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Abstract. The development of Schramm–Loewner evolution (SLE) as the scaling limits of
discrete models from statistical physics makes direct simulation of SLE an important task. The
most common method, suggested by Marshall and Rohde [MR05], is to sample Brownian motion
at discrete times, interpolate appropriately in between and solve explicitly the Loewner equation
with this approximation. This algorithm always produces piecewise smooth non self-intersecting
curves whereas SLEκ has been proven to be simple for κ ∈ [0, 4], self-touching for κ ∈ (4, 8) and
space-filling for κ ≥ 8. In this paper we show that this sequence of curves converges to SLEκ for all
κ 6= 8 by giving a condition on deterministic driving functions to ensure the sup-norm convergence
of simulated curves when we use this algorithm.

1. Introduction

The Loewner equation uses a real valued function, the Loewner driving term,
to describe a family of decreasing simply connected domains in the complex plane.
It was first introduced by Loewner as part of an attempt to solve the Bieberbach
conjecture. This conjecture was completely solved by de Branges with the Loewner
equation as one of the key tools [dB85]. Schramm rediscovered the Loewner equation
when he was studying the scaling limits of discrete models. In this context, he
introduced the Schramm–Loewner evolution (SLEκ, κ ≥ 0), a random growth process
in the plane [Sch00]. This process is obtained from the Loewner equation with a
random driving term which is

√
κ times a standard Brownian motion. By the work

of Lawler, Schramm, Sheffield, Smirnov, Werner and others, SLE arises as a scaling
limit of various discrete models from statistical physics [LSW04], [SS05], [SS09],
[Smi01], [Smi10]. It is therefore very desirable to generate pictures of SLEκ directly
to help understand the discrete random paths from those models. For examples, it
was suggested from the simulation that for almost surely every Brownian sample, the
SLEκ process is continuous in κ. This was partially proved in [JVRW14].

We are primarily interested in the case when the driving function corresponds
to a growing curve. There are so far two methods to directly simulate the SLE
curves from the Loewner equation. The first method uses the fact that the Loewner
equation is a first order ODE, and hence one can numerically solve the equation, for
example using Euler’s method. Some of the first simulations of the SLE curve were
obtained by Beffara using this method. It produces a good approximation to the
SLEκ hull (not the path) for κ > 4. One disadvantage is that it does not show the
curve corresponding to the driving function but only a neighborhood of it, see Section
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2.2. We note that SLEκ is a random curve for all κ ≥ 0, see [RS05] and [LSW04].
This approach has not been often used, and we do not discuss its convergence here.

The second method for simulating SLE was suggested by Marshall and Rohde
[MR05]. The algorithm discretizes the driving function and square-root-interpolates
it. As a result the algorithm approximates SLE maps by composing many basic
conformal maps, which are easy to compute. The algorithm was described and
implemented in [Ken07], [Ken09] as well as in many other works. Schramm was
skeptical at first that the pictures generated from this algorithm well-present the
SLE curves, according to Rohde [Roh]. The curves simulated from the algorithm are
piecewise smooth and simple, see Figure 1, whereas SLEκ is a random fractal curve
which is simple for κ ∈ [0, 4], self-touching for κ ∈ (4, 8) and plane-filling for κ ≥ 8.
In this paper, we will prove:

Theorem 1.1. For κ 6= 8, let γn be the sequence of curves simulated from the
second algorithm. Then under the half plane parametrization, on every finite interval
[0, T ] with T > 0, the sequence γn almost surely converges to SLEκ in the sup-norm.

See Corollary 4.1. for a more precise statement of the convergence. It is known
that, for all κ, the sequence γn converges to SLE in the context of Carathéodory con-
vergence [Law05] and Cauchy transforms of probability measures [Bau03]. However
these types of convergence relate to Loewner chains rather than curves, see [Law05,
Chapter 4] and respectively [Bau03] for details. For κ ≤ 4, when one views curves as
compact sets, the sequence γn converges almost surely to SLEκ in Hausdorff metric
[BJK, Section 7]. A general principle is to set up a theorem for the deterministic
Loewner equation and then translate the result into the SLE context. Theorem 1.1
will follow from a more general theorem for deterministic curves. In particular, we
will show that there is a class of driving functions for which the sup-norm convergence
of approximation curves occurs, see Theorem 2.2 for the details of the statement. It is
shown in [MR05], [Lin05] and [LR12] that driving functions whose Hölder-1/2 norms
are less than 4 generate simple curves and that the Hilbert space filling curve is gen-
erated by a Hölder-1/2 function. Our Theorem 2.2 is also applied to these driving
functions.

Corollary 1.2. Consider the driving function that generates the Hilbert space
filling curve or that has Hölder-1/2 norm strictly smaller than 4. Then the sequence
of curves simulated from the algorithm for this driving function converges uniformly.

