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Abstract. Let f : C → C be an entire function that has only finitely many critical and

asymptotic values. Up to topological equivalence, the function f is determined by combinatorial

information, more precisely by an infinite graph known as a line-complex. In this note, we discuss

the natural question whether the order of growth of an entire function is determined by this combi-

natorial information. The search for conditions that imply a positive answer to this question leads

us to the area property, which turns out to be related to many interesting and important questions

in conformal dynamics and function theory. These include a conjecture of Eremenko and Lyubich,

the measurable dynamics of entire functions, and pushforwards of quadratic differentials. We also

discuss evidence that invariance of order and the area property fail in general.

1. Introduction

The order ρ(f) of a meromorphic function f : C → Ĉ is an important quantity
in classical value-distribution theory [Nev53]. In the special case where f : C → C is
an entire function, the order can be defined as

ρ(f) ..= lim sup
z→∞

log+ log+ |f(z)|
log |z| ∈ [0,∞]

(where log+ x = max(0, log x)). Any polynomial or rational function has order 0,
but there are also many transcendental entire and meromorphic functions with this
property. On the other hand, the maximum modulus of an entire function can grow
arbitrarily quickly; in particular, there are many functions of infinite order.

The set S(f) of singular values of an entire function f is the smallest closed set
S ⊂ C such that

f : f−1(C \ S) → C \ S
is a covering map; equivalently, S(f) is the closure of the set of all critical and as-
ymptotic values of f . This set is of vital importance for both the function-theoretical
and iterative study of transcendental entire (and meromorphic) functions.

It is a guiding principle of both one-dimensional holomorphic dynamics and three-
dimensional hyperbolic geometry that combinatorics determines geometry, under
suitable finiteness assumptions. In this note, we consider a potential extension of
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this principle to value-distribution theory that was first proposed by the first author
over fifteen years ago, but has not so far been discussed in print. The natural setting
for our considerations is the Speiser class

S ..= {f : C → C transcendental, entire : S(f) is finite},
which has been extensively studied both in dynamics and function theory. We shall
also refer to such functions as finite type maps, in adopting terminology standard
in holomorphic dynamics. We caution that the word type has an entirely different
meaning in value-distribution theory. It is well-known that every function f ∈ S has
ρ(f) ≥ 1/2; compare [BE95, Proof of Corollary 2] or [RS99, Lemma 3.5].

To a function f ∈ S, one can associate an infinite planar graph, known as the
line-complex, which encodes the topological mapping behaviour of f .1 From this com-
binatorial data, one can reconstruct the function f , up to pre- and post-composition
by homeomorphisms. That is, two functions f, g ∈ S have the same line-complex if
and only if they are topologically equivalent in the sense of Eremenko and Lyubich:

1.1. Definition. (Topological equivalence) Two entire functions f and g are
called topologically equivalent if there are order-preserving homeomorphisms ϕ and
ψ such that ψ ◦ f = g ◦ ϕ.

For this reason, we shall not require the formal definition of line-complexes—for
which we refer the reader to [GO08, Chapter 7]—but will instead use the notion
of topological equivalence, which is easier both to define and to work with in our
context. (See Section 2 for a discussion of the properties of topological equivalence.)

It is natural to ask which properties of f are combinatorially determined, and,
in particular, whether this is the case for the order:

1.2. Question. (Invariance of order) Let f ∈ S with ρ(f) < ∞, and let g be
topologically equivalent to f . Is ρ(f) = ρ(g)?

For transcendental meromorphic functions, the order is given by

ρ(f) = lim sup
r→∞

log T (r, f)

log r

where T (r, f) is the Nevanlinna characteristic of f . (We emphasize that knowledge of
Nevanlinna theory will not be required for the remainder of the paper.) Question 1.2
is partly motivated by the fact that the answer is positive in an important, classical
case: that of meromorphic functions with rational Schwarzian derivative. Indeed, in
this case the order can be directly determined from the combinatorial information
of the function—more precisely, ρ(f) = ℓ/2, where ℓ is the number of logarithmic
singularities—and hence is indeed invariant. (See Corollary 2.5 and the discussion
that precedes it.) More generally, there are a number of classical subclasses of S that
were defined in terms of the structure of their line-complexes (e.g. maps with finitely
many simply- and doubly periodic ends [Wit68], and more generally asymptotically
periodic ends [GO08]). In these cases, it seems to have been implicitly understood
that the order depends only on the line complex, and hence that invariance of order
holds for these classes. However, the answer to Question 1.2 for general meromorphic
finite-type functions is negative by work of Künzi [Kün55].

1We remark that the line-complex is uniquely defined only if one additionally fixes a suitable
marking, which can be represented by a Jordan curve through the singular values.
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In addition to the Speiser class, the larger Eremenko-Lyubich class

B ..= {f : C → C transcendental, entire : S(f) is bounded}

has also been studied extensively in complex dynamics. In this class, there do exist
cases where the order is not invariant under topological equivalence.

1.3. Theorem. (Counterexamples in class B) There exist two finite-order func-
tions f, g ∈ B such that f and g are topologically equivalent, but ρ(f) 6= ρ(g).

These examples arise from complex dynamics; more precisely they are given by
Poincaré functions (maximally extended linearizing maps) associated to the repelling
periodic cycles of polynomials. As we shall see, for a polynomial with connected Julia
set, these Poincaré functions belong to the Eremenko–Lyubich class. Furthermore, an
orientation-preserving topological conjugacy between polynomials induces topologi-
cal equivalences between corresponding Poincaré functions (Proposition 3.2). On the
other hand, in this situation the order is determined by the multiplier of the associated
periodic cycle, which may change under a topological conjugacy; see Corollary 3.3.

Note that this construction cannot be extended to yield counterexamples to in-
variance of order in the class S. Indeed, a Poincaré function is in S if and only if
the corresponding polynomial is postcritically finite, but postcritically finite maps
are rigid by the Thurston Rigidity Theorem [DH93]. We are able to give a purely
function-theoretic explanation of this phenomenon by studying an important geo-
metric property.

The area property. The following result, which is a consequence of the well-
known Teichmüller–Wittich Theorem, will allow us to verify invariance of order for
certain functions f ∈ S.

1.4. Theorem. (Invariance of order and the area property) Let f ∈ S, and
suppose that

(1.1)

ˆ

f−1(K)\D

dx dy

|z|2 <∞

for every compact setK ⊂ C\S(f). Then the order of f is invariant under topological
equivalence. (Here D = {|z| < 1} denotes the unit disc.)

The condition (1.1) means that the cylindrical area areacyl(f
−1(K)\D)—i.e. area

with respect to the conformal metric ds = |dz|/|z| on the punctured plane C
∗—is

finite. Note that this condition makes perfect sense not just for a function f ∈ S,
but also for general entire functions f , and in particular for f ∈ B:

1.5. Definition. (The area property) We say that an entire function f has the
area property if (1.1) holds for every compact set K ⊂ C \ S(f). If f ∈ B and this
property holds for every compact subset of the unbounded connected component of
C \ S(f), we say that f has the area property near infinity.

The area property and some variants thereof appear to be closely connected to a
number of interesting questions in complex function theory and complex dynamics.
In particular, a similar question was stated by Eremenko and Lyubich:
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1.6. Conjecture. (Detection of asymptotic values [EL92, p. 1009]) Suppose that
f ∈ S is such that, for some R > 0,

(1.2) lim inf
r→∞

1

log r

ˆ

{z∈C : 1≤|z|≤r and |f(z)|≤R}

dx dy

|z|2 > 0.

Then f has a finite asymptotic value.

In other words, suppose that f ∈ S has no finite asymptotic values. Then
Conjecture 1.6 would imply that, for any compact set K ⊂ C, the part of the
logarithmic area of f−1(K) \D at modulus at most r does not grow too quickly with
r (although the total logarithmic area is allowed to be infinite, in contrast to the
area property). Conversely, suppose that the area property holds for f , and that
additionally the multiplicity of the critical points of f is uniformly bounded. Then
the integral in (1.2) is bounded, and hence f satisfies Conjecture 1.6 (see Lemma 4.4).

The area property is often easy to verify, allowing us to establish a positive answer
to Question 1.2 in such cases. In particular, we can show that a Poincaré function
f for a polynomial p with connected Julia set typically has the area property, even
when invariance of order fails. Recall that, as mentioned above, such f belongs to
the class B and has finite order (see (3.2) below).

1.7. Theorem. (The area property for linearizers) Let f ∈ B be the Poincaré
function associated to a repelling periodic point of a polynomial p with connected
Julia set. Then f has the area property near infinity. Furthermore, f has the
area property if and only if p does not have any Siegel discs. In particular, if p is
postcritically finite, then f ∈ S and the order of f is invariant under topological
equivalence.

