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Abstract. This paper provides a gap theorem for the first eigenvalue of the stability operator
of complete immersed minimal hypersurfaces of dimension no less than five in a hyperbolic space.
Namely, we show that an n(> 5)-dimensional complete immersed minimal hypersurface M in a
hyperbolic space is totally geodesic if the first eigenvalue of the stability operator of M is bigger
than some concrete constant and if the L? norm of the length of the second fundamental form of
M grows properly.

1. Introduction

The celebrated Bernstein theorem [2] states that the only complete minimal
graphs in R? are planes. The works of Fleming 14|, De Giorgi [8], Almgren [1]
and Simons [22] tell us that the Bernstein Theorem is valid for complete minimal
graphs in R™*! provided that n < 7. Counterexamples to the theorem for n > 8
were found by Bombieri-De Giorgi-Giusti [3]| and later by Lawson [15]. On the other
hand, it has been shown independently by do Carmo—Peng [11], Fischer Colbrie—
Schoen [13] that a complete stable minimal surface in R® must be a plane. For the
higher dimensional case, it is still unknown if a complete oriented stable minimal
hypersurface in R"™! (3 < n < 7) is a hyperplane. However, do Carmo and Peng
have proved the following result.

Theorem A. (do Carmo and Peng [10]) Let M™ be a complete stable minimal

hypersurface in R, If
sy 1A 2
. By(R) | B 2
A TR =04 \/; ’

then M is a hyperplane. Here, B,(R) denotes the geodesic ball of radius R centered
at p € M and A is the second fundamental form of M.

Many interesting generalizations of the above do Carmo—Peng’s theorem have
been obtained in recent years (cf. [9,12, 18,19, 20, 21, 23] etc.). In the present paper,
we shall prove similar result for complete minimal hypersurfaces in a hyperbolic space.
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By definition, the hyperbolic space H™ is a (unique) simply connected complete m-
dimensional Riemannian manifold with a constant negative sectional curvature —1.

Before stating our results, we recall some known facts. Let (M, ds?) be a complete
non-compact Riemannian manifold. Let p: M — R be a continuous function and let
A be Laplacian operator acting on functions of M. We set L, = A + i and denote
by Ai(Ly, M) the first eigenvalue of L,. The usual variational characterization of
)\1 (Ll“ M ) is

V12— puf?
(1.1) M(LyM)= inf LIV~ 1)
FECE (M),f70 Ju 2
where |V f| denotes the magnitude of the gradient of f taken with respect to ds.

When p = 0, we usually call \j(Lg, M) the first eigenvalue of M and denote it by
A (M). It is well known that (cf. [4,5,16,17])

(n—1)°
Y

If M is an n-dimensional complete minimal submanifold in H™, then we have (cf.

[71)

(1.2) M (H") =

—1)?
(1.3) an > & v s
which is equivalent to say that
n—1)2
(1.4) [wse= B2l [ e wrecion,
M M

If M is a complete minimal hypersurface of H**!, the stability operator of M is
Liap—n, and M is said to be stable if Ai(Ljaj2—n, M) > 0, where A is the second
fundamental form of M (cf. [16]). It is easy to see from (1.1) and (1.2) that the first
eigenvalue of the the stability operator of a complete totally geodesic hypersurface
of H* is n + @.

In the present paper we prove a gap theorem for the first eigenvalue of the stability

operator of complete minimal hypersurfaces in a hyperbolic space. Namely, we have

Theorem 1.1. Let M be an n(> 2)-dimensional complete immersed minimal
hypersurface in H"*! and let A be the second fundamental form of M. Suppose that
there exists a number q € (0,+/2/n) such that

4P

(1.5) hmjém — 0.

R— o0 R2q+2
i) If n > 6 and if
(2 =ng*)(n—1)*
an(1+q)?

(16) )\1(L|A\2—n,M) > 2n —

then M is totally geodesic.
ii) If n < 4, then
(2 —ng®)n

1. M(Ljap_pn, M) < 2n — .
(1.7) 1Lyapn, M) < 21 2+2ng+n
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iii) If n =5, q € (0,1/5) and if

25(q + 1)
1.8 M(Ljap_s, M) > 54+ ———F—
(1.8) 1(Lyajz—s, M) + 0g+7

then M is totally geodesic.
iv) If n=>5 and if ¢ € [1/5,+/2/5), then

25(q + 1)
1. M(Ljap_s, M) < e o——
( 9) 1( |A|2—=55 )—5_'_ 10q+7

In view of Theorem 1.1, it is interesting to know if a similar result for complete
minimal submanifolds in a hyperbolic space holds and to study the following

Problem. What is the sharp lower bound for the first eigenvalue of the stability
operator of complete minimal hypersurfaces in a hyperbolic space?

Theorem 1.1 can be generalized to complete hypersurfaces with constant mean
curvature in a hyperbolic space. In order to see this, let us recall the following result.