We note that Theorem 2.2 also provides a convergence rate of the simulation.
The key is to estimate how the curve changes when we modify the driving function
since the driving functions of simulated curves converge uniformly. There are two
key estimates in the proof of Theorem 2.2. One is the boundary behavior of a
conformal map and the other is the perturbation of a Loewner chain when there is
a small change of its driving function. The latter is a Gronwall-type estimate which
appears in [JV12] and [JVRW14]. The two estimates are both related to the growth
of the derivative of conformal maps near the boundary which will become part of the
assumptions of the main theorem 2.2.

The paper is organized as follows. In Section 2, we begin by reviewing the
Loewner equation; we then state our main result and prove some preliminary lemmas.
In Section 2.2, we describe the first and second algorithms simulating the Loewner
equation. Then the main theorem is proved in Section 3. The applications will be
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discussed in Section 4 when we derive a convergence rate and discuss several variants
of the algorithm.
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Brent Werness for helpful comments on early drafts of this paper.
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Figure 1. Simulations of SLE8/3 (left) and SLE6 (right) from the same Brownian motion sample
with 12800 points.

2. Loewner equation, algorithms, main result

2.1. Loewner equation. There are many versions of the Loewner equation. In
this paper we focus on the (downward) chordal Loewner equation in the upper half
plane H:

(1) ∂tgt(z) =
2

gt(z)− λ(t)
with the initial condition g0(z) = z for every z ∈ H, where λ(t) is a real-valued
continuous function defined for t ≥ 0. Sometimes we write λt for λ(t). The family of
(gt)t≥0 is called the Loewner chain. The term “upward” is the same as “forward” in
the literature. We use this terminology since it indicates the upward pointing vector
field of the ODE (1).

For each point z ∈ H, the solution of (1): t 7→ gt(z) is uniquely defined up to
Tz = inf{t ≥ 0: gt(z) = λ(t)}. As t increases, the set Kt = {z ∈ H : Tz ≤ t}, called
the hull, grows. It is known that for each t ≥ 0, gt is the unique conformal map from
Ht := H\Kt → H satisfying the hydrodynamic normalization at ∞,

lim
z→∞

[gt(z)− z] = 0.

It is usually easier to work with the upward Loewner equation:

(2) ∂tht(z) =
−2

ht(z)− ξ(t)
, h0(z) = z,
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for z ∈ H and a real-valued continuous function ξ(t).
It is not hard to show that if gt, 0 ≤ t ≤ T is the solution to (1) with a driving

function λ and ht is the solution to (2) with ξ(t) = λ(T − t), then
hT (z) = g−1T (z).

We are interested in the case when the Loewner chain (gt) is generated by a
curve γ, i.e., Ht is the unbounded component of H\γ([0, t]). It follows from [RS05,
Theorem 4.1] that this is equivalent to the existence and the continuity in t > 0 of

β(t) := lim
y→0+

g−1t (λ(t) + iy).

2.2. Algorithms simulating Loewner equations. Let us briefly discuss
the first algorithm mentioned in the introduction. This idea to simulate Kt is to
determine whether a point z in the upper half plane H satisfies Tz ≤ t. One cannot
examine all the points in H; so if Tz ≤ t one declares that a certain neighborhood
of z is in Kt. To calculate the blow-up time Tz one needs to run equation (1) until
gt(z) hits λ(t). However, there is no general method to solve (1) with given driving
function. There are a few cases one can solve explicitly, see [KNK04]. As a result,
if γ is the simple curve corresponding to λ then the simulation of γ([0, t]) = Kt is a
neighborhood of the actual γ([0, t]). This is hard to see how the curve γ grows.

We now discuss the second algorithm to simulate Loewner curves. It first ap-
peared in [MR05]. The algorithm has also been described in [Ken07], [Ken09], where
modifications and fast implementations are discussed. One advantage of this algo-
rithm is that it always produces simple curves. For the rest of the paper, this is the
algorithm we consider, unless otherwise stated.

The algorithm is based on two observations. First, fix s > 0, and let (g̃t) be the
solution of the Loewner equation with driving function λ̃(t) = λ(s + t), t ≥ 0. This
solution can be obtained by gs+t ◦ g−1s . Indeed

∂tgs+t ◦ g−1s (z) =
2

gs+t ◦ g−1s (z)− λ(s+ t)
=

2

gs+t ◦ g−1s (z)− λ̃(t)
,

and gs ◦ g−1s (z) = z. By the uniqueness of solution of the equation (1), g̃t(z) =

gs+t ◦ g−1s (z). If we let K̃t be the hull associated with g̃t then

H ∩ gs(Ks+t) = K̃t and Ks+t = Ks ∪ g−1s (K̃t).

So in order to compute Ks+t, one can compute Ks and g−1s , by using the information
of λ on [0, s], and compute K̃t by using λ on [s, s+ t].

