≥ cV (x0).

Since x0 ∈ Mβ ⊂ Λ, (4.39) and (4.42) imply that V (x0) = V0 and x0 ∈ M. At this
point, it is clear that ∃U ∈ SV0 and z0 ∈ R

3 such that w̃(x) = U(x− z0). Since
ˆ

R3

V (x0)w̃
2
ε ≤
ˆ

R3

V (εx+ xε)w̃
2
ε ,

by (4.40) and (4.41), we have

w̃ε → w̃ in H1(R3),

which implies that
∥

∥

∥
uε − ϕ(εx− (xε + εz0))U

(

x−
(xε
ε

+ z0
)

)
∥

∥

∥

Hε

→ 0 as ε→ 0.

And we recall that xε → x0 ∈ M as ε → 0, this completes the proof. �

Lemma 4.4. Let d0 be the number given in Lemma 4.3, then for any d ∈ (0, d0),
there exist εd > 0, ρd > 0 and ωd > 0 such that

‖J ′
ε(u)‖∗,ε,R ≥ ωd > 0

for all u ∈ J
cV0+ρd
ε ∩ (Xd0

ε \Xd
ε ) ∩H1

0 (BR(0)) with ε ∈ (0, εd) and R ≥ R0/ε.

Proof. If the lemma does not hold, there exist d ∈ (0, d0), {εi}, {ρi} with

εi, ρi → 0, Rεi ≥ R0/εi and ui ∈ J
cV0+ρi
εi ∩ (Xd0

εi
\Xd

εi
) ∩H1

0 (BRεi
(0)) such that

‖J ′
εi(ui)‖∗,εi,Rεi

→ 0 as i→ ∞.

By Lemma 4.3(i), we can find {yi}∞i=1 ⊂ R
3, x0 ∈ M, U ∈ SV0 such that

lim
i→∞

|εiyi − x0| = 0 and lim
i→∞

‖ui − ϕ(εix− εiyi)U(x− yi)‖Hεi
= 0,

which implies that ui ∈ Xd
εi

for sufficiently large i. This contradicts that ui /∈ Xd
εi
. �
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Lemma 4.5. There exists T0 > 0 with the following property: for any δ > 0
small, there exist αδ > 0 and εδ > 0 such that if Jε(γε(s)) ≥ cV0 − αδ and ε ∈ (0, εδ),
then γε(s) ∈ XT0δ

ε , where γε(s) := Wε,st0, s ∈ [0, 1].

Proof. First, we may find a T0 > 0 such that for any u ∈ H1(R3),

(4.43) ‖ϕ(εx)u(x)‖Hε
≤ T0‖u(x)‖H1(R3).

Define

αδ =
1

4
min

{

cV0 − IV0(s
2t20U

∗(st0x)) : s ∈ [0, 1],
∥

∥s2t20U
∗(st0x)− U∗(x)

∥

∥

H1(R3)
≥ δ

}

> 0,

we have

(4.44) IV0(s
2t20U

∗(st0x)) ≥ cV0 − 2αδ implies
∥

∥s2t20U
∗(st0x)− U∗(x)

∥

∥

H1(R3)
≤ δ.

Similar as in the proof of (4.2), we have

(4.45) max
0≤s≤1

|Jε(γε(s))− IV0(s
2t20U

∗(st0x))| ≤ αδ

for all ε ∈ (0, εδ). Thus if ε ∈ (0, εδ) and Jε(γε(s)) ≥ cV0 − αδ, by (4.44) and (4.45),
we have ‖s2t20U∗(st0x)− U∗(x)‖H1(R3) ≤ δ, then by (4.43), we have

‖Wε,st0(x)− ϕ(εx)U∗(x)‖Hε
=

∥

∥ϕ(εx)s2t20U
∗(st0x)− ϕ(εx)U∗(x)

∥

∥

Hε

≤ T0
∥

∥s2t20U
∗(st0x)− U∗(x)

∥

∥

H1(R3)
≤ T0δ.

Recall that 0 ∈ M, we have γε(s) := Wε,st0 ∈ XT0δ
ε . �

For each R > R0/ε, we have

γε(s) := Wε,st0 ∈ H1
0 (BR(0)) for each s ∈ [0, 1], Xε ⊂ H1

0 (BR(0)).

Define
cε,R := inf

γ∈Γε,R

max
0≤t≤1

Jε(γ(t)),

where

Γε,R :=
{

γ ∈ C([0, 1], H1
0 (BR(0))) : γ(0) = 0, γ(1) = γε(1) = Wε,t0

}

.

