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Abstract. We prove that the length spectrum metric and the arc-length spectrum metric are

almost-isometric on the ǫ0-relative part of Teichmüller spaces of surfaces with boundary.

1. Introduction

Let S = Sg,p,b be a connected oriented surface of genus g ≥ 0 with p ≥ 0 punctures
and b ≥ 0 boundary components. The boundary of S is denoted by ∂S. The Euler
characteristic of S is X (S) = 2 − 2g − p− b. In this paper, we always assume that
g ≥ 0, p ≥ 0, b ≥ 1 and X (S) < 0.

In the following, all hyperbolic metrics on S are assumed to be complete and
totally geodesic on the boundary components. By the assumption that X (S) < 0,
there always exists a hyperbolic metric on S.

A marked hyperbolic metric (X, f) is a hyperbolic metric X on S equipped with an
orientation-preserving homeomorphism f : S → X, where f maps each component
of ∂S to a geodesic boundary of X and maps punctures to cusps. The reduced

Teichmüller space of S, denoted by T (S), is the set of equivalence classes of marked
hyperbolic metrics on S, where two markings (X1, f1) and (X2, f2) are equivalent if
there is an isometry h : X1 → X2 homotopic to f2 ◦ f−1

1 . We should point out that,
in this reduced theory, homotopies do not necessarily fix ∂S pointwise. The notion
of a reduced Teichmüller space was introduced by Earle [8, 9], where he defined the
space by using quasiconformal deformations of Fuchsian groups (of the second kind).

Since all Teichmüller spaces that we consider are reduced, we shall omit the
word “reduced” in this paper. For the sake of simplicity, we shall denote a marked
hyperbolic surface (X, f) or its equivalence class in T (S) by X, without explicit
reference to the marking or to the equivalence relation.

There are several natural metrics on Teichmüller space, e.g., the classical Te-
ichmüller metric and the Weil–Petersson metric. In this paper, we will study the
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length spectrum metric and the arc-length spectrum metric. The length spectrum
metric was first studied by Sorvali [24, 25], which can also be considered as the
symmetrization of an asymmetric Finsler metric defined by Thurston [27]. The arc-
length spectrum metric is new, which is defined only on Teichmüller spaces of surfaces
with boundary. Both of the two above metrics are defined by using hyperbolic (or
geodesic) length functions. There is no doubt that hyperbolic length is one of the
most fundamental tools in Teichmüller theory. We note that by recent works of Dan-
ciger, Guéritaud and Kassel [7], deformations of hyperbolic surfaces with boundary
is related to Margulis spacetimes in Lorentz geometry.

1.1. Metrics defined by length spectra. To provide concrete definitions and
state our results, we fix some terminology and notation.

A simple closed curve on S is said to be peripheral if it is isotopic to a puncture.
It is said to be essential if it is neither peripheral nor isotopic to a point. It should
be noticed that an essential closed curve may be isotopic to a boundary component.
We denote by C(S) the set of homotopy classes of essential simple closed curves on
S.

An arc on S is the homeomorphic image of a closed interval which is properly
embedded in S, that is, the interior of the arc is in the interior of S and the endpoints
of the arc lie on ∂S. An arc is said to be essential if it is not isotopic to a subset
of ∂S. All homotopies of arcs that we consider here are relative to ∂S. However,
we don’t require homotopies to fix ∂S pointwise. Let B(S) be the set of homotopy
classes of essential arcs on S.

For any α ∈ B(S)∪C(S) and X ∈ T (S), we denote by ℓX(α) the hyperbolic length

of α, that is, the length of the geodesic representation of α under the hyperbolic metric
X.

For surfaces without boundary, Thurston [27] defined the following asymmetric
metric:

d(X, Y ) = log sup
α∈C(S)

ℓY (α)

ℓX(α)
.

For surfaces with boundary, the following asymmetric metric is a natural gener-
alization of Thurston’s formula [14, 2]:

d̄(X, Y ) = log sup
α∈C(S)∪B(S)

ℓY (α)

ℓX(α)
.

Both of the above two metrics satisfy the separation axiom and triangle inequality,
but none of them satisfies the symmetric condition.

Remark 1.1. For surfaces with boundary, there exist (see [22]) distinct hyper-

bolic structures X and Y on S such that for any element α ∈ C(S), lX(α)
lY (α)

< 1. This

implies that

log sup
α∈C(S)

ℓX(α)

ℓY (α)
≤ 0.

As a result, it is necessary to consider the union of closed curves and arcs in the
definition of d̄.
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Definition 1.2. The length spectrum metric dL on T (S) is defined by

dL(X, Y ) = log sup
α∈C(S)

{
ℓX(α)

ℓY (α)
,
ℓY (α)

ℓX(α)

}
.

Definition 1.3. The arc-length spectrum metric δL on T (S) is defined by

δL(X, Y ) = max{d̄(X, Y ), d̄(Y,X)} = log sup
α∈C(S)∪B(S)

{
ℓX(α)

ℓY (α)
,
ℓY (α)

ℓX(α)

}
.

The fact that dL is a metric on T (S) was proved in [24, 12]. It is obvious that
dL ≤ δL. When b = 0, since B(S) is empty, dL = δL. For more works about the
length spectrum metric, one refers to [6, 11, 18, 12, 13, 17, 14, 21, 23].

1.2. Main theorems. The aim of this paper is to compare the length spectrum
metric with the arc-length spectrum on a large subset of T (S).

Definition 1.4. Given ǫ0 > 0, the ǫ0-relative part of T (S) is the subset of T (S)
consisting of hyperbolic metrics with lengths of all boundary components bounded
above by ǫ0.

In this paper we prove:

Theorem 1.5. There is a constant C depending on ǫ0 such that

dL(X, Y ) ≤ δL(X, Y ) ≤ dL(X, Y ) + C

for any X, Y in the ǫ0-relative part of T (S).

The left-hand side inequality follows by definition. The right-hand side inequality
is equivalent to the following result:

Theorem 1.6. There exists a positive constant K depending on ǫ0 such that

sup
β∈C(S)

⋃
B(S)

{
ℓX1

(β)

ℓX2
(β)

,
ℓX2

(β)

ℓX1
(β)

}
≤ K · sup

α∈C(S)

{
ℓX1

(α)

ℓX2
(α)

,
ℓX2

(α)

ℓX1
(α)

}

for any X1, X2 in the ǫ0-relative part of T (S).

Remark 1.7. Recall that a map f : M → N between metric spaces is called a
(λ, C) quasi-isometry (with given constants C ≥ 0 and λ ≥ 1) if

1

λ
dM(x, y)− C ≤ dN(f(x), f(y)) ≤ λdM(x, y) + C

for all x, y ∈ M , and the C-neighborhood of f(M) in N is all of N . An (1, C)
quasi-isometry is called an almost-isometry.

Theorem 1.5 implies that the length spectrum metric and the arc-length spectrum
metric are almost-isometric on the ǫ0-relative part of T (S).

For 0 < ǫ < ǫ0, the ǫ-thick part of T (S) is the subset of T (S) consisting of
hyperbolic metrics X with hyperbolic length ℓX(α) not less than ǫ for all α ∈ C(S).
The intersection of the ǫ-thick part and the ǫ0-relative part of T (S) is called the
ǫ0-relative ǫ-thick part of T (S). We can deduce from [14, Theorem 3.6] that the
length spectrum metric and the arc-length spectrum metric are almost-isometric on
the ǫ0-relative ǫ-thick part of T (S). In fact, by [14, Proposition 3.5], there exists a
positive constant K0 depending on ǫ and ǫ0 such that, for any X1, X2 in the ǫ-thick
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ǫ0-relative part of T (S),

(1) sup
β∈C(S)

⋃
B(S)

{
ℓX2

(β)

ℓX1
(β)

}
≤ K0 · sup

α∈C(S)

{
ℓX2

(α)

ℓX1
(α)

}
.

However, the above inequality does not hold on the whole ǫ0-relative part of T (S).
A counter example is constructed at the end of Section 4 (Example 4.8). As a result,
Theorem 1.5 can be seen as an extension of [14, Theorem 3.6].

Remark 1.8. We should mention that, in the statement of [14, Proposition 3.5]
the constant K0 depends on ǫ, ǫ0 and the topology of S. But during the proof of
(1), the constant K0 only depend on ǫ and ǫ0. Similarly, the constants C and K in
Theorem 1.5 and Theorem 1.6 are independent of the topology of the surface S.

1.3. Outline of the paper. In Section 2 we will recall some elementary results
in hyperbolic geometry that we need later. The proof of Theorem 1.6 will be given
in Section 3 and Section 4. In Section 3, we deal with the case where the constant ǫ0
is sufficiently small. In Section 4, we use the results in Section 3 to prove Theorem
1.6 in the general case.