The second observation is that when λ is of the form c
√
t + d, for some real

constants c and d, one can solve for Kt explicitly. In this case, Kt is a segment in
the upper half plane starting at d ∈ R that makes an angle απ with the positive real
axis where

α =
1

2
− 1

2

c√
16 + c2

,

and g−1t (z+λ(t)) = (z+2
√
t
√

α
1−α)

1−α(z−2
√
t
√

α
1−α)

α+d. See [KNK04] for a proof.
We now fix a step n ≥ 1. Let tk = k

n
for 0 ≤ k ≤ n. So t0 = 0, t1, · · · , tn = 1

determine a partition of [0, 1]. We will solve the Loewner equation with driving
functions λ(t + tk) for 0 ≤ t ≤ 1

n
. By the remarks above, one should approximate

these driving functions by c
√
t + d so that one can solve explicitly the Loewner
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equation. More specifically, we approximate λ by λn such that they attain the same
values at tk’s and that λn is a scaling and translation of

√
t on [tk, tk+1] from λ(tk)

to λ(tk+1). Hence the function λn is defined as follows:

λn(t) =
√
n(λ(tk+1)− λ(tk))

√
t− tk + λ(tk) on [tk, tk+1].

This driving function always produces a simple curve γn : [0, 1]→ H ∪ {λ(0)}.

Figure 2. At each step k, we compute Gnk , f̂
n
tk

and γntk . The k-th sub-arc of the simulation
curve γn is the image of γntk under f̂ntk .

Denote by (gnt )0≤t≤1 the Loewner chain corresponding to λn. Let fnt be the inverse
function of gnt and f̂nt (z) = fnt (z + λn(t)). Define

Gn
k = (f̂ntk)

−1 ◦ f̂ntk+1
,

so that
f̂ntk = Gn

k−1 ◦Gn
k−2 ◦ · · · ◦Gn

0 .

For each t ∈ [0, 1], let γnt be the image of γn under gnt − λn(t), i.e.,

(3) γnt (s) = gnt (γ
n(t+ s))− λn(t) and γn(t+ s) = f̂nt (γ

n
t (s)) for 0 ≤ s ≤ 1− t.

We have chosen λn so that γntk([0,
1
n
]) is a segment starting at 0 and that Gn

k has an
explicit formula:

Gn
k(z) =

(
z + 2

√
1− α
nα

)1−α(
z − 2

√
α

n(1− α)

)α
,

where

α =
1

2
− 1

2

√
n(λ(tk+1)− λ(tk))√

16 + n(λ(tk+1)− λ(tk))2
∈ (0, 1).
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(See Figure 2 for a visualization of the map Gn
k .)

Therefore in order to compute γn([0, 1]), we find γntk([0,
1
n
]), f̂ntk , and then

(4) γn(t) = f̂ntk(γ
n
tk
(t− tk)) for t ∈ [tk, tk+1), 0 ≤ k ≤ n− 1.

Notice that λn converges uniformly to λ on [0, 1] since

sup
t∈[0,1]

|λn(t)− λ(t)| ≤ 2 sup
s,t∈[0,1],|t−s|≤ 1

n

|λ(t)− λ(s)|.

We mention without proof a geometric property of Gn
k which we will use later.

Lemma 2.1. Consider the conformal map G(z) = (z + a)1−α(z− b)α from H to
H minus a slit starting at 0, where a, b > 0, α ∈ (0, 1) and αa = (1−α)b. The point
0 is mapped to the tip of the slit. Then the imaginary part of G(iy) is increasing on
(0,∞). In particular, the image of iy has a larger imaginary part than that of the
tip of the slit.

The dashed line of Figure 2 illustrates this proposition.
2.3. Main results. We shall consider driving functions which have the same

regularity as Brownian motion. And without loss of generality, we will prove the
convergence in Theorem 1.1 only on interval [0, 1]. A subpower function φ is a non
decreasing function from [0,∞) to [0,∞) satisfying:

lim
x→∞

x−νφ(x) = 0 for all ν > 0.

If φ1, φ2 are subpower functions then so are cφ1, φc1 and max(φ1, φ2) for every c > 0.
The function λ is called weakly Hölder -1/2 if there exists a subpower function ϕ

such that

(5) osc(λ; δ) := sup{|λ(t)−λ(s)| : s, t ∈ [0, 1], |t−s| ≤ δ} ≤
√
δϕ(1/δ) for all δ > 0.

It follows from Levy’s theorem that the sample paths of Brownian motion are almost
surely weakly Hölder-1/2 with subpower function ϕ(x) = c

√
log(x), c >

√
2, see

[RY99, Theorem I.2.7].
It is known that if λ is weakly Hölder-1/2 and if there exist c0 > 0, y0 > 0 and

0 < β < 1 so that

(6) |f̂ ′t(iy)| ≤ c0y
−β for all 0 < y ≤ y0, t ∈ [0, 1],

where f̂t(·) = g−1t (λ(t) + ·), then (gt)0≤t≤1 is generated by a curve, see [JVL11,
Section 3]. This is one of the main ideas to show the existence of SLE curves for
κ 6= 8 [RS05]. We note that the Loewner chain of SLE8 does not satisfy (6), see
[JVL11, Theorem 1.1].