Lemma 1.2. [19] Let M be a complete non-compact immersed submanifold in
a Riemannian manifold N. Suppose that M has constant mean curvature. If there
exist positive constants €, a,b and [, such that

/ VP> / PIAR, VF e o),
M M

and

lim 7fBR(w)

EW
R—+o00 Rl

= O’
then M™ must be minimal.

Combining Theorem 1.1 and Lemma 1.2, we immediately get

Corollary 1.3. Let M be an n(> 2)-dimensional complete non-compact im-
mersed hypersurface with constant mean curvature in H"" and let A be the second
fundamental form of M. Assume that there exists a number q € (0,/2/n) such that

4P

(1.10) lim Joym 147 _ 0.

R—o0 R2q+2
i) If n > 6 and if
(2 —ng®)(n — 1)

1.11 M(Lyjap—p, M) > 2n —
( ) 1( |A]2—n> )> n 4n(1+q)2 5
then M™ is totally geodesic.
ii) If n < 4, then
(2= ng?)n
1.12 M(Ljap—p, M) <2n — ————.
( ) 1(Lap )< 2+2ng+n
iii) If n =5, ¢ € (0,1/5) and if
25(¢ +1)?
1.13 M(Ljap_s, M) > 54+ ———F—
(1.13) 1(Lyajz—s, M) + 0g+7

then M is totally geodesic.
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iv) If n =15, q € [1/5,4/2/5), then

25(¢ +1)?
1.14 M(Lyae_s, M) < e
( ) 1( |A]2=5) ) <5+ 10g+7

2. A proof of Theorem 1.1

In this section, we will prove the main result in this paper.

Proof of Theorem 1.1. Since M is a minimal hypersurface of H**!, we have from
the Simons’ formula that (cf. [6, 22])

(21) SAIAP = [VAP — Al — | AP
It is well-known that (cf. [24])

2
(22 VAR =~ [V]4IP 2 Z[9]4]P.

Recalling that A|A]> = 2|A|AJA] + 2|V|A]]? and using (2.1) and (2.2) we get the
following Kato-type inequality

2

(2.3) |A|AJA] + |A|* + n|A]2 > E|V|A||2.
Setting
(24) o = )\ (L|A‘2_n, M) —n,
we have from the definition of Ay (Ljsp_,, M) that
(25) [ 1wsez [ 1apsea [ 20 vrecran.
Setting

_ (n—1)?
(2.6) V=
we get from (1.4) that
(27) [z [ 2 vreczon,

M M

Fixing an z € [0, 1], we deduce from (2.5) and (2.7) that

(28) o« /M PIAP + (w0 + (1 - 2)) /M P < /M VP Ve CR(M).

Plugging f|A['*7 in (2.8) we get
o [ PR a1 [ AP < [ earp
M M M
@9) = +af [ APITIARS - [ AP
M M

121+ q) /M APSF(T £,V ADD.
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Multiplying (2.3) by |A|*?f? and integrating over M, we have
@10) 2 [ japrpviale < [ apmpajae [ g [ japees,
It follows from integration by parts that
[1apmpaa == [ (9 (a4
(2.11) M M
——q+1) [ JAPPVIAIR -2 [ F1APTH £ 914,

M M

Multiplying (2.10) by (1 + ¢) and using (2.11), one gets
2
1+ (— fogt 1) [ 1apgrwiare
n M
(2.12) <) [ AP D [ AP
M M
~2(1+q) [ APV VIAD.
M
Summing up (2.9) and (2.12) we get
o [ PIAR ot (1 -a)) [ Plapr
M M
2
@13+ (2ea) [lampap
< [ AP s [ AP e ey [ AP
M M M
For any ¢ > 0, we have
1
@) 2 [ APREEIA) <e [APIVIAReE + ;[ AP
M M €Jm

Substituting (2.14) into (2.9), we easily obtain

. /M PLAM 4 (20 + (1 — 2)) /M 12|42

14¢

(2.15)
<(+q)(1+q+0 / |A|2q|V|A|I2f2+<1+—) / APV £
M

Multiplying the above inequality by li:ie

n A4+2q 1— / 2A2+2q
P (o [ P s - [ pPape)

2 24yq
<G [ apreiaps+ B [ apegge
M M

we get

(2.16)
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Combining (2.13) and (2.16), we have

2
<1+1_T_;) ( / A+ (za+ (1 — 2)y / f2|A|2+2q)
2

(2.17) s(l ) [ s g [ ape

(g + 1)/ A2+ 2,
M

Now we consider different cases.
Case i): n > 6. Setting

_ 2=n¢)(n—-1)?

(2.18) B =

dn(1+¢)2
we know from (1.6) that there exists a constant p > 0 such that
(2.19) a>B+p.