To prove Theorem 1.6, we will use the technique of “replacing an arc by a loop”
to show that the length ratio of an arc can be controlled by the length ratio of some
appropriated simple closed curve. Such an idea was initiated by Minsky [20] and it
has many applications (see, e.g., Rafi [6]).

We will discuss related results on moduli spaces and on surfaces of infinite type
in Section 5.

Acknowledgements. The authors would like to thank the referee for many cor-
rections and useful suggestions.

2. Preliminaries

2.1. Formulae for right-angle pentagon and hexagon. For a right-angled
pentagon on the hyperbolic plane with consecutive side lengths a, b, α, c and β, as
in Figure 1, we have

(2) cosh c = sinh a sinh b.

c

βα

ab

Figure 1. An example of pentagon.
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We also need the following formula for a right-angled hexagon with consecutive
side lengths a, γ, b, α, c and β, as in Figure 2:

(3) cosh c+ cosh a cosh b = sinh a sinh b cosh γ.

ab

γ

βα

c

Figure 2. An example of hexagon.

The inverse hyperbolic sine function and the inverse hyperbolic cosine function
are given by

(4) sinh−1 x = ln(x+
√
x2 + 1)

and

(5) cosh−1 x = ln(x+
√
x2 − 1), for x ≥ 1.

Let f and g be any two functions defined on a set U . We call f ≍ g if there
exists a positive constant C such that

C−1 · f(τ) ≤ g(τ) ≤ C · f(τ), ∀ τ ∈ U.

Usually the constant C will depend on the choice of U .
Given ǫ0 > 0, we have x ≍ sinh x if x ≤ ǫ0, and sinh x ≍ ex if x ≥ ǫ0. Here it is

obvious that the multiplicative constants for ≍ depend on ǫ0.

2.2. Regular annulus. Let X be a hyperbolic structure on S and denote the
distance between two distinct points p and q on X by dX(p, q). The distance between
two subsets S1 and S2 of X is defined by

dX(S1, S2) = inf
x1∈S1,x2∈S2

dX(x1, x2).

Let A be an annulus embedded in S. Denote the two boundaries of A by γ and
γ′. The annulus A is said to be regular if there is a constant w > 0 such that

dX(p, γ
′) = dX(p

′, γ) = w, ∀ p ∈ γ, p′ ∈ γ′.
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For a positive number δ and a simple closed geodesic γ on X (either in the interior
of X or be a boundary component of X), we denote the δ-neighborhood of γ by

Aδ(γ) = {x ∈ X | dX(x, γ) < δ}.
By the Collar Lemma (ref. [5]), Aδ(γ) is a regular annulus if

δ ≤ sinh−1

(
1

sinh ℓX(γ)
2

)
.

Suppose that Aδ(γ) is a regular annulus. If γ is in the interior of X, then the
width of Aδ(γ) is equal to 2δ and γ lies in the middle of Aδ(γ). If γ is a boundary
component of S, then the width of Aδ(γ) is equal to δ. In both cases, we will say
that Aδ(γ) is a regular annulus around γ.

We define the auxiliary function η(x) by

η(x) := sinh−1

(
1

sinh x
2

)
=

1

2
ln

cosh(x/2) + 1

cosh(x/2)− 1
.

By the Collar Lemma again, for any two distinct simple closed geodesics γ1 and
γ2 on X, the regular annuli Aη(ℓX (γ1))(γ1) and Aη(ℓX (γ2))(γ2) are disjoint.

Throughout this paper, we only consider regular annuli as collar neighborhoods
of boundary components of X. In this case, as we show in Figure 3, the geodesic γ
is a boundary component of X. The regular annulus contains γ and γ′ as boundary
components. We call γ′ the inner boundary of Aδ(γ) and denote the length of γ′ on X
by ℓX(γ

′) (even through γ′ is not a geodesic, now and later, we will use the notation
ℓ to denote the length of an inner boundary when there is no cause of confusion).
The relation between ℓX(γ) and ℓX(γ

′) is given by (see [6, 19])

(6) ℓX(γ
′) = ℓX(γ) · cosh dX(γ, γ′).

γ γ′
dX(γ, γ

′) = δ

Figure 3. An example of regular annulus around γ on X , where γ is a boundary component of X .

3. Proof of Theorem 1.6: the case where ǫ0 is sufficiently small

The proof of Theorem 1.6 is separated into two steps. Recall that ǫ0 is an upper
bound for the lengths of all boundary components of S. In this section we will prove
Theorem 1.6 in the case where ǫ0 is sufficiently small. We will consider the general
case in next section.

We assume that ǫ0 < e−1 ln(1 +
√
2). Here the constant e−1 ln(1 +

√
2) is chosen

such that the width of some regular annulus neighborhood around a boundary com-
ponent of S has an explicit lower bound. Let ǫ′0 = ln(1+

√
2). Note that ǫ0 < ǫ′0 < 2.

Let X1 and X2 be two hyperbolic metrics in the ǫ0-relative part of T (S). We fix an
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essential arc β ∈ B(S). Denote the boundary curves where the two endpoints of β
lie by γ and γ′.

3.1. The case where γ 6= γ
′. In this subsection, we consider the case where

γ and γ′ are not the same boundary component of S.
There is a unique (isotopy class of) simple closed curve α which is homotopic to

the boundary of a regular neighborhood of β∪γ∪γ′. To simplify notation, for a given
hyperbolic metric on S, we will denote by α, β, γ and γ′ the geodesic representations
of the isotopy classes of α, β, γ and γ′, if no confusion arises.

Lemma 3.1. For i = 1, 2, we can take a regular annulus Ai around γ and a
regular annulus A′

i around γ′ on Xi satisfying the following conditions:

(1) Denote the inner boundary of Ai by Ci and the inner boundary of A′
i by C ′

i.
Then ℓXi

(Ci) = ℓXi
(C ′

i) = ǫ′0.
(2) The inner boundaries Ci and C ′

i are disjoint.

Proof. Denote by X = X1. As we showed in Section 2, by the Collar Lemma,
there exist two disjoint regular annuli Aη(ℓX (γ))(γ) and Aη(ℓX (γ′))(γ

′). Let ∆1 and ∆′
1

be the inner boundaries of Aη(ℓX (γ))(γ) and Aη(ℓX (γ′))(γ
′), respectively. By (6), the

length of ∆1 satisfies

ℓX(∆1) = ℓX(γ) cosh(η(ℓX(γ))) = ℓX(γ)
eℓX(γ) + 1

eℓX(γ) − 1
.

For x > 0, we consider the function

f1(x) = x(ex + 1)/(ex − 1).

It’s easy to see that f ′
1(x) > 0 for all x > 0 and limx→0 f1(x) = 2. It follows that

f1(x) > 2 for all x > 0. In particular, we have

ℓX(∆1) > 2 > ǫ′0.

As a result, we can choose a regular annulus A1 ⊂ Aη(ℓX (γ))(γ) around γ with inner
boundary C1 such that ℓX(C1) = ǫ′0. By the same argument, we can choose C ′

1 to
be the inner boundary of a regular annulus that is contained in Aη(ℓX (γ′))(γ

′). Since
Aη(ℓX (γ))(γ) and Aη(ℓX (γ′))(γ

′) are disjoint, C1 and C ′
1 are disjoint.

By the same argument, we can choose C2 and C ′
2 on X2 that are contained in

disjoint regular annuli. �

It follows from Lemma 3.1 that C1 and C ′
1 separate β into three parts. Let

βA
1 = β∩A1 and β ′A

1 = β∩A′
1 be the two terminal parts of β and βQ

1 = β \{βA
1 ∪β ′A

1 }
be the middle part of β. We use similar notations C2, C

′
2, β

A
2 , β ′A

2 and βQ
2 for the

hyperbolic structure X2. Figure 4 shows the above notations.
The key point of our argument is to prove that there exists a positive constant

K1 depending on ǫ0 such that

ℓX1
(β)

ℓX2
(β)

≤ K1 ·max

{
1,

ℓX1
(α)

ℓX2
(α)

,
ℓX2

(γ)

ℓX1
(γ)

,
ℓX2

(γ′)

ℓX1
(γ′)

}
.(7)

Let us explain more explicitly. As it is shown in Figure 5, by cutting the pair of
pants along three geodesic arcs, each of which is perpendicular to a pair of boundary
components, we have two right-angled hexagons. By symmetry, we only need to
consider one of them.
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γ

Ci

γ′

C ′
i

α

β

βQ
iβA

i β ′A
i

Figure 4. An illustration of a pair of pants on Xi where γ 6= γ′ and ǫ0 < e−1 ln(1 +
√
2), for

i = 1, 2.

ci

c′0
c′i

c′0

di d′i
b′i

ai

Figure 5. An example of the hexagon on Xi when γ 6= γ′ and ǫ0 < e−1 ln(1 +
√
2), for i = 1, 2.