Our main theorem shows that under these hypotheses the algorithm gives the
sup-norm convergence of the simulation curves.

Theorem 2.2. Suppose λ is a weakly Hölder-1/2 driving function with a sub-
power function ϕ and suppose the condition (6) is satisfied. Then the curve γ gen-
erated from the Loewner equation can be approximated by the algorithm; that is,
there exists a subpower function ϕ̃ such that for all n ≥ 1

y20
and t ∈ [0, 1],

(7) |γn(t)− γ(t)| ≤ ϕ̃(n)

n
1
2
(1−
√

1+β
2

)
,
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where γn is the curve generated from the algorithm which is explained in Section 2.2.
The function ϕ̃ depends only on ϕ, c0 and β.

A related question is the following: under what additional assumptions, does the
uniform convergence of driving functions imply convergence of corresponding curves?
A priori the convergence of curves occurs in the sense of Carathéodory convergence,
see [Law05], and in the sense of Cauchy transform of probability measures, see [Bau03]
for definitions and details. As said in the introduction, these types of convergence
do not involve the curves. In [BJK, Section 7], it is shown that if two driving
functions generating simple curves are close in the sup-norm and if one function has
the condition (6) then the two generated curves are close in Hausdorff distance. One
really wants to see two curves are close in the sup-norm. Lind, Marshall and Rohde
[LMR10] show that if the driving functions have Hölder-1/2 norm less than 4, then
the curves converge uniformly. However, the Brownian motion is a.s. not Hölder-
1/2. In [SS12], the authors study sufficient conditions to have uniform convergence
of bidirectional paths (the curves and their time-reversals). The paper by Johansson-
Viklund [JV12] uses the tip structure modulus to get another criterion for uniform
convergence of curves.

In the rest of this paper, C stands for absolute constant and φ for general sub-
power functions; c and ϕ stand for constants and subpower functions that may depend
on the assumptions of Theorem 2.2. They can change line by line and are indexed
when necessary to avoid confusion.

Since we are interested in the same type of driving functions as those in [JVL11,
Section 3], there are several results from their paper we will use and state here for
the convenience of the reader.

Lemma 2.3. [JVL11, Lemma 3.4] Let K be a hull. There exists a constant
C <∞ such that

hcap(K) ≤ C diam(K) height(K).

Lemma 2.4. [Won14, Lemma 3.1] Suppose γ is the curve generated by a driving
function λ(t) in (1). Then for all z ∈ γ([0, t]),

|Re z| ≤ sup
0≤s≤r≤t

|λ(r)− λ(s)|

and
Im z ≤ 2

√
t.

Lemma 2.5. [JVL11, Proposition 3.8] Let (gt) be the Loewner chain corre-
sponding to λ(t) satisfying (5) and (6). Then there exists a subpower function ϕ1

such that if 0 ≤ t ≤ t+ s ≤ 1 and s ∈ [0, y2]

|γ(t+ s)− γ(t)| ≤ ϕ1(1/y)[v(t+ s, y) + v(t, y)],

where

v(t, y) =

ˆ y

0

|f̂ ′t(ir)|dr ≤
c0

1− β
y1−β, 0 < y < y0,

and that

(8) |γ(t+ s)− γ(t)| ≤ ϕ1(1/y)
2

1− β
y1−β for 0 ≤ s ≤ y2 ≤ y20.
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Most of the time we will deal with the behavior of conformal maps near the real
and imaginary axes. For every subpower function φ, constant c > 0 and n ∈ N,
define

An,c,φ =

{
x+ iy ∈ H : |x| ≤ φ(n)√

n
and

1√
nφ(n)

≤ y ≤ c√
n

}
.

Lemma 2.6. There exist constants α > 0 and c′ > 0 such that if z1 and z2 are
inside the box An,c,φ, and f is a conformal map on H then

(9) |f ′(z1)| ≤ c′φ(n)α|f ′(i Im z1)|
and

dH,hyp(z1, z2) ≤ c′ log φ(n) + c′.

The constants α and c′ depend only on c, not on φ or n. The notation dH,hyp(z1, z2)
means the hyperbolic distance between z1 and z2 in a simply connected domain H,
see [Pom92, Section 4.6].

Proof. The proof is similar to [JVL11, Lemma 3.2]. �

Lemma 2.7. [Pom92, Corollary 1.5] (half plane version) If f is a conformal map
of H into C and if z1, z2 ∈ H, then

|f(z1)− f(z2)| ≤ 2 |(Im z1)f
′(z1)| exp(4dH,hyp(z1, z2)).