Remark that γε(s) :=Wε,st0 ∈ Γε,R, cε ≤ cε,R ≤ c̃ε and J c̃ε
ε ∩Xε ∩H1

0 (BR(0)) 6= ∅.
Choosing δ1 > 0 such that T0δ1 < d0/4 in Lemma 4.5 and fixing d = d0/4 := d1

in Lemma 4.4. The next Lemma comes from [22], for reader’s convenience, we give
a detailed proof.

Lemma 4.6. ∃ε̄ > 0 such that for each ε ∈ (0, ε̄] and R > R0/ε, there ex-

ists a sequence {vRn,ε}∞n=1 ⊂ J c̃ε+ε
ε ∩ Xd0

ε ∩ H1
0 (BR(0)) such that J ′

ε(v
R
n,ε) → 0 in

(H1
0 (BR(0)))

−1 as n→ ∞.

Proof. Since Jε(γε(1)) → IV0(U
∗
t0) < −3 as ε → 0, we choose 0 < ε̄ ≤

min{εd1 , εδ1} such that for each ε ∈ (0, ε̄],

(4.46) c̃ε + ε ≤ cV0 + ρd1 , c̃ε − cε <
1

8
ωd1d0, cV0 −

1

2
αδ1 < cε, Jε(γε(1)) < 0.

Assuming the contrary that for some ε∗ ∈ (0, ε̄] and R∗ > R0/ε
∗, there exists a

γ(ε∗, R∗) > 0 such that

(4.47) ‖J ′
ε∗(u)‖∗,ε∗,R∗ ≥ γ(ε∗, R∗) > 0
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for all u ∈ J c̃ε∗+ε∗

ε∗ ∩Xd0
ε∗ ∩H1

0 (BR∗(0)).

Let Y be a pseudo-gradient vector field for J ′
ε∗ in H1

0 (BR∗(0)), i.e., Y : J c̃ε∗+ε∗

ε∗ ∩
Xd0

ε∗ ∩ H1
0(BR∗(0)) → H1

0 (BR∗(0)) is a locally Lipschitz continuous vector field such

that for every u ∈ J c̃ε∗+ε∗

ε∗ ∩Xd0
ε∗ ∩H1

0 (BR∗(0)),

‖Y (u)‖Hε∗
≤ 2‖J ′

ε∗(u)‖∗,ε∗,R∗ ,(4.48)

〈J ′
ε∗(u), Y (u)〉 ≥ ‖J ′

ε∗(u)‖2∗,ε∗,R∗ .(4.49)

Let ψ1, ψ2 be locally Lipschitz continuous functions in H1
0 (BR∗(0)) such that 0 ≤

ψ1, ψ2 ≤ 1 and

ψ1(u) =

{

1 if cV0 − αδ1 ≤ Jε∗(u) ≤ c̃ε∗ ,

0 if Jε∗(u) ≤ cV0 − 2αδ1 or c̃ε∗ + ε∗ ≤ Jε∗(u),

ψ2(u) =

{

1 if ‖u−Xε∗‖Hε∗
≤ 3

4
d0,

0 if ‖u−Xε∗‖Hε∗
≥ d0.

Consider the following ordinary differential equations:






d
ds
η(s, u) = − Y (η(s, u))

‖Y (η(s, u))‖Hε∗

ψ1(η(s, u))ψ2(η(s, u)),

η(0, u) = u.

By (4.48) and (4.49), we have

d

ds
Jε∗(η(s, u)) =

〈

J ′
ε∗(η(s, u)),

d

ds
η(s, u)

〉

=
〈

J ′
ε∗(η(s, u)),−

Y (η(s, u))

‖Y (η(s, u))‖Hε∗

ψ1(η(s, u))ψ2(η(s, u))
〉

≤ −ψ1(η(s, u))ψ2(η(s, u))

‖Y (η(s, u))‖Hε∗

‖J ′
ε∗(η(s, u))‖2∗,ε∗,R∗

≤ −1

2
ψ1(η(s, u))ψ2(η(s, u))‖J ′

ε∗(η(s, u))‖∗,ε∗,R∗

and combining with (4.46), (4.47) and Lemma 4.4, it is standard to show that η ∈
C([0,∞)×H1

0 (BR∗(0)), H1
0(BR∗(0))) and satisfies

(i) d
ds
Jε∗(η(s, u)) ≤ 0 for each s ∈ [0,∞) and u ∈ H1

0 (BR∗(0));

(ii) d
ds
Jε∗(η(s, u)) ≤ −ωd1/2 if η(s, u) ∈ J c̃ε∗

ε∗ \JcV0−αδ1
ε∗ ∩X3d0/4

ε∗ \Xd0/4
ε∗ ;

(iii) d
ds
Jε∗(η(s, u)) ≤ −γ(ε∗, R∗)/2 if η(s, u) ∈ J c̃ε∗

ε∗ \JcV0−αδ1
ε∗ ∩X3d0/4

ε∗ ;
(iv) η(s, u) = u if Jε∗(u) ≤ 0.