For the sake of simplicity, we denote ℓXi
by ℓi, for i = 1, 2. Let ai = ℓi(α)/2,

bi = ℓi(β), ci = ℓi(γ)/2, c
′
i = ℓi(γ

′)/2, di = ℓi(β
A
i ), d

′
i = ℓi(β

′A
i ), b′i = ℓi(β

Q
i ), for

i = 1, 2. And let c′0 = ǫ′0/2. Then bi = di + b′i + d′i, for i = 1, 2.
With the above notations, we have

ℓ1(β)

ℓ2(β)
=

b1

b2
=

b′1 + d1 + d′1
b′2 + d2 + d′2

≤ max

{
b′1
b′2
,
d1

d2
,
d′1
d′2

}
.

To prove (7), it suffices to control b′1/b
′
2, d1/d2 and d′1/d

′
2 by the ratios of the

lengths of α, γ and γ′. This will be done in Lemma 3.3 and Lemma 3.6 below.
As soon as Lemma 3.3 and Lemma 3.6 are proved, (7) is a direct corollary, see
Proposition 3.8.

Example 3.2. (An exceptional case) If S = S0,1,2, that is, the surface is home-
omorphic to a pair of pants with one puncture and two boundary components, then
ai = ℓi(α)/2 = 0. In this case, the ratio a1

a2
in the following discussions would not

make sense.
To avoid this difficulty, we can take two sequences of pairs of pants (X1,n)

∞
n=1,

(X2,n)
∞
n=1 (we denote their boundary components by α, γ, γ′ as above) such that

ℓXi,n
(γ) = ℓXi

(γ), ℓXi,n
(γ′) = ℓXi

(γ′), ℓXi,n
(α) =

1

n
, i = 1, 2.

Since the constants in the following lemmas are independent of n, by taking a limit
as n goes to infinity, we will get the same results (all the following lemmas are true
in such a special case if we set 0

0
= 1).

Note that the same argument applies to S = S0,2,1, that is, the surface is homeo-
morphic to a pair of pants with two punctures and one boundary component, which
we will consider in Section 3.2.
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By Example 3.2, we can assume that ai > 0, i = 1, 2. We first consider the ratio
b′1/b

′
2.

Lemma 3.3. There exists a positive constant K ′
1 depending on ǫ0 such that

(8)
b′1
b′2

≤ K ′
1 ·max{1, a1

a2
}.

Proof. The proof of this lemma will use Lemma 3.4 and Lemma 3.5 below.

Lemma 3.4. There is a uniform positive lower bound for b′i, i = 1, 2.

Proof. Recall that the regular annulus Aη(ℓ1(γ))(γ) contains C1 and the length
of the inner boundary of Aη(ℓ1(γ))(γ) is greater than 2. We can take another regular
annulus around γ which is isometrically embedded in Aη(ℓ1(γ))(γ) and which has a

inner boundary, denoted by C̃1, with length equal to 2. Denote by e1 the distance

between γ and C̃1. It can be seen from Figure 6 that b′1 ≥ (e1 − d1) + (e′1 − d′1).

ci

c′0
1

c′i

c′0
1

di d′ib′i
ei e′i

ai

Figure 6. An example for ei and e′
i
, for i = 1, 2.

It suffices to give a lower bound for e1 − d1. By (6) and (5), we have

e1 − d1 = ln
1/c1 +

√
(1/c1)2 − 1

c′0/c1 +
√

(c′0/c1)
2 − 1

,

where c1 <
ln(1+

√
2)

2e
. Consider the function

f2(y) = (y +
√

y2 − 1)/(c′0y +

√
c′0

2y2 − 1), y > 2e/ ln(1 +
√
2).

By the fact f ′
2(y) < 0 and y > 2e/ ln(1 +

√
2), we have

e1 − d1 = f2(1/c1) ≥ f2(2e/ ln(1 +
√
2)) = 4/ ln(1 +

√
2) > 0.

By the same argument we have e′1 − d′1 ≥ 4/ ln(1 +
√
2). Let M0 = 8/ ln(1 +

√
2),

then we have (the same estimation for b′2)

�(9) b′i ≥ M0, for i = 1, 2.

Next we will give an upper bound for the difference between ai and b′i, i = 1, 2.

Lemma 3.5. There is a constant D1 depending on ǫ0 such that

(10) |ai − b′i| ≤ D1, i = 1, 2.
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Proof. The method used here is similar to that of [6].
Since c1 ≤ ǫ0/2 and c′1 ≤ ǫ0/2, there exists a constant k1 depending on ǫ0 such

that
c1 < sinh c1 < k1c1 and c′1 < sinh c′1 < k1c

′
1.

By (6), we have

c1 cosh d1 = c′1 cosh d
′
1 = c′0 = ln(1 +

√
2)/2.

Then we have

sinh c1 · sinh c′1 · cosh(b′1 + d1 + d′1) > c1 · c′1 ·
eb

′

1
+d1+d′

1

2
=

eb
′

1

2
· c1ed1 · c′1ed

′

1

>
eb

′

1

2
· c1 cosh d1 · c′1 cosh d′1 =

1

2
c′20 eb

′

1 ,

and

sinh c1 · sinh c′1 · cosh(b′1 + d1 + d′1) < k1 c1 · k1 c′1 · eb
′

1
+d1+d′

1

= 4 k2
1 eb

′

1 · c1
ed1

2
· c′1

ed
′

1

2

< 4 k2
1 eb

′

1 · c1 cosh d1 · c′1 cosh d′1 = 4k1
2c′0

2
eb

′

1 .

Let M1 = max{2/c′02, 4k2
1c

′
0
2}. It follows that

M−1
1 eb

′

1 ≤ sinh c1 · sinh c′1 · cosh(b′1 + d1 + d′1) ≤ M1e
b′
1 .

Combining the above inequality with (3), we have

ea1 ≤ 2 cosh a1 < 2(cosh a1 + cosh c1 · cosh c′1)
= 2 · sinh c1 · sinh c′1 · cosh(b′1 + d1 + d′1) ≤ 2M1 · eb

′

1 .

On the other hand, we have

cosh c1 · cosh c′1 < cosh c1 cosh c
′
1 + sinh c1 sinh c

′
1

= cosh(c1 + c′1) < cosh

(
ǫ0

2
+

ǫ0

2

)
< cosh ǫ0 · cosh a1.

Applying (3) again, we have

ea1 ≥ cosh a1 = (1 + cosh ǫ0)
−1(cosh a1 + cosh ǫ0 cosh a1)

> (1 + cosh ǫ0)
−1(cosh a1 + cosh c1 · cosh c′1)

= (1 + cosh ǫ0)
−1 · sinh c1 · sinh c′1 · cosh(b′1 + d1 + d′1)

≥ (1 + cosh ǫ0)
−1M−1

1 · eb′1 .
In conclusion, we have

(1 + cosh ǫ0)
−1M−1

1 · eb′1 ≤ ea1 ≤ 2M1 · eb
′

1

or, equivalently,
(1 + cosh ǫ0)

−1M−1
1 ≤ ea1−b′

1 ≤ 2M1.

Setting D1 = max{| ln(2M1)|, | ln(M1 · (1 + cosh ǫ0))|}, then we have

|a1 − b′1| ≤ D1.

By the same proof we also have

|a2 − b′2| ≤ D1. �
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We continue with our proof of Lemma 3.3. Let M > 2D1 be a sufficiently large
positive number. The remaining discussion is separated into several different cases.

Case 1 : b′i ≥ M, i = 1, 2. In this case, using (10), we have (for i = 1, 2)

ai

b′i
≤ b′i +D1

b′i
< 1 +

D1

M
<

3

2

and
ai

b′i
≥ b′i −D1

b′i
> 1− D1

M
>

1

2
.

That is
1

2
≤ ai

b′i
≤ 3

2
.

It follows that
b′1
b′2

≤ 3 · a1
a2
.

Case 2 : b′i ≤ M and ai > ǫ0, i = 1, 2. Combing with (9) and (10), we have
M0 ≤ b′i ≤ M and ǫ0 ≤ ai ≤ b′i +D1 ≤ M +D1. It follows that

2M0

3M
<

M0

M +D1

≤ b′i
ai

≤ M

ǫ0
.

In this case
b′1
b′2

≤ M

ǫ0
· 3M
2M0

· a1
a2
.

Case 3 : b′1 > M and b′2 ≤ M, a2 > ǫ0. It follows from the estimations in Case 1
and Case 2 that

b′1
b′2

≤ 3M

M0

· a1
a2
.

Case 4 : b′2 > M and b′1 ≤ M, a1 > ǫ0. In this case, we have the same conclusion
as in Case 3.

Case 5 : b′1 > M and b′2 ≤ M, a2 ≤ ǫ0. By (9), we have

b′1
b′2

≤ b′1
M0

≤ 2 · a1
M0

=
2 · a2
M0

· a1
a2

≤ 2 · ǫ0
M0

· a1
a2
.