Since ¢ € (0,1/2/n), we can find an € > 0 satisfying
(I+q)(+qg+e)

2.20 +e<1
(2.20 21 oqt1+e
and
1 2 — ¢
(221) 1% + (110)(1tq+e) —1- ﬁ Y > O
“Zyagrite € 1

Dividing (2.17) by (1 4 ) and taking

_ (0+9+q+¢

2.22
(2.2 242+1+e

one obtains that
(2.23) e/ \A|2q+4f2+(7+x(oz—7)—nx—i—ne)/ | A[20+2 p2 gCl/ |A[242)V 12,
M M M

for some positive constant C' depending only on n, g, €. It follows from (2.18), (2.19),
(2.21) and (2.22) that

intan)nema (L 1) o)

1 (2 —ng*)(n—1)?
> —1]v- +p
(1+q)(1+g+e) 2
Tiagrire € An(1+4)

1 2 ¢
= -1-= >0
T\p+ (14+q)(1+q+e) +e (1 + q)2 v

2 4+2¢+1+4€
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Thus, we can find an € > 0 and a a positive constant C; depending only on n, ¢, €, p,
such that

(2.24) / f2|A\2q+4+/ F2| A2+ gCl/ AT 2, Y € (M),
M M M

Recall Young’s inequality
a® 6711

ab < + e
s t t s
where § > 0 is arbitrary and 1 < t,s < +00.
Setting
2 qg+1
= ) 8: ) tzl_'_ )
P 1+gq q 1

then we have
1 1

It follows from Young’s inequality that

|A‘2q+2|Vf|2 f2 (|A‘2q+2‘vf£‘ )

2 2q+2— V 2
(2.25) = 2 (Japrenap S0

o° _ ot |V f|? ¢
< 2 _As(2q+2 D) e AlP .
<f (SI | + <\ | 72

Putting (2.25) into (2.24) we have

§—(+a) V f|2at?
[ e <o /mwwuc = [ e

that is,

e —(14q) 2q+2
— Cl a0 / | APt 2 < 0176 / |A|27|Vf| .
"‘ 1 M 1+ q M f2q+2

By choosing 0 sufficiently small, we can write the above inequality as

2q+2
(2.26) /|A\2q+4f2<0/ apV I

f2q+2 )

for a new constant Cy = Cy(n, €, q, p, o).
Now, changing in (2.26) f by f!™¢ we obtain

1+
/ |A|2q+4f2q+2 <C / |A|2 |V f1+q>| ) !

f2q 1+q)

f2q(q+1) ‘Vf‘2q+2
f2q(q+1)

(2.27) = Cy(1 + ¢)2(1+9) / |A|?
M

=@/LWWNW.
M
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Fix a p € M and choose f to be a non-negative cut-off function with the prop-
erties

1 1 on B,(R),
(2.28) VA5 f= {0 on M\ B,(2R).

Substituting the above f into (2.27) we get
A 2
/ |A|2q+4f2q+2 < / |A|2q+4f2q+2 < 03/ |A|2|vf|2q+2 < Cngp(QR) | |
By(R) - Ju N M N

R2q+2

Letting R — +o00 we have, by hypothesis, that the right hand side vanishes. So,
/ |A]?7T2 = 0.
M
This implies |A| = 0.

Case ii): n < 4. Let us assume by contradiction that
(2.29) a>n—

Taking z = 1 in (2.17), we have

%_'_q q q
() e )
(2:30) (1+ ) [ 1w g [ aprs
—I—n(q+1)/ A2+ 2,
M

From ¢ € (0,+/2/n) and (2.29), we can find an € > 0 satisfying

2

2
2y 2y
(2.31) n T4 q, (1 + "*q) a>n(l+q).

1+qg+e 14+qg+e¢
It then follows that there exists an € > 0 such that

(2.32) / AP 4 / PIAP? < ¢, / APV, VF € Coo(M),
M M M

for some positive constant C'y depending only on n, ¢ and €. Using the same arguments

as in the proof of case i) we can conclude that M = H" and so a = (n— 1 , which
contradicts to (2.29) since n < 4 and ¢ > 0.

Cases iii) and iv): Taking n =5 and z = 1 in (2.17), we get

5 +q q q
(1 1+ q_'_ 6) (/ f2‘A|4+2 —|—Oé/ f2‘A|2+2 )
(2.33) ( ) / |A|2q+2|Vf|2 1 +q / |A|2q+4f2

L5+ 1) / AP p,
M
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When ¢ € (0,+/2/5) and

25(q + 1)

2.34 et S
(2.34) 10¢+7 "’
we can find an € > 0 such that

2 2

:t+q = +4q
2.35 b~ >q, (1+—2——]a>51+q).
( ) 1+qg+e€ 4 ( 1+q+€)a ( %)

Thus (2.31) also holds in this case. As in the proof of case i), we know that M is
totally geodesic. Therefore ov = 4, which, combining with (2.34), implies that ¢ < %
Consequently, we know that items iii) and iv) in Theorem 1.1 hold. O
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