The preceding theorem provides examples of functions in the class B where the
area property fails. These examples rely in an essential way on the fact that the
singular set of f (which includes the boundary of any Siegel disc of p) disconnects
the plane. So the theorem leaves open the possibility that the area property holds
near infinity for all finite-order functions f ∈ B, which would imply the general area
property, and hence invariance of order, when f ∈ S. We show that this is not the
case:

1.8. Theorem. (Counterexamples to the area property near infinity) There ex-
ists a function f ∈ B of finite order such that f does not have the area property near
infinity.

Remark. The counterexample is constructed by precisely the same method
as that used by the second author to construct a hyperbolic entire function with
maximal hyperbolic dimension constructed in [Rem14]. Indeed, it can be shown that
the counterexample from that paper violates the area property. For some remarks
concerning connections between the area property and measurable dynamics, see
Section 7.

We consider Theorem 1.8 to provide strong evidence that invariance of order does
not hold in general.

1.9. Conjecture. (Non-invariance of order) There exist entire functions f, g ∈ S
such that f and g are topologically equivalent, but ρ(f) 6= ρ(g).
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Subsequent work. While this article was being prepared, a proof of Conjec-
ture 1.9 was announced by Chris Bishop [Bis12]. His work also includes a counterex-
ample to Conjecture 1.6. Since his results were announced, we noticed that Poincaré
functions can be used to give an alternative counterexample to the latter conjecture;
we include the short argument in Proposition 4.7.

The area property is also closely connected with the question of whether the
exceptional set in a certain theorem of Littlewood can be chosen to be finite. Geyer
[Gey14] has independently considered Poincaré functions for polynomials with Siegel
discs, as in Theorem 1.7, to construct class B counterexamples to this property. We
refer to his paper for a discussion of the precise question.

Structure of the article. In Section 2, we introduce a number of definitions and
preliminaries, and in particular recall some key facts concerning topological and qua-
siconformal equivalence. We also review the classical case of maps with polynomial
or rational Schwarzian derivative, as studied by Nevanlinna and Elfving. In Sec-
tion 3, we investigate basic properties of Poincaré functions and prove Theorem 1.3.
The area property is studied in detail in Section 4, where we prove Theorem 1.4
and discuss a number of equivalent formulations of (1.1) that will be helpful in the
following. We then return to Poincaré functions and the proof of Theorem 1.7, which
turns out to rely on a connection between the area property for the linearizer and
the Poincaré series of the original polynomial. Theorem 1.8 is proved in Section 5,
using a construction from [Rem14].

Finally, Section 6 discusses consequences of the area property for pushforwards of
quadratic differentials, and Section 7 touches on a number of topics that are connected
to our considerations, but go beyond the main scope of the article.

Basic notation. We shall assume that the reader is familiar with basic facts
from complex geometry [For81], hyperbolic geometry [BM07] and the theory of qua-
siconformal maps [Ahl06]. In particular, we shall use the following elementary fact.

1.10. Observation. (Quasiconformal maps isotopic to a given homeomorphism)

Let ϕ : Ĉ → Ĉ be an orientation-preserving homeomorphism, and let E ⊂ Ĉ be finite.
Then there exists a quasiconformal homeomorphism ϕ̃ : Ĉ → Ĉ isotopic to ϕ

relative E and conformal near E. If #E ≤ 3, then ϕ̃ can be chosen to be a Möbius
transformation.

If ϕ is a quasiconformal map, then (following Bishop) the quasiconstant of ϕ is
the smallest number K such that ϕ is K-quasiconformal. Furthermore, we denote
the complex dilatation of ϕ by µϕ.

The Koebe Distortion Theorem [Pom92, Theorem 1.3] will also be used fre-
quently. An important consequence of this theorem (and the Schwarz Lemma) is
the standard estimate [BM07, Theorems 8.2 and 8.6] on the hyperbolic metric in a
simply-connected domain: if V ⊂ C is simply-connected and ρV denotes the density
of the hyperbolic metric of V , then

(1.3)
1

2 dist(z, ∂V )
≤ ρV (z) ≤

2

dist(z, ∂V )
.

Throughout the paper, the complex plane, the punctured plane, the Riemann
sphere and the unit disc are denoted C, C∗, Ĉ and D, respectively.
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We shall sometimes use “const” to indicate a constant in a formula. For example,
f(x) ≤ const ·|x| should be read as “there exists a constant C such that f(x) ≤ C ·|x|”.
We also write a ≍ b to mean that a and b differ by at most a multiplicative constant;
i.e. a ≤ const · b ≤ const · a. The notation f(z) ∼ g(z) (as z → ∞) means that
limz→∞ f(z)/g(z) = 1.

Acknowledgments. We thank Chris Bishop, David Drasin, Lukas Geyer, Kevin
Pilgrim, Stas Smirnov and, especially, Alex Eremenko, for interesting discussions,
encouragement and assistance. We would also like to thank the referees for helpful
comments and corrections.

2. Maps in the Speiser and Eremenko–Lyubich class

Singular values. Let f : C → C be a transcendental entire function. A point
z ∈ C is called a regular value if there is an open U ∋ z such that f maps each
component of f−1(U) homeomorphically onto U . Otherwise z is called a (finite)
singular value, and the set of all such singular values is denoted by S(f). Note that,
since the set of regular values is open, this coincides with the definition of S(f) given
in the introduction.

Denote the sets of critical and asymptotic values of f by

C(f) ..=
{
x ∈ C : x = f(w) for some w ∈ C with f ′(w) = 0

}
and

A(f) ..=
{
x ∈ C : x = lim

t→1
f(γ(t)) for some path γ : [0, 1) → C with

γ(t) → ∞ as t→ 1
}
,

respectively. Then it follows from covering theory that

S(f) = C(f) ∪ A(f).
(Clearly C(f) ∪ A(f) ⊂ S(f), and if x has a neighborhood that does not intersect
C(f) ∪ A(f), then x is a regular value by the Monodromy Theorem.)

Topological and quasiconformal equivalence. Note that all three sets, C(f),
A(f) and S(f), are defined topologically, and hence are preserved by topological
equivalence.

2.1. Observation. (Topological equivalence respects singular values) Suppose
that f and g are topologically equivalent, say ψ ◦ f = g ◦ ϕ. Then A(g) = ψ(A(f)),
C(g) = ψ(C(f)) and S(g) = ψ(S(f)).

Recall the definition of the Speiser class and the Eremenko–Lyubich class from
the introduction:

S ..= {f : C → C transcendental, entire : S(f) is finite};
B ..= {f : C → C transcendental, entire : S(f) is bounded}.

One of the key properties of the class S with respect to topological equivalence is
that the maps ϕ and ψ in Definition 1.1 can always be chosen to be quasiconformal
(see Proposition 2.3(d) below). For functions with infinitely many singular values,
this need no longer be true, and it makes sense to introduce the following definition
(see [Rem09]):

2.2. Definition (Quasiconformal equivalence). Two entire functions f and g
are called quasiconformally equivalent if there are quasiconformal homeomorphisms
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ϕ, ψ : C → C such that ψ ◦ f = g ◦ ϕ. We shall refer to ϕ and ψ from this definition
or from Definition 1.1 as witnessing homeomorphisms.

The following facts regarding topological and quasiconformal equivalence are
mostly folklore (although, for the class S, parts (a) and (d) essentially appear in
[EL92, Section 3]). We provide the short proofs for completeness.

2.3. Proposition. (Properties of topological equivalence)

(a) Suppose that f and g are topologically equivalent, with witnessing homeo-

morphisms ϕ and ψ. If a homeomorphism ψ̃ : C → C is isotopic to ψ relative
S(f), then there exists a homeomorphism ϕ̃, isotopic to ϕ relative f−1(S(f)),

such that ϕ̃ and ψ̃ are also witnessing homeomorphisms for f and g. If ψ̃ is
quasiconformal, respectively conformal, then ϕ̃ is also.

(b) If f and g are quasiconformally equivalent and f has finite positive order,
then g also has finite positive order. More precisely,

0 <
1

K
≤ ρ(g)

ρ(f)
≤ K <∞,

where K is the quasiconstant of ϕ.
(c) Suppose that f and g are quasiconformally equivalent and that the witnessing

homeomorphism ϕ is Lipschitz at ∞; i.e., |ϕ(z)| ≍ |z| for sufficiently large z.
Then ρ(f) = ρ(g).

(d) If f, g ∈ S are topologically equivalent, then they are quasiconformally equiva-
lent. If #S(f) = 2, then ϕ and ψ can be chosen to be affine (and ρ(f) = ρ(g)).

Remark. It follows from the final statement in (d) that the answer to Ques-
tion 1.2 is always positive when #S(f) = 2.

Proof. Part (a) follows by lifting the isotopy. More precisely, let (ψt)t∈[0,1] be

an isotopy from ψ to ψ̃. Then, on every component of U ..= f−1(C \ S(f)), there
is a unique lift (ϕt)t∈[0,1] of this isotopy (since f is a covering map on each such
component). So we have an isotopy ϕt : U → ϕ(U), and only need to show that the
maps ϕt extend continuously to ∂U and agree with ϕ there.