Case 6 : b′1 ≤ M, a1 > ǫ0 and b′2 ≤ M, a2 ≤ ǫ0. By (9), we have

b′1
b′2

≤ b′1
M0

≤ M

ǫ0

· a1
M0

=
M

ǫ0

· a2
M0

· a1
a2

≤ M

ǫ0

· ǫ0
M0

· a1
a2

=
a1

a2
.

Case 7 : b′1 ≤ M, a1 ≤ ǫ0 and b′2 ≤ M, a2 ≤ ǫ0. By (9), we have

b′1
b′2

≤ M

M0

.

In this case, it is obvious that

b′1
b′2

≤ M

M0
·max

{
1,

a1

a2

}
.
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The other two remaining cases, that is, b′2 > M, b′1 ≤ M, a1 ≤ ǫ0 and b′2 ≤
M, a2 > ǫ0, b

′
1 ≤ M, a1 ≤ ǫ0, can be reduced to Case 5 and Case 6. By choosing

K ′
1 = max

{
3, 3M2

2M0ǫ0
, 3M
M0

, 2ǫ0
M0

}
, we complete the proof of Lemma 3.3. �

Next we will consider the ratio d1/d2.

Lemma 3.6. The ratio d1/d2 has an upper bound given by

(11)
d1

d2
≤ 2 ·max

{
1,

c2

c1

}
.

Proof. As c′0 = (ln (1 +
√
2))/2 and ǫ0 < e−1 ln (1 +

√
2), we have

c′0/c1 ≥ ǫ′0/ǫ0 > e > 1.

By (6), we have

c1 cosh d1 = c′0.

By (5), we have

d1 = arcosh(c′0/c1) = ln(c′0/c1 +
√

(c′0/c1)
2 − 1).

Note that for any x > e, ln(2x) ≤ 2 lnx. Since
√

(c′0/c1)
2 − 1 ≤ c′0/c1 and

c′0/c1 > e, we have

d1 = ln(c′0/c1 +
√

(c′0/c1)
2 − 1) ≤ ln(2c′0/c1) ≤ 2 · ln(c′0/c1).

Since d1 = ln(c′0/c1 +
√
(c′0/c1)

2 − 1) ≥ ln(c′0/c1), we have

ln c′0 − ln c1 ≤ d1 ≤ 2 · (ln c′0 − ln c1).

The same discussion implies

ln c′0 − ln c2 ≤ d2 ≤ 2 · (ln c′0 − ln c2) .

As a result, we have

d1

d2
≤ 2 · ln c′0 − ln c1

ln c′0 − ln c2
.

If c2 ≤ c1, we have
ln c′0 − ln c1
ln c′0 − ln c2

≤ 1.

Now suppose that c2 > c1. Let f3(x) = x−1 ln x. Then f ′
3(x) = (1− ln x)/x2. We

know that f ′
3(x) ≤ 0 as x ≥ e. Since

c′
0

ci
≥ e, i = 1, 2, and

c′
0

c1
>

c′
0

c2
. It follows that

f3(
c′
0

c1
) < f3(

c′
0

c2
). This implies

ln c′0 − ln c1

ln c′0 − ln c2
≤ c2

c1
.

The above discussions lead to the following inequality:

d1

d2
≤ 2 ·max

{
1,

c2

c1

}
. �

By the same discussion as above, we have
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Lemma 3.7. The ratio d′1/d
′
2 has an upper bound given by

(12)
d′1
d′2

≤ 2 ·max

{
1,

c′2
c′1

}
.

Proposition 3.8. Let ǫ0 < e−1 ln(1 +
√
2). For any essential arc β ∈ B(S)

whose endpoints lie on different boundary components γ and γ′ of S, let α be the
associated simple closed curve homotopic to the boundary of a regular neighborhood
of β ∪ γ ∪ γ′. Then there exists a positive number K1 depending on ǫ0 such that
inequality (7) holds for any X1, X2 in the ǫ0-relative part of T (S).

Proof. We apply the results of Lemma 3.3 and Lemma 3.6 and the notations in
their proof. It follows that the ratio of ℓ1(β) and ℓ2(β) satisfies

ℓ1(β)

ℓ2(β)
≤ max

{
b′1
b′2
,
d1

d2
,
d′1
d′2

}

≤ max

{
K ′

1 ·max

{
1,

a1

a2

}
, 2 ·max

{
1,

c2

c1

}
, 2 ·max

{
1,

c′2
c′1

}}

≤ K1 ·max

{
1,

a1

a2
,
c2

c1
,
c′2
c′1

}
= K1 ·max

{
1,

ℓ1(α)

ℓ2(α)
,
ℓ2(γ)

ℓ1(γ)
,
ℓ2(γ

′)

ℓ1(γ′)

}
,

where K1 = max{K ′
1, 2} only depend on ǫ0. �

3.2. The case where γ = γ
′. Now we consider the case where γ = γ′. In this

case, we denote by γ the boundary component of S where the two endpoints of β lie.
Consider a regular neighborhood of β∪γ. It is homotopic to a pair of pants whose

boundary components consist of γ and two other simple closed curves, denoted by α
and α′.

We will prove an analogue of inequality (7), that is, there exists a positive con-
stant K2 depending on ǫ0 such that

(13)
ℓX1

(β)

ℓX2
(β)

≤ K2 ·max

{
1,

ℓX1
(α)

ℓX2
(α)

,
ℓX1

(α′)

ℓX2
(α′)

,
ℓX2

(γ)

ℓX1
(γ)

}
.

Remark 3.9. By Example 3.2, we can assume that one of the curves γ and γ′

is not homotopic to a puncture. Without loss of generality, we may suppose that
ℓX1

(α) ≥ ℓX1
(α′). Note that α′ maybe homotopic to a puncture. In this case, we

shall identify a puncture with a simple closed geodesic with length zero and let 0
0
= 1.

For Xi, i = 1, 2, let Ci be the inner boundary of the regular annulus around
γ with length ℓXi

(Ci) = ǫ′0 (the existence of such a regular annulus is given by

Lemma 3.1). Then Ci separates β into three parts βA
i , βQ

i and β ′A
i , for i = 1, 2. See

Figure 7.
One can see from Figure 7 that the endpoints of β separate the geodesic γ into

two parts, denoted by γ′
i and γ′′

i . Note that γ′
i ∪ β (resp. γ′′

i ∪ β) is isotopic to α
(resp. α′), for i = 1, 2.

By cutting each pair of pants along the three perpendicular geodesic arcs con-
necting the boundary components, we have two symmetric right-angled hexagons
on Xi, for i = 1, 2. We consider one of them for i = 1, 2, as we shown in Fig-
ure 8. To simplify notation, we denote ℓXi

by ℓi and let c′0 = ǫ′0/2, bi = ℓi(β
Q
i )/2,

di = ℓi(β
A
i ) = ℓi(β

′A
i ), ai = ℓi(α)/2, a

′
i = ℓi(α

′)/2, c′i = ℓi(γ
′
i)/2 and c′′i = ℓi(γ

′′
i )/2,

for i = 1, 2. See Figure 8. Since li(α) ≥ li(α
′), we have ai ≥ a′i, for i = 1, 2.
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γ
γ′
iγ′′

i

Ci

α′ α

βA
iβ ′A

i

βQ
i

Figure 7. An example of the pair of pants when γ = γ′ and ǫ0 < e−1 ln(1 +
√
2), for i = 1, 2.

c′ic′′i

c′0

di

bi

ai
a′i

Figure 8. An example of the hexagon on Xi when γ = γ′ and ǫ0 < e−1 ln(1 +
√
2), for i = 1, 2.

It is easy to show that the ratio of ℓ1(β) and ℓ2(β) satisfies

ℓ1(β)

ℓ2(β)
=

2(b1 + d1)

2(b2 + d2)
≤ max

{
b1

b2
,
d1

d2

}
.(14)

As in the case where γ 6= γ′, we will control b1/b2 and d1/d2 by the ratios of lengths
of α and γ. We will prove these results in Lemma 3.10 and Lemma 3.11.

We first discuss the b1/b2 part.

Lemma 3.10. There exists a positive constant K ′
2 depending on ǫ0 such that

(15)
b1

b2
≤ K ′

2 ·max

{
1,

ℓ1(α)

ℓ2(α)

}
.
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Proof. We follow the same outline as in the proof of Lemma 3.3. By our as-
sumption (see Remark 3.9), ℓX1

(α) ≥ ℓX1
(α′). Let us first consider the case where

ℓX2
(α) ≥ ℓX2

(α′).

As βQ
i , i = 1, 2, can be viewed as the middle part of β, by the same proof as that

of (9) in Lemma 3.4, we have

(16) bi ≥
M0

2
, for i = 1, 2.