Set s1 := ωd1d0(γ(ε
∗, R∗))−1 and ξ(t) := η(s1, γε∗(t)), by (4.46) and (iv), we have

ξ(t) ∈ Γε∗,R∗ . In view of (4.46) and (i), we may find a t1 ∈ (0, 1) such that

(4.50) cV0 − αδ1/2 ≤ cε∗ ≤ cε∗,R∗ ≤ Jε∗(ξ(t1)) ≤ Jε∗(γε∗(t1)) ≤ c̃ε∗.

Hence, Lemma 4.5 yields

γε∗(t1) ∈ X
d0/4
ε∗ ∩ J c̃ε∗

ε∗ \JcV0−αδ1
ε∗ .

Now, we have two cases:

Case 1. η(s, γε∗(t1)) /∈ X
3d0/4
ε∗ for some s ∈ [0, s1];



Schrödinger–Poisson equations in R
3 involving critical Sobolev exponents 761

Case 2. η(s, γε∗(t1)) ∈ X
3d0/4
ε∗ for all s ∈ [0, s1].

In Case 1, denote

s2 := inf{s ∈ [0, s1]|η(s, γε∗(t1)) /∈ X
3d0/4
ε∗ }

and

s3 := sup{s ∈ [0, s2]|η(s, γε∗(t1)) ∈ X
d0/4
ε∗ },

then

s2 − s3 ≥
1

2
d0, η(s, γε∗(t1)) ∈ X

3d0/4
ε∗ \Xd0/4

ε∗ for every s ∈ [s3, s2].

By (i) and (4.50), for all s ∈ [0, s1],

cV0 −
1

2
αδ1 ≤ Jε∗(η(s1, γε∗(t1))) ≤ Jε∗(η(s, γε∗(t1)))

≤ Jε∗(η(0, γε∗(t1))) = Jε∗(γε∗(t1)) ≤ c̃ε∗ ,

then by (4.46) and (ii), we obtain

Jε∗(ξ(t1)) = Jε∗(γε∗(t1)) +

ˆ s1

0

d

ds
Jε∗(η(s, γε∗(t1))) ds

≤ c̃ε∗ +

ˆ s2

s3

d

ds
Jε∗(η(s, γε∗(t1))) ds ≤ c̃ε∗ −

1

4
ωd1d0 < cε∗,

which contradicts to (4.50).
In Case 2, by (4.46), (iii) and the definition of s1, we have

Jε∗(ξ(t1)) ≤ c̃ε∗ −
1

2
γ(ε∗, R∗)s1 = c̃ε∗ −

1

2
ωd1d0 < cε∗,

which contradicts to (4.50). The lemma is proved. �

Proof of Theorem 1.1. Step 1. By Lemma 4.6, ∃ε̄ > 0 such that for each
ε ∈ (0, ε̄] and R > R0/ε, there exists a sequence {vRn,ε}∞n=1 ⊂ J c̃ε+ε

ε ∩Xd0
ε ∩H1

0 (BR(0))

such that J ′
ε(v

R
n,ε) → 0 in (H1

0 (BR(0)))
−1 as n→ ∞.

Since {vRn,ε} is bounded in H1
0 (BR(0)), up to a subsequence, as n→ ∞, we have

(4.51)











vRn,ε ⇀ vRε in H1
0 (BR(0)),

vRn,ε → vRε in Ls(BR(0)), s ∈ [1, 6),

vRn,ε → vRε a.e. in BR(0).