We may assume without loss of generality that ψ = ϕ = id. Let z0 ∈ ∂U , and set
w0

..= f(z0); we must show that ϕt(z) → z0 as z → z0 in U , uniformly in t. Let D be a
small simply-connected neigborhood of z0, chosen to ensure that f : D → f(D) =.. V
is a proper map with no critical points except possibly at z0. We must show that
ϕt(z) ∈ D when z is sufficiently close to z0. By continuity of f and the isotopy, if z is
close enough to z0, and w ..= f(z), then ψt(w) ∈ V for all t. (Recall that ψt(w0) = w0

for all t.) The point zt = ϕt(z) is obtained by analytic continuation of f−1 along the
curve t 7→ ψt(w), which is entirely contained in V . Hence it follows that zt ∈ D for
all t, as desired.

Away from the critical points of f , the homeomorphism ϕ can be written as a
composition of ψ with an inverse branch of f−1. Hence, if ψ is quasiconformal resp.
conformal, then ϕ is also (with the same quasiconstant).

Claim (b) follows from the Hölder property of quasiconformal mappings (see e.g.
[Ahl06, Theorem 2 in Chapter III]). Indeed, we have |w|1/K/C ≤ |ϕ(w)| ≤ C · |w|K
for a suitable constant C and all sufficiently large w, and similarly for ψ. To use this
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in the formula for the order of g, let us write z = ϕ(w). We have

log+ log+ |g(z)|
log |z| =

log+ log+ |ψ(f(w))|
log |ϕ(w)| ≤ log+ log+ C · |f(w)|K

log |w|1/K

C

= K · O(1) + log+ log+ |f(w)|
O(1) + log |w| ,

and hence ρ(g) ≤ Kρ(f). The opposite inequality follows on reversing the roles of f
and g. Item (c) is immediate from the same computation.

The final claim follows from (a) and Observation 1.10. �

Maps with polynomial Schwarzian derivative. The investigations of F. and
R. Nevanlinna concerning the inverse problem of value-distribution theory involved

a study [Nev29, Nev32] of those transcendental meromorphic functions f : C → Ĉ

whose Schwarzian derivative Sf =
(
f ′′

f ′

)′

− 1
2

(
f ′′

f ′

)2

is a polynomial. They character-

ized these maps as the meromorphic functions with finitely many “logarithmic ends”,
or logarithmic singularities: that is, f is a map of finite type, all singular values of f
are asymptotic (rather than critical) values, and furthermore for every a ∈ S(f) and
every sufficiently small disc D ∋ a, the number of connected components of f−1(D)
that are not mapped homeomorphically by f is finite. Such a component is called a
“logarithmic tract” and corresponds to a unique “logarithmic singularity” (see [BE95]
for more details concerning the classification of inverse function singularities).

For entire functions, the condition on Sf reduces to the requirement that f has

polynomial nonlinearity Nf =
f ′′

f ′
.

Slightly more generally, Elfving [Elf34] allowed finitely many critical points in
addition to the finitely many logarithmic singularities, to obtain the class of tran-
scendental meromorphic functions f : Ĉ → Ĉ with rational Schwarzian derivative.
(Compare also [Eps02, Lan15].) The finite poles of Sf are precisely the critical points
of f ; in fact,

Sf (ζ) =
m

(z − ζ)2
+O

(
1

z − ζ

)

near a point ζ where degζ f = m. The corresponding entire functions have rational
nonlinearity, with

Nf(ζ) =
m

z − ζ
+O (1)

near such a point ζ .
A calculation of asymptotics from the defining differential equations (see pp. 298–

303 of [Nev53], and pp. 391–393 of [Hil97]) allows one to determine the order of these
functions explicitly in terms of the degree of the Schwarzian at ∞. The latter, in
turn, can be expressed in terms of the number of logarithmic singularities of f :

2.4. Proposition. (Order of maps with rational Schwarzian) Let f : C → Ĉ be
a transcendental meromorphic function with rational Schwarzian derivative. Then

ρ(f) =
2+deg

∞
Sf

2
= ℓ

2
, where ℓ is the number of logarithmic singularities of f . In

particular, if f is entire with rational nonlinearity, then ρ(f) = 1 + deg∞Nf .

2.5. Corollary. (Invariance of order for maps with rational Schwarzian) Let

f : C → Ĉ be a transcendental meromorphic function with rational Schwarzian de-
rivative. Then ρ(f) = ρ(g) for any topologically equivalent map g.
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Proof. Clearly the numbers of logarithmic singularities over infinity, logarithmic
singularities over finite asymptotic values, and of critical points are preserved under
topological equivalence. In particular, the function g also has rational Schwarzian
derivative, and hence ρ(f) = ρ(g) by Proposition 2.4. �

3. Poincaré functions: Non-invariance of order in B

Let h : C → C be an entire function, and let ζ ∈ C be a repelling fixed point of
h. That is, h(ζ) = ζ and |λ| > 1, where λ = h′(ζ) is the associated multiplier. Then
there exists a unique (up to restriction) conformal map f , defined near 0, such that
f(0) = ζ , f ′(0) = 1 and

(3.1) f(λz) = h(f(z)).

(See e.g. [Bea91, Theorem 6.3.2].) Using (3.1), we can extend f to an entire function
C → C satisfying (3.1) for all z ∈ C.

3.1. Definition. (Poincaré function) The linearizing semiconjugacy f : C → C

as above is called the Poincaré function of f at ζ .

If h is a polynomial of degree D, then it is easy to verify that f has finite order

(3.2) ρ(f) =
logD

log |λ|
(see [ES90, Formula (4)]). Moreover, the singular set S(f) coincides with the post-

critical set P(h) =
⋃∞
n=1 h

n(C(h)) of h [MP12, Proposition 3.2]2. In particular, f has
finite type if and only if h is postcritically finite, and f belongs to the Eremenko–
Lyubich class if and only if P(h) is bounded, which is equivalent to J(h) being
connected. Further function-theoretic properties of Poincaré functions have been
investigated by Drasin and Okuyama [DO08].

To prove Theorem 1.3, we observe that a conjugacy between polynomials (and,
in fact, entire functions) will result in the topological equivalence of their linearizers.

3.2. Proposition. (Conjugacy implies equivalence of Poincaré functions) Sup-
pose that h1 and h2 are non-constant, non-linear entire functions, and that h1 and h2
are topologically conjugate via a homeomorphism ψ : C → C; that is, ψ◦h1 = h2◦ψ.
Let x1 be a repelling fixed point of h1, set x2 ..= ψ(x1), and let f1, f2 : C → C be
the corresponding Poincaré functions of h1 and h2. Then there is a homeomorphism
ϕ : C → C such that ψ ◦ f1 = f2 ◦ϕ. If ψ is quasiconformal, then ϕ is also quasicon-
formal.

Proof. Let η be the branch of f−1
2 that takes x2 to 0. We first define ϕ(z),

provided z is not a critical point of h1. To do so, let α be a curve connecting 0 and z
and not passing through any critical point of f1. Then ϕ(z) is obtained by analytic
continuation of η along the curve ψ ◦ f1 ◦ α.

The fact that this analytic continuation is defined, and that it is independent of
the curve α, can be seen as follows. Let β1 be the concatenation of α with the reverse

2We remark that, in the proof of part (ii) of [MP12, Proposition 3.2], an equality is stated for
the singular set S(h◦ f) (using our notation above) that does not appear justified in the case where
h is transcendental entire. However, this equality is not, in fact, used later in the proof, so that the
proposition remains correct as stated. (Also note that, both in our paper and in [MP12], the result
is usually applied only when h is a polynomial.)
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of a second curve α̂ also connecting 0 and z; then β1 is a closed curve beginning and
ending at 0. We must show that analytic continuation of η along γ ..= ψ ◦ f1 ◦ β1 is
possible and leads to η rather than some other branch of f−1

2 .
In other words, we must show that there is a curve β2, beginning and ending at

0 and not passing through any critical points of f2, such that f2 ◦ β2 = γ. To do so,
let n be sufficiently large, and consider the curve

γn ..= ψ ◦ f1 ◦ λ−n1 ◦ β1,
where λ1 denotes (multiplication by) the multiplier of h1 at x1. For sufficiently large
n, the curve γn is contained in a linearizing neighborhood of h2 around x2, so we can
set βn2

..= η ◦ γn; this is a closed curve beginning and ending at 0. Set

β2 ..= λn2 ◦ βn2 ,
where λ2 is the multiplier of h2 at x2. Then f2 ◦ β2 = hn2 ◦ γn = γ. Furthermore,
since β1 does not contain any critical points of f1, and ψ is a topological conjugacy
(and hence sends critical points of h1 to critical points of h2), the curve γn does not
contain any critical points of hn2 . Hence β2 does not contain any critical points of f2,
as claimed.