Next we discuss the relation between c′i and ℓi(γ), for i = 1, 2. It is obvious that
c′1 < ℓ1(γ)/2. By (2), we have

cosh a1/ sinh c
′
1 = sinh(b1 + d1) = cosh a′1/ sinh c

′′
1.

Since (by assumption) a1 ≥ a′1, we have

sinh c′1/ sinh c
′′
1 = cosh a1/ cosh a

′
1 ≥ 1.

Therefore c′1 ≥ c′′1. Since 2(c′1 + c′′1) = ℓ1(γ), we have c′1 ≥ ℓ1(γ)/4. We have similar
result for c′2. It follows that

(17)
1

4
ℓi(γ) ≤ c′i <

1

2
ℓi(γ), for i = 1, 2.

Since c′i, i = 1, 2 are bounded above by ǫ0
2
, there is a positive constant k2 de-

pending on ǫ0 such that

(18) c′i ≤ sinh c′i ≤ k2 · c′i, for i = 1, 2.

Since bi + di, i = 1, 2 are bounded by M0 from below, we can choose k2 such that

(19) k−1
2 · ebi+di ≤ sinh(bi + di) ≤

1

2
· ebi+di , for i = 1, 2.

Similar to the case where γ 6= γ′, we can estimate the difference between ai and bi,
i = 1, 2.

By (2), (17), (18), (19) and the fact that ℓi(γ) · cosh di = ǫ′0, i = 1, 2, we have
(for i = 1, 2)

eai ≥ cosh ai = sinh(bi + di) · sinh c′i

≥ k−1
2 · ebi+di · c′i ≥ k−1

2 ebi · cosh di ·
1

4
ℓi(γ) =

k−1
2 ǫ′0
4

· ebi

and

eai ≤ 2 cosh ai = 2 sinh(bi + di) · sinh c′i

≤ ebi+di · k2 · c′i < k2e
bi · 2 cosh di ·

1

2
ℓi(γ) = k2ǫ

′
0 · ebi.

Let D2 = max{| ln(k−1
2 ǫ′0)− ln 4|, | ln(k2ǫ′0)|}. We have

(20) |bi − ai| ≤ D2, i = 1, 2.

Now we have inequalities (16) and (20), the analogy of (9) and (10) previously.
By the same proof as in Lemma 3.3 (see the discussion after Lemma 3.5), we can
show that there is a constant K ′

2 depending on ǫ0 such that

b1
b2

≤ K ′
2 ·max

{
1,

a1
a2

}
.
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Since a1
a2

= ℓ1(α)
ℓ2(α)

, we finish the proof under the assumption that ℓX2
(α) ≥ ℓX2

(α′).

If ℓX2
(α) < ℓX2

(α′), then we can modify the above argument to show that

b1

b2
≤ K ′

2 ·max

{
1,

ℓ1(α)

ℓ2(α′)

}
.

Since
ℓ1(α)

ℓ2(α′)
≤ ℓ1(α)

ℓ2(α)
, the inequality (15) remains true. �

Next we will discuss the d1/d2 part.

Lemma 3.11. We have

(21)
d1

d2
≤ 2 ·max

{
1,

ℓ2(γ)

ℓ1(γ)

}
.

Proof. The proof is the same as that of Lemma 3.6. We have

ln ǫ′0 − ln ℓi(γ) ≤ di ≤ 2(ln ǫ′0 − ln ℓi(γ)), i = 1, 2.

Then
d1

d2
≤ 2 · ln ǫ′0 − ln ℓ1(γ)

ln ǫ′0 − ln ℓ2(γ)
.

As we did in the case where γ 6= γ′, we consider the two cases depending on
whether ℓ2(γ) ≤ ℓ1(γ) or not. If ℓ2(γ) ≤ ℓ1(γ), we have

(ln ǫ′0 − ln ℓ1(γ))/(ln ǫ
′
0 − ln ℓ2(γ)) ≤ 1.

If ℓ2(γ) > ℓ1(γ), by the same proof as that of Lemma 3.6, we have

(ln ǫ′0 − ln ℓ1(γ))/(ln ǫ
′
0 − ln ℓ2(γ)) ≤ ℓ2(γ)/ℓ1(γ).

From the above discussions, we have

d1

d2
≤ 2 ·max

{
1,

ℓ2(γ)

ℓ1(γ)

}
. �

Proposition 3.12. Let ǫ0 be a positive number with ǫ0 < e−1 ln(1 +
√
2) and

let X1, X2 be any two hyperbolic metrics in the ǫ0-relative part of T (S). For any
essential arc β ∈ B(S) with endpoints lying on the same boundary component γ of
S, let α and α′ be the associated simple closed curves homotopic the boundaries of a
regular neighborhood of β ∪ γ. Then there exists a positive constant K2 depending
on ǫ0 such that the inequality (13) holds.

Proof. By (14), (15) and (21), we have (with the assumption that ℓX1
(α) ≥

ℓX1
(α′))

ℓ1(β)

ℓ2(β)
≤ max

{
b1

b2
,
d1

d2

}
≤ max

{
K ′

2 ·max

{
1,

ℓ1(α1)

ℓ2(α)

}
, 2 ·max

{
1,

ℓ2(γ)

ℓ1(γ)

}}

≤ K2 ·max

{
1,

ℓ1(α)

ℓ2(α)
,
ℓ2(γ)

ℓ1(γ)

}
,

where K2 = max{K ′
2, 2} is a positive constant depending on ǫ0. �

3.3. Corollary. By Proposition 3.8 and Proposition 3.12, we have the following
corollary.
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Corollary 3.13. Let ǫ0 be a positive number with ǫ0 < e−1 ln(1 +
√
2). There

exists a positive constant K depending on ǫ0 such that

sup
β∈B(S)

{
ℓX1

(β)

ℓX2
(β)

,
ℓX2

(β)

ℓX1
(β)

}
≤ K · sup

α∈C(S)

{
ℓX1

(α)

ℓX2
(α)

,
ℓX2

(α)

ℓX1
(α)

}
,

for any X1, X2 on the ǫ0-relative part of T (S).

4. Proof of Theorem 1.6: The general case

We have shown in Section 3 that the supremum of the ratio of lengths of arcs
is controlled by that of simple closed curves in the case where ǫ0 < e−1 ln(1 +

√
2).

In this section, we will prove the result in the general case. We assume that ǫ0 ≥
e−1 ln(1 +

√
2).

Here is the idea of the proof. Recall that in Section 3, we separated the arc
β into several parts. In the case where ǫ0 < e−1 ln(1 +

√
2), the length of βQ

i is

bounded below by a positive number and ℓX1
(βQ

1 )/ℓX2
(βQ

2 ) is controlled by the ratio
of the lengths of some corresponding simple closed curve. But in the case where
ǫ0 ≥ e−1 ln(1+

√
2), in general, it’s impossible to give a lower bound for ℓX2

(βQ
2 ). To

deal with this, we will not separate the arc β into parts unless the width of collar
neighborhood of γ or γ′ is large enough.

Let ǫ′0 = ln(1+
√
2). Let X1 and X2 be in the ǫ0-relative part of T (S). We apply

the same notations β, γ, γ′ and α as in Section 3.

4.1. The case where γ 6= γ
′. First we will consider the case where γ 6= γ′.

We define Ci and C ′
i, i = 1, 2, as follows.

If ℓX1
(γ) < e−1 ln(1 +

√
2), let C1 be a closed curve isotopic to γ with ℓX1

(C1) =
ǫ′0 such that C1 and γ are the boundaries of a regular annulus around γ on X1.
Otherwise, we let C1 = γ. Similarly, we can define C ′

1. The corresponding notations
on X2 are obtained only by replacing subscript.

We have four cases according to whether ℓXi
(γ) or ℓXi

(γ′), i = 1, 2, is less than
e−1 ln(1 +

√
2) or not. Figure 9 shows how to choose Ci and C ′

i in each case, for
i = 1, 2.

Again, to simplify notation, we denote ℓi = ℓXi
, for i = 1, 2. Let ai = ℓi(α)/2,

bi = ℓi(β)/2, ci = ℓi(γ)/2, c′i = ℓi(γ
′)/2, di = ℓi(β

A
i ), d′i = ℓi(β

′A
i ), b′i = ℓi(β

Q
i ),

ei = ℓi(Ci)/2, e
′
i = ℓi(C

′
i)/2 and c′0 = ǫ′0/2, for i = 1, 2. It should be noted that

di = 0 and ei = ci if ℓi(γ) ≥ e−1 ln(1 +
√
2).

With the above notations, let us describe Figure 9 in more details:

Case (a): ℓi(γ) < e−1 ln(1 +
√
2) and ℓi(γ

′) < e−1 ln(1 +
√
2), i = 1, 2. In this

case, ei = e′i = c′0, i = 1, 2. This implies that di and d′i, i = 1, 2 are positive.