3. Proof of main theorem 2.2

3.1. Heuristic argument. Let γt be the image of γ under gt − λ(t), i.e.,

γt(s) = gt(γ(t+ s))− λ(t) and γ(t+ s) = f̂t(γt(s)).

We want to estimate

(10) |γ(tk+1)− γn(tk+1)| = |f̂tk(z)− f̂ntk(w)| ≤ |f̂tk(z)− f̂tk(w)|+ |f̂tk(w)− f̂
n
tk
(w)|,

where z = γtk(
1
n
) and w = γntk(

1
n
).

First, z and w are the tips of two curves generated respectively by two driving
functions defined on [0, 1

n
]. It follows from Lemma 2.4 that Im z and Imw ≤ 2√

n
.

For the first term in the RHS of (10), it follows from Lemma 2.7 that

|f̂tk(z)− f̂tk(w)| ≤ 2 |(Im z)f̂ ′tk(z)| exp(4dH,hyp(z, w)).
Notice that z and w trivially have positive imaginary parts.

If we can show that z and w are in the same box An,c,φ, then by Lemma 2.6
and the hypothesis (6) of f̂ ′tk on iR+, we obtain similar inequalities for |f̂ ′tk(z)| and
|f̂ ′tk(w)|. It follows that

2 Im z|f̂ ′tk(z)| exp(4dH,hyp(z, w)) . (Im z)1−βφ(n) .
φ(n)

(
√
n)1−β

→ 0 as n→∞,

where the notation f . g means that f ≤ Cg for some constant C > 0.
Since w is a tip of a straight line generated by a nice driving function, we can

show w is in a box An,c,φ, see (13). However, z = γtk(
1
n
), in the case of SLE, has

continuous density on the strip {x + iy : x ∈ R, 0 ≤ y ≤ 2}. So there might not
exist a controllable-sized box An,c,φ that contains z. However Lemma 3.2 shows the
existence of a point in γtk([0,

1
n
])∩An,c,φ, and we will use this point instead of γtk(

1
n
).

Then we use the uniform continuity of γ to get back to (10).
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For the second term in the RHS of (10), notice that

f̂tk(w)− f̂ntk(w) = ftk(w + λ(tk))− fntk(w + λ(tk)).

This expression is a perturbation evaluated at the same point of two solutions of
the upward Loewner equation (1) with two driving functions t 7→ λ(tk − ·) and
t 7→ λn(tk − ·).

We will use the following lemma from [JVRW14] and the fact that λ and λn are
close on [0, tk] and that |f ′tk(w + λ(tk))| is well-controlled.

Lemma 3.1. [JVRW14, Lemma 2.3] Let 0 < T < ∞. Suppose that for t ∈
[0, T ], f (1)

t and f
(2)
t satisfy the upward Loewner equation (2) with W

(1)
t and W

(2)
t ,

respectively, as driving terms. Suppose that

ε = sup
s∈[0,T ]

|W (1)
s −W (2)

s |.

Then if u = x+ iy ∈ H, then

|f (1)
T (u)−f (2)

T (u)| ≤ ε exp

12
[
log

IT,y|(f (1)
T )′(u)|
y

log
IT,y|(f (2)

T )′(u)|
y

]1/2
+ log log

IT,y
y

,
where IT,y =

√
4T + y2.

Thus if |(f (1)
T )′(u)| ≤ cy−β, then

|f (1)
T (u)− f (2)

T (u)| . εy−
√

(1+β)/2 log(IT,y/y).

If one can show furthermore

ε ≤ φ(n)√
n

and y = Imu = Imw ≥ 1

φ(n)
√
n
,

then

|f (1)
T (u)− f (2)

T (u)| . φ(n)c
′′

n
1
2
(1−
√

1+β
2

)
→ 0.

From here, we only have an estimate for |γ(t) − γn(t)| when t = tk+1. To have an
estimate on the whole interval we notice that

γn([tk+1, tk+2]) = f̂ntk

(
γntk

[
1

n
,
2

n

])
= Gn

k

(
γntk+1

[
0,

1

n

])
.

It follows from a property of Gn
k (Lemma 2.1), that every point in γntk([

1
n
, 2
n
]) is in

a box An,c,φ and hence we can apply the same argument for (10) with γn(tk+1) being
replaced by any γn(t), tk+1 ≤ t ≤ tk+2.

Now we will go into the details of the proof.

3.2. Proof of Theorem 2.2. Fix an arbitrary interval I = [tk, tk+2], 0 ≤ k ≤
n− 2. Denote γk = γtk , γnk = γntk .

We will estimate |γ(s + tk) − γn(r + tk)| for all r ∈ [ 1
n
, 2
n
] and with a specific s

chosen later. Combining with the uniform continuity of γ, we will have an estimate
for

|γ(r + tk)− γn(r + tk)| with all r ∈
[
1

n
,
2

n

]
.
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From now on, we will choose n so that 1
n
≤ y20 and fix r ∈ [ 1

n
, 2
n
]. Denote z = γk(s)

and w = γnk (r). By the triangle inequality,

(11) |γ(s+ tk)−γn(r+ tk)| = |f̂tk(z)− f̂ntk(w)| ≤ |f̂tk(z)− f̂tk(w)|+ |f̂tk(w)− f̂
n
tk
(w)|.