This defines ϕ with the desired property on the complement of the set of critical
points of f1. It is easy to see (e.g. by applying the same construction, but reversing
the roles of f1 and f2) that ϕ is a homeomorphism between the complement of the
critical points of f1 and the complement of the critical points of f2. Since both sets are
discrete, it follows that ϕ extends to a homeomorphism ϕ : C → C. (Alternatively,
it is also easy to check directly that ϕ extends continuously to every critical point of
f1.)

If ψ is quasiconformal, then clearly ϕ is quasiconformal (as it is defined as a
composition of locally quasiconformal maps). In this case (which is the one we are
mainly interested in), there is an alternative and shorter proof of the proposition.
Indeed, we can obtain the homeomorphism ϕ by solving the Beltrami equation for
the pullback f ∗

1µψ of the complex dilatation of ψ. Since µψ is invariant under h1, the
pullback f ∗

1µψ is invariant under λ1. It follows that ϕ conjugates λ1 to a linear map,
and hence that g ..= ψ ◦ f1 ◦ ϕ−1 semiconjugates h2 to this linear map. Uniqueness
of the Poincaré function implies g = f2. �

Proposition 3.2 implies Theorem 1.3, in the following stronger form:

3.3. Corollary. (Non-invariance of order in class B) There exist two functions
f, g ∈ B such that f and g are quasiconformally equivalent, but ρ(f) 6= ρ(g).

Proof. Consider the family of quadratic polynomials

pa : z 7→ az + z2,

with 0 < |2 − a| < 1. Then pa has a repelling fixed point of multiplier a at 0, and
an attracting fixed point of multiplier 2 − a at 1 − a. It is well-known that any
two elements of this family are quasiconformally conjugate; see Proposition 23 on
page 135 of [Ahl06].

Let fa be the Poincaré function for pa at 0, and consider two polynomials in this
family whose multipliers have different moduli; for example f ..= f3/2 and g ..= f4/3.
By Proposition 3.2, f and g are quasiconformally equivalent, but ρ(f) 6= ρ(g) by
(3.2). �
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4. The area property

The area property implies invariance of order. The Teichmüller–Wittich
Theorem states that, if ϕ : C → C is quasiconformal and

lim
R→∞

ˆ

|z|>R

∣∣∣∣
µϕ(z)

z2

∣∣∣∣ dx dy = 0

then |ϕ(z)| ∼ a · |z| for some a > 0. (Recall that µϕ is the complex dilatation of ϕ.)
Belinski and Lehto later also showed that argϕ(z)− arg z has a limit under the

same assumptions, proving that ϕ is in fact asymptotically conformal at infinity;
i.e. ϕ(z) ∼ az for some a ∈ C. This is the Teichmüller–Wittich–Belinski–Lehto
Theorem (see [LV65, Chapter V, §6]), sometimes also known as the Teichmüller–
Belinski Theorem.

The Teichmüller–Wittich Theorem almost immediately leads to the proof of The-
orem 1.4, which we shall now state somewhat more generally. In particular, we note
the fact that the area property itself is preserved under suitable quasiconformal equiv-
alence.

4.1. Proposition. (Area property, invariance of order and qc equivalence) Sup-
pose that the entire functions f and g are quasiconformally equivalent, with wit-
nessing homeomorphisms ϕ and ψ such that the dilatation of ψ is supported on a
compact subset K ⊂ C \ S(f). If f has the area property, then ρ(f) = ρ(g), and g
also has the area property. In particular, if f belongs to the class S and has the area
property, then ρ(f) = ρ(g) for every function g that is topologically equivalent to f .

Proof. Since g ◦ ϕ = ψ ◦ f , and f and g are holomorphic, the dilatation of ϕ
is supported on f−1(K). By the area property, this set has finite cylindrical area.
Hence the Teichmüller–Wittich Theorem and Proposition 2.3(c) imply that indeed
ρ(f) = ρ(g).

If furthermore f ∈ S, then by Observation 1.10 there is a quasiconformal home-
omorphism ψ̃ that is isotopic to ψ relative S(f) and whose dilatation is supported
away from the singular values. According to Proposition 2.3(a), there is ϕ̃ such that

ψ̃ and ϕ̃ are witnessing homeomorphisms for the quasiconformal equivalence of f and
g. So ρ(f) = ρ(g) by the first part of the current proposition, as claimed.

It remains to show that the map g also has the area property. This follows from
a geometric fact concerning quasiconformal mappings, which we state separately as
Proposition 4.2 below for future reference. �

4.2. Proposition. (Quasiconformal mappings and the area property) Suppose
that ϕ is a quasiconformal mapping, and that the dilatation of ϕ is supported on a
closed set A such that A \ D has finite cylindrical area. Then ϕ(A) \ D) also has
finite cylindrical area.

Proof. This claim is related to the area distortion problem for quasiconformal
mappings, which was solved completely by Astala [Ast94]. The estimates we require
are essentially due to Gehring and Reich [GR66]. Instead of proving our claim directly
using these methods, we shall formally derive it from the following result stated
in Astala’s article [Ast94, Lemma 3.3]. For every K, there is a constant C with
the following property. If f : D → D is K-quasiconformal with f(0) = 0 and the
dilatation of f is supported on a closed subset E ⊂ D, then area(f(E)) ≤ C ·area(E).



584 Adam Epstein and Lasse Rempe-Gillen

To prove our claim, let Ak, for k ≥ 0, denote the intersection of A with the
annulus {2k < |z| < 2k+1}, and set λk ..= areacyl(Ak). By assumption,

∞∑

k=0

λk <∞.

Now consider Ãk ..= ϕ(Ak) and its cylindrical area λ̃k. We must show that the

sequence λ̃k is also summable.
Note that the conclusion of the claim does not change under post-composition of

ϕ by affine functions. Hence we can assume that ϕ(0) = 0, and (by the Teichmüller–
Wittich–Belinski–Lehto Theorem) that ϕ(z) ∼ z as z → ∞.

For each k ≥ 0, define a map ϕk by

ϕk(z) ..=
ϕ(2k+1z)

2k+1
.

Also let ψk be a Riemann map for ϕk(D); i.e., let ψk : ϕk(D) → D be a conformal
isomorphism with ψk(0) = 0 and ψ′

k(0) > 0. Since ϕ(z) ∼ z as z → ∞, we see that
ϕk converges uniformly to the identity. We define a quasiconformal map fk : D → D

by
fk ..= ψk ◦ ϕk.

Set Ek ..= {z ∈ D : 2k+1z ∈ A}; i.e. Ek is the support of the dilatation of fk.
Since cylindrical area is invariant under linear maps, we have

area(Ek) ≍
1

22(k+1)
+

k∑

j=0

λj
22(k−j)

(for a constant independent of k). For the same reason, we have

λ̃k ≍ area(ϕk+1(Ak/2
k+2)), and hence λ̃k ≍ area(fk+1(Ak/2

k+2))

by the Koebe Distortion Theorem. (Observe that Ak/2
k+2 is contained in the disc

of radius 1/2 around the origin, and hence ϕk+1(Ak/2
k+2) is well inside ϕk+1(D). So

we can indeed apply the Distortion Theorem to the map ψ−1
k+1 on fk+1(Ak/2

k+2).) As

Ak/2
k+2 ⊂ Ek+1 by definition, it follows that

λ̃k ≤ const · area(fk+1(Ek+1)).

By Astala’s result stated above, we thus see that

λ̃k ≤ const ·


 1

22(k+2)
+

k+1∑

j=0

λj
22(k+1−j)


 .

Hence

∞∑

k=0

λ̃k ≤ const ·


1 +

∞∑

k=0

k+1∑

j=0

λj
22(k+1−j)


 ≤ const ·


1 +

∞∑

j=0

λj

∞∑

m=0

1

4m


 <∞. �

Remark. Astala states his lemma for closed subsets of the disc, but appears to
prove it only when the set E is compact. Since his estimates depend only on K, the
version for closed subsets can be reduced to the compact one. Alternatively, for each
k we can solve the Beltrami equation to obtain a map σk whose dilatation agrees
with that of ϕ for |z| < 2k and is zero otherwise. It is easy to see that σk → ϕ (since
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the corresponding dilatations converge almost everywhere), and area(σk(Aj)) → λ̃j
as k → ∞ for all j. We can then easily obtain the desired conclusion by applying
the proof as above, replacing ϕ by σk in the definition of fk; then the dilatation of fk
has compact support. Using the fact that all estimates are uniform, we easily obtain
the desired conclusion.

Some equivalent formulations of the area property. We now discuss some
formulations of the area property that are easy to verify. We begin with an infinites-
imal version:

4.3. Proposition (Infinitesimal area property). A transcendental entire func-
tion f has the area property if and only if

(4.1)
∑

z∈f−1(w)\D

1

|z|2|f ′(z)|2 <∞

for all w ∈ C \ S(f). Furthermore, if (4.1) holds for some w0 ∈ C \ S(f), then it
also holds for all w that belong to the same component of C \ S(f) as w0.