Case (b): ℓi(γ) ≥ e−1 ln(1 +
√
2) and ℓi(γ

′) < e−1 ln(1 +
√
2), i = 1, 2. In this

case, ei = ci and e′i = c′0, i = 1, 2. This implies that di = 0 and di > 0, i = 1, 2.

Case (c): ℓi(γ) < e−1 ln(1 +
√
2) and ℓi(γ

′) ≥ e−1 ln(1 +
√
2), i = 1, 2. Similar to

Case (b), ei = c′0 and e′i = c′i, i = 1, 2. This implies that di > 0 and d′i = 0, i = 1, 2.

Case (d): ℓi(γ) ≥ e−1 ln(1 +
√
2) and ℓi(γ

′) ≥ e−1 ln(1 +
√
2), i = 1, 2. In this

case, we have ei = ci, e
′
i = c′i and di = d′i = 0, i = 1, 2.
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These four cases are shown in Figure 9. The ratio of the lengths of β on X1 and
X2 satisfies the following

ℓ1(β)

ℓ2(β)
=

b1

b2
=

b′1 + d1 + d′1
b′2 + d2 + d′2

≤ 3 ·max

{
b′1
b′2
,

d1

b′2 + d2
,

d′1
b′2 + d′2

}
.

We will study each part on the right hand side of the above inequality.

γ

Ci

γ′

C ′
i

α

β

βQ
iβA

i β ′A
i

(a) Case ℓi(γ) < e−1 ln(1 +
√
2) and ℓi(γ

′) < e−1 ln(1 +
√
2).

Ci = γ
γ′

C ′
i

α

β

βQ
i β ′A

i

(b) Case ℓi(γ) ≥ e−1 ln(1+
√
2) and ℓi(γ

′) < e−1 ln(1+
√
2).

C ′
i = γ′

γ

Ci

α

β

βQ
iβA

i

(c) Case ℓi(γ) < e−1 ln(1 +
√
2) and ℓi(γ

′) ≥ e−1 ln(1 +
√
2).

C ′
i = γ′Ci = γ

α

βQ
i = β

(d) Case ℓi(γ) ≥ e−1 ln(1+
√
2) and ℓi(γ

′) ≥ e−1 ln(1+√
2).

Figure 9. Examples of pair of pants on Xi when γ 6= γ′ and ǫ0 ≥ e−1 ln(1 +
√
2), for i = 1, 2.

Lemma 4.1. There exists a positive constant K ′
3 depending on ǫ0 such that

(22)
b′1
b′2

≤ K ′
3 ·max

{
1,

a1

a2

}
.
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Proof. We first show that there exists a positive lower bound (that may depend
on ǫ0) for b′i, for i = 1, 2. Consider b′1. We have to consider all four cases as illustrated
in Figure 9.

In Case (a), by (9), we have b′1 ≥ 8/ ln(1 +
√
2).

In Case (b) or Case (c), the proof of (9) showed that b′1 ≥ 4/ ln(1 +
√
2).

In Case (d), C = γ and C ′ = γ′. By (3), we have

cosh a1 + cosh c1 cosh c
′
1 = sinh c1 sinh c

′
1 cosh b

′
1.

Since c1 ≤ ǫ0/2 and c′1 ≤ ǫ0/2, we have a lower bound for cosh b′1:

cosh b′1 =
cosh a1 + cosh c1 cosh c

′
1

sinh c1 sinh c
′
1

=
cosh a1

sinh c1 sinh c
′
1

+ coth c1 coth c
′
1 ≥ (sinh

ǫ0

2
)−2 + 1 .

It follows that b′1 ≥ arcosh ((sinh(ǫ0/2))
−2 + 1). Using the same argument we have

that b′2 ≥ arcosh((sinh(ǫ0/2))
−2 + 1). Let

M ′ = min{4/ ln(1 +
√
2), arcosh((sinh(ǫ0/2))

−2 + 1)},
then we have

(23) b′i ≥ M ′, for i = 1, 2.

Now we claim that the difference between ai and b′i is bounded from above in all
the above four cases, for i = 1, 2. We only give the discussion on X1. The discussion
on X2 is the same.

Case (a) is handled by inequality (10).
In Case (b) or Case (c), it is sufficient to consider Case (b). The discussion of

Case (c) works in the same way. As ℓ1(γ) ≥ e−1 ln(1 +
√
2) and d1 = 0, we have

sinh c1 sinh c
′
1 cosh(b

′
1 + d1 + d′1) >

1

2
· c1 · c′1 cosh d′1 · eb

′

1 =
1

2
· ℓ1(γ)

2
· c′0 · eb

′

1

≥ (ln(1 +
√
2))2

8e
· eb′1 .

As c1 < ǫ0/2, c′1 < ǫ0/2, we have a positive constant k1 (depending on ǫ0) that
satisfies sinh c1 ≤ k1 · c1 and sinh c′1 ≤ k1 · c′1. Then we have

sinh c1 sinh c
′
1 cosh(b

′
1 + d1 + d′1) < k2

1 · c1 · c′1 cosh d′1 · eb
′

1

≤ ǫ0k
2
1 ln(1 +

√
2)

4e
· eb′1 .

Let M1 = max{8e/(ln(1 +
√
2))2, ǫ0k

2
1 ln(1 +

√
2)/(4e)}. Then we have proved that

M−1
1 eb

′

1 ≤ sinh c1 sinh c
′
1 cosh(b

′
1 + d1 + d1) ≤ M1e

b′
1 .

Similarly to the proof of inequality (10), we can show that there exists a positive
constant D2 depending on ǫ0 such that |a1 − b′1| ≤ D2.

In Case (d), the assumption of this case implies that d1 = 0 and d′1 = 0. It
follows that

sinh c1 sinh c
′
1 cosh(b

′
1 + d1 + d′1) >

c1c
′
1

2
· eb′1 ≥ (ln(1 +

√
2))2

8e2
· eb′1



636 Lixin Liu, Weixu Su and Youliang Zhong

and

sinh c1 sinh c
′
1 cosh(b

′
1 + d1 + d′1) < K2

1c1c
′
1e

b′
1 ≤ K2

1ǫ
2
0

4
eb

′

1 .

Let M1 = max{8e2/(ln(1 +
√
2))2, K2

1ǫ
2
0/4}. Again, similarly to the proof of in-

equality (10), we can prove that |a1 − b′1| ≤ D3, where the constant D3 depends on
ǫ0.

The same proof applies to |a2−b′2|. Then we have a positive constant D depending
on ǫ0 such that

(24) |ai − b′i| ≤ D, i = 1, 2.

Comparing (23) and (24) with (9) and (10) in the proof of Lemma 3.3, we finish the
proof. �

Next we will consider the d1/(b
′
2 + d2) part.

Lemma 4.2. There exists a positive constant K ′′
3 depending on ǫ0 such that

(25)
d1

b′2 + d2
≤ K ′′

3 ·max{1, c2

c1
} .

Proof. By (6), we have

ℓi(γ) · cosh di = ℓi(Ci), i = 1, 2.

Similarly,

ℓi(γ
′) · cosh d′i = ℓi(C

′
i), i = 1, 2.

We consider the two cases depending on whether ℓ1(γ) < e−1 ln(1 +
√
2) or not.

Case 1 : ℓ1(γ) < e−1 ln(1 +
√
2). By assumption, we have ℓ1(C1) = ln(1 +

√
2).

As in the proof of Lemma 3.6, we have

(26) ln ℓ1(C1)− ln ℓ1(γ) ≤ d1 ≤ 2(ln ℓ1(C1)− ln ℓ1(γ)).

If ℓ2(γ) < e−1 ln(1 +
√
2), the lemma follows from Lemma 3.6. If ℓ2(γ) ≥ e−1 ln(1 +√

2), then d2 = 0. By (26), we have

d1

b′2 + d2
≤ d1

M ′ ≤
2

M ′ · ln
ℓ1(C1)

ℓ1(γ)
≤ 2

M ′ ·
ℓ1(C1)

ℓ1(γ)

≤ 2 ln(1 +
√
2)

M ′ℓ2(γ)
· ℓ2(γ)
ℓ1(γ)

≤ 2e

M ′ ·
ℓ2(γ)

ℓ1(γ)
.

Case 2 : ℓ1(γ) ≥ e−1 ln(1+
√
2). Since d1 = 0 and b′2 ≥ M ′, we have d1/(b

′
2+d2) =

0.

Let K ′′
3 = max{2, 2e/M ′}. Since

c2

c1
=

ℓ2(γ)

ℓ1(γ)
, we have

d1

b′2 + d2
≤ K ′′

3 ·max

{
1,

c2

c1

}
.

This completes the proof. �

We argue similarly for
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Lemma 4.3. There exists a positive constant K ′′
3 depending on ǫ0 such that

(27)
d′1

b′2 + d′2
≤ K ′′′

3 ·max

{
1,

c′2
c′1

}
.