The first term in the RHS of (11). It follows from Lemma 2.7 that

(12) |f̂tk(z)− f̂tk(w)| ≤ (2 Im z)|f̂ ′tk(z)| exp(4dH,hyp(z, w)).
The next lemma shows the existence of a point in γk([0, 2

n
]) ∩ An,c,φ.

Lemma 3.2. There exists a subpower function φ depending only on ϕ, c0 and
β of Theorem 2.2 such that for n ≥ 1 and 0 ≤ k ≤ n− 1, there exists s ∈ [0, 2

n
] such

that γk(s) ∈ An,2√2,φ.

Proof. Since η := γk([0,
2
n
]) is the curve generated by the Loewner equation (1)

with driving function λ(tk + .)− λ(tk) on [0, 2
n
] and since λ is weakly Hölder-1/2, it

follows from Lemma 2.4 that

|Re γk(s)| ≤
√

2

n
ϕ(
n

2
) =:

ϕ2(n)√
n

and Im γk(s) ≤
2
√
2√
n

for all s ∈ [0, 2
n
].

This implies

diam(η) ≤ height(η) + width(η) ≤ 2
√
2√
n

+
2ϕ2(n)√

n
=
ϕ3(n)√

n
.

It follows from Lemma 2.3 that
2

n
= hcap(η) ≤ C diam(η) height(η),

so,

height(η) ≥ 1√
nϕ4(n)

.

The lemma follows by choosing a highest point and letting φ := ϕ5 := max(ϕ4, ϕ2).
�

With this specific point γk(s), we can use the inequality (9) in Lemma 2.6.
To have a bound for exp(4dH,hyp(z, w)) one needs to show that w = γnk (r) is also
in An,2

√
2,ϕ5

. By the same argument as in the above lemma, since γnk ([0,
1
n
]) and

γnk+1([0,
1
n
]) are line segments,

(13) γnk

(
1

n

)
and γnk+1

(
1

n

)
∈ An,2√2,ϕ5

.

Lemma 3.3. There exists a subpower function φ depending only on ϕ, c0 and
β such that for all n, k and r ∈ [ 1

n
, 2
n
], γnk (r) is in the box An,2√2,φ.

Proof. Notice that γnk (r) is the tip of the Loewner curve generated by the driving
function t 7→ λn(t+ tk)− λn(tk), t ∈ [0, r]. It follows from Lemma 2.4 that

(14) |Re γnk (r)| ≤ sup{|λn(t+ tk)− λn(tk)|, t ∈ [0, r]} ≤
√

2

n
ϕ(
n

2
) =

ϕ2(n)√
n
.

and

Im γnk (r) ≤ 2
√
r ≤ 2

√
2

n
.
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Now the rest of the proof is to find a lower bound for Im γnk (r). Fix r ∈ [ 1
n
, 2
n
].

Let x+ iy := γnk+1(r − 1
n
), G := (f̂ntk)

−1 ◦ f̂ntk+1
.

Since γnk+1([0,
1
n
]) is a line segment with the tip γnk+1(1/n) in An,2√2,ϕ5

, by Lem-
ma 2.6,

dH,hyp(x+ iy, iy) ≤ C logϕ5(n) + C

and

dH,hyp(x+ iy, iy) = dH\γnk [0,
1
n
],hyp(γ

n
k (r), G(iy)) ≥ dH,hyp(γ

n
k (r), G(iy)).

It follows from (13) and Lemma 2.1 that

Im γnk (r) ≥
ImG(iy)

Cϕ5(n)C
≥ Im γnk (1/n)

Cϕ5(n)C
≥ 1

C
√
nϕ5(n)C+1

=
1√

nϕ6(n)
.

So γnk (r) and γk(s) are both in An,2√2,ϕ7
with ϕ7 = max(ϕ5, ϕ6). �

We now apply Lemma 2.6 and obtain

|f̂tk(z)− f̂tk(w)| ≤ (2 Im z)|f̂ ′tk(z)| exp(4dH,hyp(z, w))

≤ C(Im z)ϕ7(n)
α|f̂ ′tk(i Im z)| exp(C logϕ7(n) + C)

≤ (Im z)1−βCc0ϕ7(n)
α exp(C logϕ7(n) + C)

≤ (
2
√
2√
n
)1−βCc0ϕ7(n)

α exp(C logϕ7(n) + C) =
ϕ8(n)
√
n
1−β .(15)

The second term in the RHS of (11). Let u = x + iy := w + λ(tk). Since
λ(tk) = λn(tk),

f̂tk(w)− f̂ntk(w) = ftk(u)− fntk(u).