Proof. Let w ∈ S(f), and let D = Dw ⊂ C \ S(f) be a closed topological disc

whose interior contains w. Let D̃ ⊂ C \ S(f) be a slightly larger simply-connected
domain with D ⊂ D̃.

Let z ∈ f−1(w) \D, and let Vz be the component of f−1(D) containing z. If Ṽ is

the component of f−1(D̃) containing Vz, then f : Ṽ → D̃ is a conformal isomorphism,
and if Dw was chosen sufficiently small, then V does not intersect the disc of radius
1/2 around the origin. It follows that

(4.2) min
ζ∈V

1

|ζ |2|f ′(ζ)|2 ≍ areacyl(Vz) ≍ max
ζ∈V

1

|ζ |2|f ′(ζ)|2

by the Koebe Distortion Theorem. In particular, the area property implies (4.1).
For the “if” direction, suppose that (4.1) holds and K ⊂ S(f) is an arbitrary

compact set. Then we can cover K by finitely many discs Dw1
, . . . , Dwk

as above,
and it follows that areacyl(f

−1(K) \D) <∞. Furthermore, (4.2) shows that (4.1) is
an open and closed property, and hence the final claim follows. �

The preceding proof relies crucially on the Koebe Distortion Theorem. It is
well-known that area distortion theorems hold also for branched covering maps of
bounded degree. This allows us to deduce that the area property will hold not only
near regular values (as in Definition 1.5), but also near non-asymptotic critical values
for which the degree of the critical points is bounded. In particular, this justifies the
remark after Conjecture 1.6.

4.4. Lemma. (Bounded criticality) Let f be a transcendental entire function.
Let s be an isolated point of S(f) that is not an asymptotic value and such that the
local degree of f near any preimage of s is uniformly bounded by a constant ∆. Let
D be a round disc around s such that D ∩ S(f) = {s}. If the condition (4.1) holds
for all z ∈ D∗ ..= D \ {s}, then f−1(D) \D has finite cylindrical area.

Proof. Let D̃ be a slightly larger round disc around D whose closure still does
not intersect the singular set except in s. By postcomposing with an affine map, we
may assume for convenience that D̃ = D.
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Let Ṽ be a component of f−1(D̃) that does not intersect D. The assumptions

imply that Ṽ is simply-connected and contains a unique preimage c of s, of some
degree d ∈ {1, . . . ,∆}. Let ϕ : D → Ṽ be a conformal isomorphism with ϕ(0) = c.
It follows that f(ϕ(z)) = ϑ · zd for some ϑ ∈ C with |ϑ| = 1 and all z ∈ D; by
precomposing ϕ with a rotation we can assume that ϑ = 1.

Let r < 1 denote the radius of D, so that D = Br(0) (where we use the standard
notation for Euclidean balls). Hence Vc ..= ϕ(Br1/d(0)) is the component of f−1(D)
containing c. We may assume without loss of generality that r > 1/2. Define
z ..= ϕ(2−1/d) ∈ Vc; then f(z) = 1/2. We have |f ′(z)| · |ϕ′(2−1/d)| = d · 2−(d−1)/d by
the functional equation. By the Koebe Distortion Theorem, it follows that

areacyl(Vc) = areacyl(ϕ(Br1/d)) ≍
|ϕ′(2−1/d)|
|ϕ(2−1/d)| =

d

2
d−1

d · |z| · |f ′(z)|
≍ 1

|z| · |f ′(z)| .

(Here the constants depend on ∆ and r, but not otherwise on f . In particular, they

are independent of the choice of Ṽ .)
So the total logarithmic area of all of these preimages Vc is bounded in terms of

the sum (4.1) for w = 1/2. It remains to show that the part of f−1(D) \ D that

is contained in preimage components of D̃ that do intersect the unit disc has finite
area. But each such component is bounded, and hence has finite area. Furthermore,
by the local mapping properties of holomorphic functions, the number of components
of f−1(D̃) is locally finite, and hence there are only finitely many components that
intersect D. The claim follows. �

There are various other ways to reformulate the area property. For example,
since f is a covering map on every component of f−1(C \ S(f)), the derivative f ′(z)
can be expressed in terms of the hyperbolic metric of f−1(C \S(f)). The hyperbolic
metric of simply-connected domains is particularly easy to estimate in terms of the
distance to the boundary, and hence we obtain the following.

4.5. Proposition. (Distances and the area property) Let f be a transcendental
entire function, and let w ∈ C \ S(f). Let K ⊂ C \ {w} be a closed connected set
with S(f) ⊂ K and #K > 1. Then (4.1) holds if and only if

∑

z∈f−1(w)\D

dist(z, f−1(K))2

|z|2 <∞.

Proof. Let z ∈ f−1(w), let W be the component of C \K containing w and let
V be the component of f−1(W ) containing z. Then f : V → W is a holomorphic
covering map. If ρV and ρW denote the densities of the hyperbolic metrics of V and
W , we thus have

(4.3) |f ′(z)| = ρV (z)/ρW (w).

The domain W is either simply-connected or conformally equivalent to the punc-
tured unit disc (if K is bounded and W is the unbounded connected component of
C \K). The only covering spaces of the punctured disc are given by the universal
covering (via the exponential map) and the punctured disc (via z 7→ zd, d ≥ 1).
The latter case cannot occur in our setting, since f is transcendental; so we see
that V is simply-connected. The claim now follows from (4.3) and the standard
estimate (1.3). �
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A return to Poincaré functions. We now study the area property for Poincaré
functions, proving Theorem 1.7.

4.6. Theorem. (Area property for linearizers) Let p be a polynomial of degree
at least 2 with a repelling fixed point at 0, and let f : C → C be the Poincaré function
for this fixed point. Let w ∈ C \P(p) = C \S(f). Then (4.1) holds for w if and only
if w does not belong to a Siegel disc of p.

Proof. It suffices to prove the theorem for w ∈ F (p). Indeed, if w ∈ J(p), then we
can let w′ be a point in the basin of infinity of p that belongs to the same component
of C \ S(f) as w. By Proposition 4.3, property (4.1) holds for w′ if and only if it
holds for w.

Let η < 1 be small enough so that f is injective on a neighbourhood of the closed
disc of radius η around 0. We define

A ..= {z ∈ C : η/|λ| < |z| < η},
where λ = p′(0). For simplicity, we may assume that η is chosen such that f(∂A)
does not intersect the backwards orbit

⋃∞
n=0 p

−n(w).

Suppose that z ∈ f−1(w) \D, and let n ≥ 1 be minimal such that |λ|n ≥ |z|/η.
Set z̃ ..= z/λn and w̃ ..= f(z̃). By the functional relation f ◦ λ = p ◦ f , we have

pn(f(z̃)) = f(λnz̃) = f(z) = w and

|z| · |f ′(z)| = |z| · |(p
n)′(w̃)| · |f ′(z̃)|

λn
= |z̃| · |f ′(z̃)| · |(pn)′(w̃)|.

In particular, by our assumption on η, we have z̃ ∈ A, and hence the numbers |z̃| and
|f ′(z̃)| are uniformly bounded away from 0 and ∞. Furthermore, for every n ≥ 1, the
correspondence between z and w̃ defines a bijection between the points of f−1(w) of
modulus between |λn−1| and |λn| and the intersection p−n(w)∩ f(A). So, for N ≥ 1,

(4.4)
∑

z∈f−1(w),1≤|z|≤λN

1

|z|2|f ′(z)|2 ≍
N∑

n=1

∑

w̃∈f(A)∩p−n(w)

1

|(pn)′(w̃)|2 .

If w does not belong to a Siegel disc, then it lies in the basin of infinity of p, an
atttracting or parabolic basin, or a Fatou component that is not periodic. In each
case, we can find a small disc D around w such that p−n(D) ∩D = ∅ for all n ≥ 1.
So the sum

∞∑

n=0

∑

w̃∈p−n(w)

1

(pn)♯(w̃)2

(the Poincaré series at exponent 2) is comparable to the spherical area of the back-
ward orbit of the disc D under p, and hence finite. (Here we use (pn)♯ to denote
the derivative of pn as measured with respect to the spherical metric, both in the
range and in the domain.) Since the spherical metric and the Euclidean metric are
comparable on the bounded set f(A), we see from (4.4) that f satisfies (4.1).

On the other hand, suppose that w belongs to a Siegel disc U of p of period n.
Since pn|U is conjugate to an irrational rotation, there is a sequence nk such that
pnk |U → id.

Set wk ..= (pnk |U)−1(w); then wk → w. Fix ζ0 ∈ f−1(w) and let D be a neigh-
bourhood of ζ0 on which f is injective. By disregarding finitely many entries, we
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can ensure that wk ∈ f(D) for all k ≥ 1. Let us define ζk ..= (f |D)−1(wk) and
zk ..= λnk · ζk; we may assume that |zk| ≥ 1 for all k. Then f(zk) = w and

zk · f ′(zk) = ζk · f ′(ζk) · (pnk)′(wk) → ζ0 · f ′(ζ0).