Proposition 4.4. For any essential arc β ∈ B(S) with endpoints lying on differ-
ent boundary components γ and γ′ of S, let α be the associated simple closed curve
isotopic to the boundary of a regular neighborhood of β ∪ γ ∪ γ′. Then there exists
a positive constant K3 depending on ǫ0 such that the following inequality holds for
any X1, X2 in the ǫ0-relative part of T (S):

ℓX1
(β)

ℓX2
(β)

≤ K3 ·max

{
1,

ℓX1
(α)

ℓX2
(α)

,
ℓX2

(γ)

ℓX1
(γ)

,
ℓX2

(γ′)

ℓX1
(γ′)

}
.(28)

Proof. By Lemma 4.1, Lemma 4.2 and Lemma 4.3, the ratio ℓ1(β)/ℓ2(β) satisfies

ℓ1(β)

ℓ2(β)
≤ 3 ·max

{
b′1
b′2
,

d1

b′2 + d2
,

d′1
b′2 + d′2

}

≤ 3 ·max

{
K ′

3 ·max

{
1,

a1

a2

}
, K ′′

3 ·max

{
1,

c2

c1

}
, K ′′′

3 ·max

{
1,

c′2
c′1

}}

≤ K3 ·max

{
1,

a1

a2
,
c2

c1
,
c′2
c′1

}
= K3 ·max

{
1,

ℓ1(α)

ℓ2(α)
,
ℓ2(γ)

ℓ1(γ)
,
ℓ2(γ

′)

ℓ1(γ′)

}
,

where K3 = 3 ·max{K ′
3, K

′′
3 , K

′′′
3 }. �

4.2. The case where γ = γ
′. For hyperbolic structures Xi, i = 1, 2, on S, we

choose αi, α
′
i, γ

′
i and γ′′

i , i = 1, 2, as in the beginning of subsection 3.2. We repeat the
constructions as follows. Let α and α′ be the boundaries of the regular neighborhood
of β ∪ γ. We may assume that ℓi(α) ≥ ℓi(α

′), for i = 1, 2. As we show in Figure 10,
the arc β separates γ into two sub-arcs γ′

i and γ′′
i , such that γ′

i ∪ β is isotopic to α,
for i = 1, 2.

Similar to the criterion given in the above subsection, we choose closed curves
Ci, i = 1, 2, which are isotopic to γ as follows. Denote ℓXi

by ℓi, i = 1, 2. If
ℓi(γ) ≥ e−1 ln(1 +

√
2), then we let Ci = γ, for i = 1, 2, as we show in (b) of

Figure 10. Otherwise, we let Ci be the inner boundary of a regular annulus around
γ with ℓi(Ci) = ǫ′0, for i = 1, 2, as we show in (a) of Figure 10 .

Cutting along the three geodesic arcs which connect any two of the boundaries
of the pair of pants, we obtain two symmetric right-angled hexagons. We only need
consider one of them.

If ℓi(γ) < e−1 ln(1 +
√
2), the part of β in one of the hexagon is separated by Ci

into two sub-arcs, for i = 1, 2. As we show in Figure 10 (b), let bi = ℓi(β
Q
i )/2 and

di = ℓi(β
A
i ) = ℓi(β

′
i
A), for i = 1, 2.

If ℓi(γ) ≥ e−1 ln(1+
√
2), since Ci = γ, we let bi = ℓi(β)/2 and di = 0, for i = 1, 2.

For sake of simplicity, let c′i = ℓi(γ
′
i), c

′′
i = ℓi(γ

′′
i ), ai = ℓi(α)/2, a

′
i = ℓi(α

′)/2 and
c′0 = ǫ′0/2 = ln(1 +

√
2)/2, for i = 1, 2.

In either case, ℓi(β) = bi + di, i = 1, 2. It’s easy to show that

ℓ1(β)

ℓ2(β)
=

2 · (b1 + d1)

2 · (b2 + d2)
≤ 2 ·max

{
b1

b2
,

d1

b2 + d2

}
.

We will study the b1/b2 part and the d2/(b2 + d2) part.
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γ
γ′′
i γ′

i

Ci

α′
i

αi

βA
iβ ′A

i

βQ
i

(a) Case ℓXi
(γ) < e−1 ln(1 +

√
2)

Ci = γ
γ′′
i γ′

i

α′
i

αi

βQ
i = β

(b) Case ℓXi
(γ) ≥ e−1 ln(1 +

√
2)

Figure 10. Examples of pair of pants on Xi when γ = γ′ and ǫ0 ≥ e−1 ln(1 +
√
2).

We first consider the b1/b2 part.

Lemma 4.5. There exists a positive constant K ′
4 depending on ǫ0 such that

(29)
b1

b2
≤ K ′

4 ·max

{
1,

ℓ1(α)

ℓ2(α)

}
.

Proof. As in the proof of (17), we have

ℓi(γ)

4
≤ c′i ≤

ℓi(γ)

2
, i = 1, 2.

We will show that there exists a positive lower bound for bi, i = 1, 2.
Consider b1 first. If l1(γ) < e−1 ln(1+

√
2), then b1 ≥ 4/ln(1 +

√
2) by (16). Now

we suppose that l1(γ) ≥ e−1 ln(1 +
√
2). By (2) (we refer to Figure 8), we have

sinh b1 sinh c
′
1 = cosh a1.

And the inequality c′1 ≤ ℓ1(γ)/2 ≤ ǫ0/2 implies that

sinh b1 =
cosh a1

sinh c′1
≥ 1

sinh(ǫ0/2)
.

Therefore b1 ≥ arsinh((sinh(ǫ0/2))
−1).

Let M ′
0 = max{4/ ln(1 +

√
2), arsinh((sinh(ǫ0/2))

−1)}. Then we have b1 ≥ M ′
0.

The same argument implies b2 ≥ M ′
0. Thus we have

(30) bi ≥ M ′
0, i = 1, 2.
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Since bi+ di ≥ M ′
0 and c′i < ǫ0/2, i = 1, 2, we have k2 > 0 (depending on ǫ0) such

that

k−1
2 · ebi+di ≤ sinh(bi + di) ≤

1

2
· ebi+di, i = 1, 2,

and
c′i ≤ sinh c′i ≤ k2 · c′i, i = 1, 2.

Similarly to the proof of (20), we will show that the difference between bi and
ai, i = 1, 2, is bounded from above. We first study the difference between b1 and a1.
There are two cases depending on whether ℓ1(γ) < e−1 ln(1 +

√
2) or not.

Case (a): ℓ1(γ) < e−1 ln(1 +
√
2). For this case, by the same argument as in the

proof of (20), we have |b1 − a1| < D2.

Case (b): ℓ1(γ) ≥ e−1 ln(1 +
√
2). In this case, since d1 = 0, as in the proof of

(20), we have

ea1 ≥ k−1
2 c′1e

b1 ≥ k−1
2

4
ℓ1(γ)e

b1 ≥ k−1
2 ln(1 +

√
2)

4e
· eb1

and

ea1 ≤ k2c
′
1e

b1 ≤ k2ǫ0

2
· eb1 .

Let D′
2 = max{| ln(k−1

2 ln(1+
√
2))−ln(4e)|, | ln(k2ǫ0)−ln 2|}. We have |b1−a1| < D′

2.

The same proof applies to a2−b2 . Thus we have a positive constant D′
2 depending

on ǫ0 such that

(31) |bi − ai| < D′
2, for i = 1, 2.

The rest of the proof of this lemma is identical to the proof of Lemma 3.10 after
the inequality (20). We omit the details. �

The next lemma is the discussion for the d1/(b2 + d2) part.

Lemma 4.6. There exists a positive constant K ′′
4 depending on ǫ0 such that

(32)
d1

b2 + d2
≤ K ′′

4 ·max

{
1,

ℓ2(γ)

ℓ1(γ)

}
.

Proof. We need to consider the two cases depending on whether ℓ1(γ) < e−1 ln(1+√
2) or not.

Case (a): ℓ1(γ) < e−1 ln(1 +
√
2). If, moreover, ℓ2(γ) < e−1 ln(1 +

√
2), then by

Lemma 3.11, we have

(33)
d1

b2 + d2
≤ d1

d2
≤ 2max

{
1,

ℓ2(γ)

ℓ1(γ)

}
.

Otherwise, ℓ2(γ) ≥ e−1 ln(1 +
√
2). As d2 = 0, by (26), we have

d1

b2 + d2
=

d1

b2
≤ 2

M0

ln
ℓ1(C)

ℓ1(γ)
.

Since ℓ1(C) ≥ ℓ1(γ), we have

ln
ℓ1(C)

ℓ1(γ)
≤ ℓ1(C)

ℓ1(γ)
.
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It follows that

d1

b2 + d2
≤ 2

M ′′
ℓ1(C)

ℓ1(γ)
=

2 ln(1 +
√
2)

M ′′ℓ2(γ)

ℓ2(γ)

ℓ1(γ)
=

2e

M ′′ ·
ℓ2(γ)

ℓ1(γ)
.