By standard argument, we can check that vRε ≥ 0 and satisfies

(4.52)















−∆vRε + V (εx)vRε + φvRε
vRε + 4

(

´

R3 χε(v
R
ε )

2
dx− 1

)

+
χεv

R
ε

= λ(vRε )
p−1 + (vRε )

5 in BR(0),

vRε = 0 on ∂BR(0),

and we will show that vRε ∈ J c̃ε+ε
ε ∩Xd0

ε for d0 > 0 small.
Indeed, we write that vRn,ε = uRn,ε +wR

n,ε with uRn,ε ∈ Xε and
∥

∥wR
n,ε

∥

∥

Hε
≤ d0. Since

SV0 is compact in H1(R3), up to a subsequence, we can assume that uRn,ε → uRε in

H1
0 (BR(0)) and wR

n,ε ⇀ wR
ε in H1

0 (BR(0)) as n → ∞. Then we have vRε = uRε + wR
ε

with uRε ∈ Xε and
∥

∥wR
ε

∥

∥

Hε
≤ d0, i.e., vRε ∈ Xd0

ε .
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By Brezis–Lieb’s Lemma [11, Theorem 1], Lemma 2.1(i), Lemma 2.2(i) and
(4.51), we have

c̃ε + ε ≥ Jε(v
R
n,ε) = Jε(v

R
ε ) +

1

2

∥

∥vRn,ε − vRε
∥

∥

2

Hε
− 1

6

∥

∥vRn,ε − vRε
∥

∥

6

L6(R3)
+ o(1)

= Jε(v
R
ε ) +

1

2

∥

∥wR
n,ε − wR

ε

∥

∥

2

Hε
− 1

6

∥

∥wR
n,ε − wR

ε

∥

∥

6

L6(R3)
+ o(1)

≥ Jε(v
R
ε ) +

1

2

∥

∥wR
n,ε − wR

ε

∥

∥

2

Hε
− 1

6
S−3

∥

∥wR
n,ε − wR

ε

∥

∥

6

Hε
+ o(1)

= Jε(v
R
ε ) +

∥

∥wR
n,ε − wR

ε

∥

∥

2

Hε

(

1

2
− 1

6
S−3

∥

∥wR
n,ε − wR

ε

∥

∥

4

Hε

)

+ o(1)

≥ Jε(v
R
ε ) + o(1) for d0 > 0 small.

Letting n→ ∞, we have Jε(v
R
ε ) ≤ c̃ε + ε, that is vRε ∈ J c̃ε+ε

ε .

Step 2. We claim that ∃ε̄ > 0 such that for any ε ∈ (0, ε̄] and R > R0/ε,

(4.53)
∥

∥vRε
∥

∥

L∞(R3)
≤ C.

Otherwise, ∃εj → 0, Rj > R0/εj such that
∥

∥v
Rj
εj

∥

∥

L∞(R3)
→ ∞ as j → ∞. By

Lemma 4.3(i), there exist, up to a subsequence, {yj}∞i=j ⊂ R
3, x0 ∈ M, U ∈ SV0 such

that

lim
j→∞

|εjyj − x0| = 0 and lim
j→∞

∥

∥

∥
vRj
εj
(x)− ϕ(εjx− εjyj)U(x− yj)

∥

∥

∥

Hεj

= 0,

then

lim
j→∞

∥

∥

∥
vRj
εj
(x+ yj)− ϕ(εjx)U(x)

∥

∥

∥

L6(R3)
= 0,

which implies that as j → ∞,

vRj
εj
(x+ yj) → U(x) in L6(R3).

Using the Brezis–Kato type argument (see also Lemma 2.4), we have
∥

∥vRj
εj
(x+ yj)

∥

∥

L∞(R3)
≤ C,

which leads to a contradiction.

Step 3. Next, we claim that vRε → vε ∈ Hε ∩Xd0
ε ∩ J c̃ε+ε

ε as R → ∞ in Hε sense
for ε > 0 small but fixed.

Since Qε(v
R
ε ) is uniformly bounded for all ε > 0 small and R > R0/ε, we have

(4.54)

ˆ

R3\(Λ/ε)

(vRε )
2 ≤ Cε.

By (4.52), we have that for any δ > 0,

−∆vRε + V (εx)vRε ≤ δvRε + Cδ(v
R
ε )

5,

taking δ = inf
x∈R3

V (x) > 0 and combining with (4.53), it holds that

−∆vRε ≤ C(vRε )
5 ≤ C(vRε )

2/3,

in the weak sense. Letting t = 6 in Lemma 2.7, we have

sup
B1(y)

vRε ≤ C
(

∥

∥vRε
∥

∥

L2(B2(y))
+
∥

∥vRε
∥

∥

2/3

L2(B2(y))

)

, y ∈ R
3.
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By (4.54), we see that

vRε (x) ≤ C(ε1/2 + ε1/3) for all |x| ≥ R0/ε+ 2 and R > R0/ε.