Thus
∑

z∈f−1(w)\D

1

|z|2|f ′(z)|2 ≥
∞∑

k=1

1

|zk|2|f ′(zk)|2
= ∞,

as required. �

We conclude the section by including a counterexample to Conjecture 1.6.

4.7. Theorem. (Poincaré functions of postcritically finite hyperbolic polynomi-
als) Let p be a polynomial such that every critical point of p eventually maps to a
superattracting cycle. Let z0 be a fixed point of p that does not belong to the bound-
ary of an invariant Fatou component, and let f ∈ S be the corresponding Poincaré
function. Then f has no asymptotic values, but nonetheless satisfies (1.2).

Remark. As an example, one can take p(z) = z2− 1 and z0 = (1+
√
5)/2. This

Poincaré function was previously considered in [Mih12, Appendix B] as an example
of a function f ∈ S having no asymptotic values but critical points of arbitrarily high
order.

Proof. By [MP12, Corollary 4.4], the function f has no asymptotic values. Since
the filled Julia set K := K(p) has non-empty interior, it has positive area. Now
f−1(K) is completely invariant under multiplication by the multiplier λ of z0, by the
functional equation (3.1). Hence, for all n ≥ 1,

ˆ

z∈C:1≤|z|≤|λ|n and f(z)∈K

dx dy

|z|2 = n ·
ˆ

z∈C:1≤|z|≤|λ| and f(z)∈K

dx dy

|z|2 =.. ε · n,

with ε > 0. Hence (1.2) holds, as required. �

5. A counterexample to the area property near infinity

Proof of Theorem 1.8. We shall now show that there exists an entire func-
tion f ∈ B that violates the area property near infinity, using a construction from
[Rem14, Section 7]. As indicated in the introduction, and stated in [Rem14] (follow-
ing Theorem 1.11 in that paper), it can be shown that the exact function considered
in that paper, which is a hyperbolic entire function with full hyperbolic dimension,
also violates the area property. However, it shall be slightly more convenient for us
to use the same construction, but with different parameters. We discuss the original
example following the completion of the proof.

As in [Rem14], the proof proceeds in two steps:

• First, a simply-connected domain V is constructed that does not intersect its
2πi-translates, along with a conformal isomorphism

G : V → H ..= {x+ iy : x > −14 log+ |y|},
where again log+ |y| = max(0, log |y|). The tract is chosen such that the (not
globally defined) function g : exp(V ) → C; g(exp(z)) = exp(G(z)) does not
have the area property near infinity.
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• By [Rem14, Theorem 1.7], the function g can be approximated by a transcen-
dental entire function f ∈ B with |f(z) − g(z)| = O(1/|z|) for z ∈ exp(V ),
and |f(z)| = O(1/|z|) elsewhere. It can then be checked that f also does not
have the area property near infinity.

For the first step, we shall use [Rem14, Lemma 7.2 and Theorem 7.4], which
imply that the domain V and the function G can be chosen such that the following
properties hold.

(1) V ( {a+ ib : a > 1 and |b| < π};
(2) there are C1 > 1 and Q ≥ 1 such that Re z/C1 ≤ log+ |G(z)| ≤ C1Re z for

all z ∈ V with Re z ≥ Q.
(3) there exist constants C2 > 0, k0 ≥ Q/2π and a collection of points (ζk)k≥k0 in

V such that Re ζk = 2πk, dist(ζk, ∂V ) ≥ C2 and ReG(ζk) = 1 for all k ≥ k0.

We remark that V consists of a central strip of fixed width, to which a sequence
of “side chambers” are attached; see [Rem14, Figure 1]. These are equally spaced
in a 2π-periodic manner, and the k-th chamber is connected to the central strip
by a small opening of size εk. The points ζk are precisely the mid-points of these
chambers, and the opening size εk is chosen such that ReG(ζk) = 1. This ensures
property (3). Property (2) is a simple consequence of the description of the tract and
classical geometric function theory. For details, we refer to [Rem14, Section 7].

Let us verify that, when G is chosen with properties (1) to (3), we have

(5.1)
∑

m∈Z

|(G−1)′(1 + 2πim)|2 = ∞.

As in Proposition 4.3, the formula (5.1) implies via Koebe’s Distortion Theorem that
g does not have the area property near infinity. (By this, we mean that g−1(K) has
infinite cylindrical area for any compact set K ⊂ C \D with nonempty interior.)

Claim 1. There is a constant C3 > 1 such that k/C3 ≤ dist(G(ζk), ∂H) ≤ C3 · k
for all k ≥ k0.

Proof. By (3) above, we have Re ζk = 2πk ≥ Q, and hence log+ |G(z)| ≤ 2πC1k
by (2). On the other hand, dist(ζ, ∂H) ≤ 1 + 14 log+ Im ζ ≤ 15 log+ |ζ | whenever
ζ ∈ H with Re ζ = 1. This implies the upper bound; the lower bound follows
analogously. △

Since G is a conformal isomorphism, we see from the standard estimate (1.3),
together with Claim 1 and (3), that

(5.2) |G′(ζk)| =
ρV (ζk)

ρH(G(ζk))
≤ 4 · dist(G(ζk), ∂H)

dist(ζk, ∂V )
≤ const ·k.

Now, for k ≥ k0, consider the set Mk
..= {m ∈ N : |2πm− ImG(ζk)| ≤ k/(5C3)}.

By (5.2) and Koebe’s Distortion Theorem, we have

|(G−1)′(1 + 2πim) ≥ const

k

when m ∈ Mk. Also note that

#Mk ≥
⌊

k

5πC3

⌋
≥ const ·k

for all k ≥ k1 ..= max(⌈5πC3⌉, k0) (for a constant independent of k).
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Claim 2. The sets Mk are pairwise disjoint.

Proof. Consider the vertical line segment S in H from G(ζk) − ki/(5C3) to
G(ζk) + ki/(5C3). By Claim 1, we have

dist(ζ, ∂H) ≥ 4k

5C3

for all ζ ∈ S. By the standard estimate (1.3), we see that the hyperbolic distance
in H between the midpoint G(ζk) and any point of S is at most 1/2. Recall that
1 + 2πim ∈ S for all m ∈ Mk, by definition.

On the other hand, the hyperbolic distance in V between ζk and ζk′, with k 6= k′,
is strictly larger than 1. Indeed, the hyperbolic distance between ζk and ζk′ in the
strip {a+ ib : |a| < π} ⊃ V is strictly larger than one by direct computation, and the
claim follows from the comparison principle of hyperbolic geometry. △

Combining all the estimates, we see that

∑

m∈Z

|(G−1)′(1 + 2πim)|2 ≥
∞∑

k=k1

∑

m∈Mk

|(G−1)′(1 + 2πim)|2

≥ const ·
∞∑

k=k1

#Mk ·
1

k2
≥ const ·

∞∑

k=k1

1

k
= ∞.

This establishes (5.1).
Now let f ∈ B be the entire function satisfying |f(z) − g(z)| = O(1/|z|) for

z ∈ exp(V ), whose existence is guaranteed by [Rem14, Theorem 1.7]. It is not difficult
to verify, using the above information about the construction, that f does not have
the area property near infinity. Instead, we shall derive this fact using quasiconformal
equivalence. By [Rem14, Theorem 1.8], there is R > 0 and a quasiconformal map
ϕ : C → C such that g(ϕ(z)) = f(z) whenever |f(z)| > R. Moreover, according to
[Rem14, Theorem 6.3], the map ϕ can be chosen such that ϕ(z) = z on f−1(D),
where D is a simply-connected neighbourhood of S(f).

In particular, the dilatation of ϕ is supported on the set

{z ∈ C : |f(z)| ≤ R and f(z) /∈ D}.
If f had the area property near ∞, then this set would have finite cylindrical area,
and hence ϕ would preserve the property of having finite cylindrical area by Propo-
sition 4.2. But then g also has the area property (due to the functional relation
g(ϕ(z)) = f(z)), which is a contradiction. �

Remark. The function G constructed in [Rem14, Section 7] has the same prop-
erties as above, except that, in (3), the points ζk satisfy ReG(ζk) ≍ k, rather than
ReG(ζk) = 1. (This is what enables the construction of a suitable iterated function
system, which gives rise to the desired hyperbolic sets.) Moreover, this is not required
to hold for all sufficiently large k (although that can be arranged), but only for those
satisfying Ki < 2πk+R0 < 3Ki for some i, where (Ki) is a (possibly rapidly) increas-
ing sequence and R0 is a universal constant; see [Rem14, Corollary 7.5]. Without
loss of generality, let us assume that K0 ≥ max(2π,R0).