Applying Lemma 3.1, we get

|ftk(u)− fntk(u)| ≤ ε exp

{
1

2

[
log

Itk,y|f ′tk(u)|
y

log
Itk,y|(fntk)

′(u)|
y

]1/2
+ log log

Itk,y
y

}
,

where Itk,y =
√

4tk + y2 and ε = supt∈[0,tk] |λ(t)− λ
n(t)| ≤ 2ϕ(n)√

n
.

Since y = Imu = Imw ∈
[

1√
nϕ7(n)

, 2
√
2√
n

]
,

Itk,y
y
≤ 2
√
2
√
nϕ7(n).

Since f ′tk(u) = f̂ ′tk(w),

|f ′tk(u)| ≤
c0
yβ
≤ c0ϕ7(n)

β
√
n
β
.

Also
|(fntk)

′(u)| ≤ C(y−1 + 1) ≤ 2Cϕ7(n)
√
n,

where the first inequality holds for all hydrodynamic normalized conformal map of
H.
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It follows that

|f̂tk(w)− f̂ntk(w)| ≤
2ϕ(n)√

n
exp

{√
1 + β

2
log(cϕ7(n)

√
n) + log log 2

√
2nϕ7(n)

}

=:
ϕ9(n)

√
n
1−
√

1+β
2

.(16)

End of the proof of Theorem 2.2. It follows from (11), (15) and (16) that

|γ(s+ tk)− γn(r + tk)| ≤
ϕ8(n)
√
n
1−β +

ϕ9(n)

(
√
n)1−
√

1+β
2

=:
ϕ10(n)

(
√
n)1−
√

1+β
2

for all r ∈ [ 1
n
, 2
n
].

Using the uniform continuity (8) of γ, we obtain

|γ(r)− γn(r)| ≤ ϕ11(n)

(
√
n)1−
√

1+β
2

for all r ∈ [tk+1, tk+2] and 0 ≤ k ≤ n− 2, hence for all r ∈ [0, 1]. �

Proof of Corollary 1.2. It was shown in [MR05], [Lin05] and [LR12] that the
unbounded complements of the hulls generated by the driving function are John
domains. Therefore, it follows from [Pom92, Chapter 5] that the condition (6) is
satisfied. �

4. Applications

4.1. Variants of the algorithm. Variant 1. The conclusion of Theorem 2.2
still holds for every λn that satisfies:

(17) |λn(tk)− λ(tk)| ≤
ϕ(n)√
n

and

(18) λn(t) =
√
n(λn(tk)− λn(tk))

√
t− tk + λn(tk) on [tk, tk+1].

Indeed, the main inequality (11) changes slightly

|γ(s+ tk)− γn(r + tk)| = |f̂tk(z)− f̂ntk(w)|

≤ |f̂tk(z)− f̂tk(w + λn(tk)− λ(tk))|
+ |ftk(w + λn(tk))− fntk(w + λn(tk))|.(19)

We can see that z and w + λn(tk)− λ(tk) are still in the same box An,c,φ. Hence
the same argument follows.

Variant 2. Lemma 2.1 and the property (13) and hence Lemma 3.3, are still true
if instead of square-root-interpolating λn on [tk, tk+1], we consider any function inter-
polating between λn(tk) and λn(tk+1) such that when we run the Loewner equation
for 0 ≤ t ≤ 1

n
, the resulting γntk has non decreasing imaginary part on [0, 1

n
].

In particular, with the same assumption as in Theorem 2.2, if γn is the curve
generated by linear-interpolating λn

λn(t) = λn(tk) + n(λn(tk+1)− λn(tk))(t− tk) on [tk, tk+1]
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the the same conclusion holds (see [KNK04] for a discussion of linear driving func-
tions).

Variant 3. Instead of using tilted slits on each small interval one can use vertical
slits [Ken09]. In this case, λn is a step function:

λn(t) = λ(tk) for t ∈ [tk, tk+1)

and

γntk(t) = λ(tk) + 2i
√
t on

[
0,

1

n

)
.

However γn defined by (4) is not a curve. We can do as follows. We compute γn
at discrete points t = t0, t1, · · · , tn. Then connect them with a straight line in that
order. As plotted in [Ken09], it is almost impossible to distinguish this curve and
the one from the (main) algorithm. Indeed, the same proof of Theorem 2.2 is carried
over for this algorithm and the same conclusion of this theorem holds.

4.2. Speed of convergence to SLEκ. We can estimate the speed of conver-
gence of the algorithm to ηκ = SLEκ with κ 6= 8.

Recall that from the driving function λ(t) =
√
κBt, we can define its square-

interpolating approximation function

λn(t) =
√
n(λ((k + 1)/n)− λ(k/n))

√
t− k/n+ λ(k/n) on [k/n, (k + 1)/n],

with k = 0, 1, · · · , n − 1, and n = 1, 2, · · · . Let γn be the curve generated from
Loewner equation with the driving function λn.