Hence, for ε > 0 small but fixed, we have

λ(vRε )
p−1 + (vRε )

5 ≤ 1

2
V (εx)vRε for all |x| ≥ R0/ε+ 2 and R > R0/ε.

By the Maximum Principle (see also [32]), we have

(4.55) 0 ≤ vRε (x) ≤ C1(ε)e
−C2(ε)|x| for all |x| ≥ R0/ε+ 2 and R > R0/ε,

where C1(ε) and C2(ε) are independent of R.
Choosing a cut-off function ϕA ∈ C∞(R3) such that 0 ≤ ϕA ≤ 1, ϕA = 0 for

|x| ≤ A, ϕA = 1 for |x| ≥ 2A and |∇ϕA| ≤ C/A. It follows from
〈

J ′
ε(v

R
ε ), ϕAv

R
ε

〉

= 0
and (4.55) that

ˆ

R3\B2A(0)

|∇vRε |2 + V (εx)|vRε |2

≤ C

A

ˆ

R3\BA(0)

|∇vRε |2 + |vRε |2 +
ˆ

R3\BA(0)

λ(vRε )
p
+ (vRε )

6

≤ C

A

ˆ

R3

|∇vRε |2 + |vRε |2 + C(ε)

ˆ

R3\BA(0)

e−C(ε)|x| → 0 as A→ ∞,

i.e., for ε > 0 small but fixed,

(4.56) lim
A→∞

ˆ

R3\B2A(0)

|∇vRε |2 + V (εx)|vRε |2 = 0.

Since {vRε } is bounded in Hε, we can assume that as R→ ∞,










vRε ⇀ vε in Hε,

vRε → vε in Ls
loc
(R3), s ∈ [1, 6),

vRε → vε a.e.

By (4.56) and Sobolev’s Imbedding Theorem, we get

vRε → vε in Ls(R3), s ∈ [2, 6) as R→ ∞.

By (4.53), we have

vRε → vε in Ls(R3), s ∈ [2, 6] as R → ∞.

Using standard argument, we can prove the claim.
Hence, vε ∈ Hε ∩Xd0

ε ∩ J c̃ε+ε
ε is a nontrivial solution of

−∆u+ V (εx)u+ φuu+ 4

(
ˆ

R3

χεu
2 dx− 1

)

+

χεu = λup−1 + u5 in R
3.

Since SV0 is compact in H1(R3), it is easy to see that 0 /∈ Xd0
ε for d0 > 0 small. Thus

vε 6= 0.

Step 4. For any sequence {εj} with εj → 0, by Lemma 4.3(ii), there exist, up to
a subsequence, {yj}∞i=j ⊂ R

3, x0 ∈ M, U ∈ SV0 such that

(4.57) lim
j→∞

|εjyj − x0| = 0 and lim
j→∞

∥

∥vεj(x)− ϕ(εjx− εjyj)U(x− yj)
∥

∥

Hεj

= 0,
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which implies that as j → ∞,

wεj(x) := vεj(x+ yj) → U(x) in L6(R3).

By Lemma 2.4 (ii), we get

(4.58) lim
|x|→∞

wεj(x) = 0 uniformly for all εj.

Proceeding as in [32], we get

wεj(x) ≤ C1e
−C2|x|, x ∈ R

3,

where C1 and C2 are independent of εj.
Thus

ε−1
j

ˆ

R3\(Λ/εj)

v2εj(x) = ε−1
j

ˆ

R3\(Λ/εj−yj)

w2
εj
(x) ≤ ε−1

j

ˆ

R3\Bβ/εj
(0)

(C1)
2e−2C2|x| → 0,

as j → ∞, i.e., Qεj (vεj) = 0 for εj small. Therefore vεj is a solution of (4.1). Set
uε(x) = vε(

x
ε
), uεj is a solution of (1.1).

Let Pj be a maximum point of wεj , similar to the arguments in Proposition 3.9,
we can check that ∃b > 0 such that wεj(Pj) > b, then by (4.58), {Pj} must be
bounded.

Since uεj(x) = wεj(
x
εj
− yj), xj := εjPj + εjyj is a maximum point of uεj . From

(4.57), xj → x0 ∈ M as j → ∞. Since the sequence {εj} is arbitrary, we have
obtained the existence and concentration results in Theorem 1.1.

To complete the proof, we only need to prove the exponential decay of uε. Since
the proof is standard (see [26, 32] for example), we omit it here. �
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