To see that this function also satisfies (5.1), and hence violates the area property

near infinity, define a sequence (ζ̃k) by ζ̃k := G−1(1 + i · ImG(ζk)). By (2), we see
that log+ ImG(ζk) ≥ const ·k, and hence the hyperbolic distance (in H) between
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ζk and ζ̃k is bounded from above, independently of k. Thus dist(ζ̃k, ∂V ) ≥ const,
independently of k, and we can apply the same argument as above, replacing ζk by
ζ̃k. We conclude that indeed

∑

m∈Z

|(G−1)′(1 + 2πim)|2 ≥
∑

i≥0

⌈(3Ki−R0)/2π⌉−1∑

k=⌊(Ki−R0)/2π⌋+1

const

k

≥ const ·
∑

i≥0

⌊
2Ki

2π

⌋
· 1

3Ki −R0

≥ const ·
∑

i≥0

Ki

2Ki

= ∞.

6. Quadratic differentials

In this section, we discuss a matter that is closely connected to the area prop-
erty, namely the behaviour of quadratic differentials under the pushforward by an
entire function. Recall that a quadratic differential is a tensor of the form q(z) dz2

(in local coordinates). If the local coefficient q can always be chosen to be measur-
able, holomorphic or meromorphic, then the differential itself is called measurable,
holomorphic or meromorphic. A pole of a meromorphic quadratic differential is then
a point near which the local coefficient must have a pole; observe that locally such
a differential can always be written in the form dz2/zd, where d is the order of the
pole. Any quadratic differential gives rise to an associated area form |q(z)| |dz2|; the
total area

ˆ

|q(z)| |dz2|
is referred to as the (total) mass of the differential. By an elementary calculation, the
mass of a meromorphic quadratic differential is finite near a simple pole, but infinite
near a pole of higher order.

Quadratic differentials play a key role in complex dynamics and complex analysis.
Of particular interest is the pushforward operator: If f : U → V is an analytic
function and q = q(z) dz2 is a measurable (in the following usually meromorphic or
even holomorphic) quadratic differential, then the pushforward of q is the formal sum

f∗q ..=


 ∑

f(z)=w

q(z)

f ′(z)2


 dw2.

Of course, in general this sum may or may not converge; if it converges absolutely,
we shall say that q is f -summable.

If q is a meromorphic quadratic differential on the Riemann sphere with at most
finite poles, then q has finite total mass. Since the pushforward under a holomorphic
map can never increase mass (and may in fact decrease it due to possible cancella-
tions), it follows that such a differential is always summable. On the other hand, for
quadratic differentials with at worst double poles the total mass is infinite, so this
argument cannot be used to show that the differential is f -summable. (Quadratic
differentials with double poles can play an important role in holomorphic dynamics;
for example, they appear when bounding the number of non-repelling cycles, see
[Eps99].) However, if f is entire and has the area property, then the pushforward
converges absolutely at least for w /∈ S(f). If furthermore f ∈ B, then we can say
more about the nature of the singularity of this pushforward near ∞. This is a
consequence of the following observation.



592 Adam Epstein and Lasse Rempe-Gillen

6.1. Proposition. (Quadratic differentials and logarithmic singularities) Let
V ( C be an unbounded simply-connected domain, and let f : V → C \D =.. W be
a holomorphic universal covering map. Suppose furthermore that

(6.1)
∑

z∈f−1(w)\D

1

|z|2 · |f ′(z)|2 <∞

for all w ∈ W . Let q = q(z) dz2 be a holomorphic quadratic differential on V for
which there is a constant C > 0 such that |q(z)| ≤ C/|z|2 for all sufficiently large
z ∈ V . Then q is f -summable for all w ∈ W and the pushforward f∗q has at most a
double pole at ∞.

Proof. For convenience, we may assume that 0 /∈ V (restricting V to the comple-
ment of a slightly larger disc and reparametrizing, if necessary). This ensures that

we can write q = (ρ(z)/z2) dz2 for all z ∈ V, with ρ(z) ≤ C̃ for a suitable constant
C̃ > 0. The pushforward is then the formal sum

f∗q =


 ∑

z∈f−1(w)

ρ(z)

f ′(z)2z2


 dw2 =.. σ(w) dw2.

By virtue of the area property (6.1) for f , the sum is absolutely convergent for
w ∈ W , so σ is defined and holomorphic on W . (Recall that the sum (6.1) converges
locally uniformly in w due to the Koebe Distortion Theorem.) We must show that

|σ(w)| = o(1/|w|) as w → 0.

To begin, let us perform a logarithmic change of variable in the sense of Eremenko
and Lyubich [EL92] as follows. Let U be a connected component of exp−1(V ). Since
f ◦ exp : U → W is a universal covering map, there is a conformal isomorphism ϕ
from H ..= {a+ ib : a > 0} to U such that f(exp(ϕ(ζ))) = exp(ζ) for all ζ ∈ H.

Let ζ ∈ H with Re ζ > 1, and define ζ̃ ..= 1 + i Im ζ . By Koebe’s Distortion
Theorem, applied to the restriction of ϕ to the disc of radius Re ζ around ζ , we see
that

|ϕ′(ζ)| ≤ 8Re ζ · |ϕ′(ζ̃)|.
Now let w ∈ W with |w| > e, and let ζ0 ∈ exp−1(w). We set w̃ ..= e · w/|w|, so

that |w̃| = e. Differentiating the relation f ◦ exp ◦ϕ = exp, we see that

f ′(z) · z = eζ

ϕ′(ζ)
,

whenever z = eϕ(ζ). Hence

|σ(x)| ≤
∑

z∈f−1(w)

|ρ(z)|
|z|2 · |f ′(z)|2 ≤ C̃

|w|2 ·
∑

m∈Z

|ϕ′(ζ0 + 2πim)|2(6.2)

≤ 8C̃(Re ζ0)
2

|w|2 ·
∑

m∈Z

|ϕ′(1 + (2πm+ Im ζ0)i)|2

=
8C̃(log |w|)2

|w|2 ·
∑

z∈f−1(w̃)

e2

|z|2 · |f ′(z)|2
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≤ const ·(log |w|)
2

|w|2 max
|ω|=e

∑

z∈f−1(ω)

1

|z|2 · |f ′(z)|2 .

The maximum on the right-hand side is finite by (6.1). So indeed

|σ(x)| ≤ const ·(log |w|)
2

|w|2 = o(1/|w|) as w → ∞. �

We can deduce the following global statement.

6.2. Corollary. (Pushforwards of QD under class S maps with the area prop-
erty) Let f ∈ S have the area property, and let q be a meromorphic quadratic differ-

ential on Ĉ, with at most double poles. Then f∗q is also a meromorphic quadratic
differential on Ĉ with at most double poles. More precisely, f∗q

• has at most double poles at ∞, asymptotic values of f , and at the images of
double poles of q;

• has at most simple poles at non-asymptotic critical values of f and at the
images of simple poles of q;

• is holomorphic elsewhere.

Proof. Let us again write ρ(z) = ρ(z)dz
2

z2
, where ρ is meromorphic on Ĉ and

satisfies ρ(z) = O(1) as w → ∞. Then

f∗q =


 ∑

z∈f−1(w)

ρ(z)

f ′(z)2z2


 dw2 =.. σ(w) dw2

is defined and holomorphic by the area property, except possibly at singular values
of f (including ∞) and the images of poles of q. Let E denote this finite exceptional
set; we must investigate the behaviour of σ near a point w0 ∈ E.

By postcomposing with a Möbius transformation, we may assume that w0 = 0
and that E ∩D = {0}. Let V denote the set of all connected components of f−1(D).
For every V ∈ V, denote the pushforward of q under the restriction f |V by σV (w) dw

2.
Then σ is defined and holomorphic on the punctured disc D

∗.

(a) If f : V → D
∗ is a universal covering, then σV has at most a double pole at 0

by Proposition 6.1 (applied to 1/f).
(b) Otherwise, f : V \f−1(0) → D

∗ is a finite-degree covering map, and it follows
that V contains exactly one element z0 of f−1(0), and that f : V → D is a
branched covering map with no critical points except possibly at z0. The local
pushforward of a meromorphic quadratic differential defined near a critical
point is well-understood (and can be verified by a simple computation in local
coordinates); see [Eps99, Formula (4)]. In particular, it has the following
properties.

• The local pushforward of a quadratic differential with at most double
poles under a holomorphic map has at most a double pole; hence σV has
at most a double pole at 0.

• If q has at most a simple pole at z0, then σV has at most a simple pole at
0. (This also follows by considering the mass of q, as mentioned above.)