Case (b): ℓ1(γ) ≥ e−1 ln(1 +
√
2). By assumption, d1 = 0. It follows that

d1/(b2 + d2) = 0.

Let K ′′
4 = max{2, 2e/M ′

0}. We are done. �

Proposition 4.7. Let X1, X2 be any hyperbolic metrics in the ǫ0-relative part
of T (S). For any essential arc β ∈ B(S) with endpoints lying on the same boundary
component γ of S, let α and α′ be the associated simple closed curves homotopic the
boundaries of a regular neighborhood of β ∪ γ. Then there exists a positive constant
K4 depending on ǫ0 such that

ℓX1
(β)

ℓX2
(β)

≤ K4 ·max

{
1,

ℓX1
(α)

ℓX2
(α)

,
ℓX1

(α′)

ℓX2
(α′)

,
ℓX2

(γ)

ℓX1
(γ)

}
.(34)

Proof. This is a corollary of (29) and (32). �

4.3. Conclusion. By Proposition 4.4 and Proposition 4.7, the same proof as
that of Corollary 3.13 proves Theorem 1.6. Theorem 1.6 implies Theorem 1.5.

Recall that in the proof of Theorem 1.5, we just use elementary hyperbolic geom-
etry. However, for example, the inequality (7) we have shown is not obvious. Note
that we only assume that the hyperbolic surfaces belong to the ǫ0-relative part of
T (S) (not the thick part), thus the geodesic arcs we consider may cross long narrow
cylinders or twist a lot. Thus it is difficult to control the lengths of arcs by that of
simple closed curves. What we have done is to show that the ratios can be controlled
uniformly.

Example 4.8. We use the Nielsen extension of Riemann surfaces with boundary
[4, 22] to show that inequality (1) fails on the whole ǫ0-relative part of T (S).

Let X0 be any given hyperbolic metric on S. We can add each geodesic boundary
component of X0 with an infinite funnel such that X0 becomes the convex core of
a Riemann surface R = H

2/Γ, where Γ is a Fuchsian group of the second kind. By
taking the double of R, we obtain a Riemann surface Rd without boundary. There
is a unique hyperbolic metric in the conformal class of Rd and its restriction on R
defines a new hyperbolic metric X1 on S with geodesic boundary. We call X1 the
Nielsen extension of X0.

We may view X0 as a conformal embedded subsurface of X1. By the Schwarz
Lemma, the Nielsen extension decreases the hyperbolic metric on X0. As a result,
we have

sup
α∈C(S)

{
ℓX1

(α)

ℓX0
(α)

}
≤ 1.

A theorem of Halpern [10] shows that, if α is a boundary curve of X0 with length
l, then the length of the corresponding boundary curve of the Nielsen extension X1

is less than l
2
. In particular, if we define by Xn+1 be the Nielsen extension of Xn,

then ℓXn
(α) → 0 for any boundary curve α. Combined with the Collar Lemma, we
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have

sup
α∈C(S)∪B(S)

{
ℓXn

(α)

ℓX0
(α)

}
→ ∞

while

sup
α∈C(S)

{
ℓXn

(α)

ℓX0
(α)

}
≤ 1.

Note that the sequence (Xn) we constructed lies in some ǫ0-relative part of T (S),
but not in any ǫ-thick ǫ0-relative part.

On the other hand, the “ǫ0-relative” upper boundedness assumption on lengths
of the boundary curves is necessary for both inequality (1) and Theorem 1.6, see
Example 3.8 in [14].

5. Applications and further study

5.1. Moduli space. Let Mod(S) be the modular group (or the mapping class
group) of S. Recall that Mod(S) is the group of homotopy classes of orientation-
preserving homeomorphism of S. Mod(S) acts on the Teichmüller space T (S) by
switching the markings. Moreover, the action is properly discontinuous and by
isometries (here we endow T (S) with the length spectrum metric or the arc-length
spectrum metric). The moduli space of S, denoted by M(S), is the quotient space

M(S) = T (S)/Mod(S).

We have the natural projective map π : T (S) → M(S).
For any fixed positive number ǫ0, the subset of M(S) consisting of hyperbolic

structures with lengths of boundary components bounded above by ǫ0 is called the
ǫ0-relative part of M(S).

The metric d on T (S) induces a metric dM on M(S) by letting

dM(τ1, τ2) = inf
Xi∈π−1(τi)

d(X1, X2).

Similarly, we have corresponding metrics d̄M , δML and dML on M(S) which are induced
by d̄, δL and dL on T (S), respectively.

The following result is a direct corollary of Theorem 1.5.

Corollary 5.1. Given ǫ0 > 0. Let d
(M)
L and δ

(M)
L be the length spectrum metric

and the arc-length spectrum metric on M(S). For any τ1, τ2 in the ǫ0-relative part
of M(S), we have

(35) dML (τ1, τ2) ≤ δML (τ1, τ2) ≤ dML (τ1, τ2) + C,

where C is a positive constant depending on ǫ0.

In the case where S is a surface of finite type without boundary, the authors
[17] proved that the length spectrum metric and the Teichmüller metric are almost
isometric on the moduli space M(S). The result can not be generalized to surfaces
of finite type with boundary [16]. However, we ask the following

Problem 5.2. Let S be a surface of finite type with boundary. Are the arc-
length spectrum metric and the Teichmüller metric almost isometric on the moduli
space M(S)?
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5.2. Metrics on Teichmüller spaces of surfaces of infinite type. A surface
is said to be of finite type if its fundamental group is finitely generated. Otherwise
it is said to be of infinite type. For more details on Teichmüller spaces of surfaces
of infinite type (where the definition of Teichmüller space is not unique and more
involved), we refer to [3].

A hyperbolic surface S (possibly with geodesic boundary) is said to be convex if
for every pair of points x, y ∈ S and for every arc γ with endpoints x and y, there
exists a geodesic arc of S connecting x and y that is homotopic to γ relative to the
endpoints.

A convex hyperbolic surface S with geodesic boundary is Nielsen convex if every
point of S is contained in a geodesic arc with endpoints contained in some simple
closed geodesics of S. For a hyperbolic surface of finite type to be Nielsen convex
is equivalent to be convex with geodesic boundary and of finite area. However, for
surfaces of infinite type the two notions maybe not equivalent [3].

In this following, we assume that S is a hyperbolic surfaces of infinite type and
S is Nielsen convex. Moreover, we assume that all the boundary components of S
are of length less than some positive constant.

Denote by TL(S) the length spectrum Teichmüller space of S, which consists
of (equivalence classes) of hyperbolic surfaces X that are homeomorphic to S and
satisfy

dL(S,X) = log sup
α∈C(S)

{
ℓX(α)

ℓS(α)
,
ℓS(α)

ℓX(α)

}
< ∞.

We endow TL(S) with the length spectrum metric

dL(X, Y ) = log sup
α∈C(S)

{
ℓY (α)

ℓX(α)
,
ℓX(α)

ℓY (α)

}
.

We define the ǫ0-relative part of TL(S) to be the subset consisting of hyperbolic
surfaces with lengths of boundary components bounded above by ǫ0. By assumption
on S, the ǫ0-relative part of TL(S) is not an empty set if ǫ0 is sufficiently large. We
can also define the arc-length spectrum metric by

δL(X, Y ) = log sup
α∈C(S)

⋃
B(S)

{
ℓY (α)

ℓX(α)
,
ℓX(α)

ℓY (α)

}
.

As the discussions in the previous sections are not related to the topological type
of surface, we have the following theorem.

Theorem 5.3. Given ǫ0 > 0. Let dL and δL be the length spectrum metric and
the arc-length spectrum metric on TL(S). For any X and Y in the ǫ0-relative part of
TL(S), we have

dL(X, Y ) ≤ δL(X, Y ) ≤ dL(X, Y ) + C,

where C is a positive constant depending on ǫ0.

5.3. Further study. Note that the constant C = C(ǫ0) in Theorem 1.5 only
depend on ǫ0.

Problem 5.4. Does the constant C = C(ǫ0) in Theorem 1.5 tends to 0 as ǫ0
tends to 0?
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It was shown in [14] that for surfaces of finite type with boundary,

(36) log sup
α∈B(S)∪C(S)

{
ℓX(α)

ℓY (α)

}
= log sup

α∈B(S)∪∂S

{
ℓX(α)

ℓY (α)

}

for any X, Y ∈ T (S). This gives new formulae for Thurston’s metric and the arc-
length spectrum metric. The above equality (36) was proved by using Thurston’s
theory of measured laminations.

Problem 5.5. Does the equality (36) hold on Teichmüller spaces of surfaces of
infinite type?
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