Corollary 4.1. There exist constants c1, c2, c3, c4 > 0 depending on κ such that

P

||ηκ − γm||[0,1],∞ ≤ c1(logm)c2

√
m

1−
√

1+β
2

for all m ≥ n

 ≥ 1− c3
nc4

.

In other words, this corollary implies the almost sure convergence in Theorem 1.1.
We will apply Theorem 2.2 to the case λ(t) =

√
κBt. It follows from [LL10,

Theorem 3.2.4] that there exist constants c1 (depending only on κ) and c2 such that

(20) P

{
osc(λ;

1

m
) ≥ c1

√
logm

m
for all m ≥ n

}
≤ c2
n2
.

Notice that in Theorem 2.2, if ϕ(n) =
√
log n in (5), then by going through the

proof, one sees that the subpower functions are changed by adding, multiplying and
exponentiating constants. Hence the subpower function in (7) is of the form c(log n)c

′

for some constants c and c′.
It follows from [JVL11, Proposition 4.2] that there exist constants β′ ∈ (0, 1), c3

and c4 > 0 depending on κ such that
∞∑
m=n

22m∑
j=1

P
{
|f̂ ′(j−1)2−2m(i2−m)| ≥ 2β

′m
}
≤ c3

2nc4
.

By applying the union bound, it follows that

P
{
|f̂ ′(j−1)2−2m(i2−m)| ≤ 2β

′m for all 1 ≤ j ≤ 22m, m ≥ n
}
≥ 1− c3

2nc4
.
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Thus there exist c5 > 0 and β ∈ (β′, 1) such that

P

{
|f̂ ′t(iy)| ≤

c5
yβ

for all 0 ≤ y ≤ 2−n, t ∈ [0, 1]

}
≥ 1− c3

2nc4
,

or

(21) P

{
|f̂ ′t(iy)| ≤

c5
yβ

for all 0 ≤ y ≤ 1√
n
, t ∈ [0, 1]

}
≥ 1− c3

nc4/2
.

Combining (20), (21) and Theorem 2.2, we get

P

||ηκ − γm||[0,1],∞ ≤ c6(logm)c7

√
m

1−
√

1+β
2

for all m ≥ n

 ≥ 1−
( c2
n2

+
c3
nc4/2

)
which proves Corollary 4.1. �

4.3. Random walk algorithm to simulate SLE curves. This algorithm
[Ken09, Section 2] is based on the Donsker’s invariance theorem: a scaling of simple
random walk converges in distribution to the Brownian motion.

For fix κ ≥ 0. We choose a ∈ (0, 1
2
] such that

κ =
4(1− 2a)2

a(1− a)
.

Let f1(z) = (z + 1− a)1−a(z − a)a, f2(z) = (z + a)a(z − (1− a))1−a. For every i ≥ 1,
choose φi = f1 or φi = f2 with equal probability. Then we compute inductively
Fn = Fn−1 ◦ φn with F0 = id. The map Fn is conformal from H to H minus a
slit curve. After rescaling and translating so that this slit curve has the half plane
capacity 1, we get a simple curve γn. More explicitly, γn is generated by λn whose
formula is

λn(tk) =
√
κ
Sk√
n

for all tk,

and
λn(t) =

√
n(λn(tk+1)− λn(tk))

√
t− tk + λn(tk) on [tk, tk+1],

where Sk = X1 + · · ·+Xk, X ′is are iid and P(Xi = 1) = P(Xi = −1) = 1
2
.

By Donsker’s invariance theorem, λn d→
√
κB|[0,1] on C([0, 1], ||.||∞). So H\

γn([0, 1])
d→ H\ηκ([0, 1]) in the context of Carathéodory kernel convergence [Law05]

and Cauchy transforms of probability measures [Bau03]. Kennedy [Ken09] raised a
question whether γn converges in distribution to ηκ.

We now show that γn converges in distribution to ηκ under the sup-norm of
C([0, 1]) when κ 6= 8. Indeed, it follows from [LL10, Theorem 7.1.1] that for each n,
we can couple λn and the Brownian motion in the same probability space such that

(22) P

{
max
0≤j≤n

|λn(tj)−
√
κBtj | ≥

C
√
κ log n√
n

}
≤ Cn−3

for some universal constant C > 0.
Hence from (20), (21), (22) and the discussion of Variant 1, there exist constants

c8 and c9 depending on κ such that

P

||γn − ηκ||[0,1],∞ ≤ c8(log n)
c9

√
n
1−
√

1+β
2

 ≥ 1− c2
n2
− c3
nc4/2

− C

n3
.
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This implies that γn converges in distribution to ηκ = SLEκ.
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