• If q is holomorphic at z0 and f : V → D is a conformal isomorphism,
then clearly f∗q is holomorphic at 0.
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So we have seen that each σV has at most a double pole at zero. Recall that

σ(w) =
∑

V ∈V

σV (w)

on D
∗, where the sum converges locally uniformly. It follows (e.g. by comparing the

Laurent series of σ(w) with that of the partial sums) that σ also has at most a double
pole at zero. The claim about simple poles follows analogously. �

It is interesting to consider when f∗q acquires at most simple poles also at finite
asymptotic values or at infinity. For example, set f(z) ..= ez and q ..= dz2/z2. We
have

(6.3) f∗q =

∞∑

k=−∞

dw2

w2(logw + 2πik)2
=

−π dw2

4w2 sin2 logw
2i

=
π dw2

w3 − 2w2 + w

(where we used the infinite partial fraction expansion of 1
sin2

.) Hence f∗q indeed has
only a simple pole at ∞. This phenomenon means that the pushforward results in a
massive cancellation of mass near infinity.

More generally, consider the following strengthening of the area property:

(6.4)
∑

z∈f−1(w)\D

1

|z|t|f ′(z)|t <∞

for some t = 2−ε < 2. A simple estimate shows that, for f(z) = exp(z), this property
is satisfied for all t > 1. Furthermore, if f is a Poincaré function for a postcritically
finite polynomial p, then (6.4) holds for some t < 2. Indeed, as in inequality (4.4)
in the proof of Theorem 4.6, we see that the corresponding series is bounded by the
Poincaré series for p with exponent t. This series converges when t > δ(p), where
δ(p) is the critical exponent for the Poincaré series. For postcritically finite maps,
it is known that δ(p) < 2 coincides with the Hausdorff dimension of the Julia set
(compare [Prz99]).

6.3. Theorem. (Simple poles at asymptotic values) Let f ∈ S satisfy (6.4) for
some t < 2, and let q be a meromorphic quadratic differential on the Riemann sphere
with at most double poles. Then f∗q is a meromorphic quadratic differential on the
Riemann sphere with at most double poles at the images of the finite double poles
of q, and at most simple poles elsewhere.

The theorem follows by replacing Proposition 6.1 in the proof of Corollary 6.2
with the following observation.

6.4. Proposition. (Quadratic differentials and logarithmic singularities, II) Sup-
pose that f and q are as in Proposition 6.1, but that f additionally satisfies (6.4) for
some t < 2. Then f∗q has at most a simple pole at 0.

Proof. By a well-known estimate of Eremenko and Lyubich [EL92, Lemma 1],
we have

|z · f ′(z)| ≥ const ·|f(z)| ·
∣∣log |f(z)|

∣∣
for such a universal covering when |f(z)| is sufficiently large. Hence,

∑

z∈f−1(w)\D

1

|z|2|f ′(z)|2 ≤ 1

|w|ε ·
∑

z∈f−1(w)\D

1

|z|2−ε|f ′(z)|2−ε ,
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provided that ε is chosen such that the sum on the right converges. (This is possible
by (6.4).) In particular, if we replace the exponent 2 by the exponent 2 − ε in the
estimate (6.2) in the proof of Proposition 6.1, we obtain

|σ(x)| ≤ O((log |w|)2/|w|2+ε) = o(1/|w|2),
showing that f∗q has at most a simple pole. �

Remark 1. Let f be the Poincaré function of a postcritically finite polynomial
(or rational map) p at a repelling periodic point. Let q = dz2/z2; then q is invariant
under the map λ (multiplication by the multiplier of the repelling cycle). Using the
functional relation (3.1), we see that

p∗f∗q = f∗λ∗q = f∗q,

so f∗q is pushforward invariant under p. (Note that the pushforward considered
in (6.3) is precisely of this type, using f(z) = exp(z) and p(z) = z2.)

We observed in Theorem 6.3 that f∗q has at most a simple pole at infinity (and at
most double poles elsewhere). The set of non-trivial quadratic differentials that are
pushforward invariant under a postcritically finite polynomial or rational map is an
intriguing object. Unless the rational map in question is a Lattès example, pushing
forward a quadratic differential with at most simple poles eventually results in some
cancellation of mass. (This is infinitesimal Thurston contraction [DH93, Lemma 1 on
p. 272]; compare also [Eps99, Lemma 3].) Hence a push-forward invariant quadratic
differential must have at least a double pole somewhere. Some quadratic differen-
tials of this type can be obtained from algebraic expressions between multipliers of
repelling cycles; the above construction yields another set of examples. It seems
interesting to study their properties.

Remark 2. Suppose that f ∈ B satisfies the area property (or its stronger
variation (6.4)). If q is a meromorphic quadratic differential with at most double
pole at ∞, then Propositions 6.1 and 6.4 still imply that f∗q is defined for sufficiently
large values of w and has at most a double (resp. simple) pole at ∞. However, there
is no reason to expect the pushforward to be globally meromorphic.

7. Further comments and questions

Meromorphic functions. We have stated our theorems, for the most part, for
entire rather than meromorphic functions, as it is known classically that invariance
of order can fail in the latter case. However, essentially all our results also apply,
with the same proof, to meromorphic functions. (We remark that the area property
was defined for entire functions, but it extends verbatim to the meromorphic case.)
In particular, Corollary 6.2 and Theorem 6.3 extend to meromorphic functions with
finite singular sets, using exactly the same proof.

An exception is given by Theorem 4.6, concerning Poincaré functions of polyno-
mials. In the proof of this theorem, we used the fact that p has nonempty Fatou set,
but did not otherwise rely on the fact that p is a polynomial. Hence Theorem 4.6
holds also for a Poincaré function f of a transcendental entire function h or of a
rational function h, provided that the Fatou set of h is non-empty. However, in the
case where F (h) = ∅, it is possible for the area property to fail. Indeed, consider
the case where h is a Lattès map; that is, a (postcritically finite) rational function
obtained from a linear toral endomorphism via projection to the Riemann sphere.
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By definition, the linearizer f is an elliptic function, namely the projection from the
torus in question to the sphere. Any doubly-periodic set of positive area has infinite
cylindrical area, since

∑
λ∈Λ\{0} 1/|λ|2 = ∞ for any lattice Λ ⊂ C. Hence f does not

have the area property.
The general answer turns out to depend on the measurable dynamics of the

function h. Indeed, it is well-known that, for a Lattès map, almost every orbit is
dense in the Riemann sphere. As the following result, which extends Theorem 4.6,
shows, this is what causes the failure of the area property.

7.1. Theorem. (Poincaré functions of rational or transcendental entire func-
tions) Suppose that the transcendental meromorphic function f is a Poincaré func-
tion of some entire or rational function h. If F (h) 6= ∅, then f has the area property
if and only if h has no rotation domains. Otherwise, f has the area property if and
only if dist(hn(z),P(h)) → 0 for almost all z ∈ C.

Sketch of proof. By the above remarks, it suffices to consider the case where
F (h) is empty. As in the proof of Theorem 4.6, and as remarked after (6.4), the
area property is equivalent to the question whether the Poincaré series of h con-
verges for the exponent 2 at w /∈ P(h). The fact that this is the case if and only if
dist(hn(z),P(h)) → 0 is surely known, at least for rational functions; for complete-
ness, we sketch a proof below.

If P(h) = C, then there is nothing to prove (since the area property only makes
statements about sets disjoint from the singular set of f , it holds trivially). Other-
wise, let w ∈ C\P(h). By the existence of nice sets (proved by Rivera in the rational
case and Dobbs [Dob11] in the general case), there is a small simply-connected open
set U ⊂ C \P(h) around w, such that hn(∂U)∩ ∂U = ∅ for all n ≥ 1. The pullbacks
of U along first returns to U form an infinite conformal iterated function system
(IFS). It is easy to see that the Poincaré series for f corresponding to exponent 2 will
converge if and only if the sum, over all levels n, of the total area of the sets of level
n in this IFS converges. Here by a “set of level n”, we mean the result of applying
a composition of n of the contractions defining the IFS. In other words, the sets of
level n are precisely the domains of the n-th return map to U .

If dist(hn(z),P(h)) → 0 for almost all z ∈ C, then there is a positive measure set
of points in U that never return to U under iteration. It follows that the areas in ques-
tion decrease geometrically, and hence the Poincaré series converges. On the other
hand, if there is a positive measure set of points with lim sup dist(hn(z),P(h)) 6→ 0,
then by a well-known argument (see e.g. [RVS11, Theorem 3.3]) almost every orbit
is dense. In particular, the level n sets of the IFS have full area in U , and hence the
Poincaré series diverges. �

The area property and measurable dynamics. In several places, our work
suggests close connections between the area property and measurable dynamics. One
such connection concerns the case of Poincaré functions, where we have seen that the
measurable dynamics of the original map (here: the Poincaré series), are reflected
in the value distribution (here: the area property and its generalizations) for the
linearizer. We remark that Eremenko and Sodin [ES90] used this type of connection
to give a new proof of the uniqueness of measures of maximal entropy for rational
functions.



On invariance of order and the area property for finite-type entire functions 597

Perhaps more interestingly, it appears that there are connections between con-
ditions such as the area property and its stronger variant (6.4) and the measurable
dynamics of the transcendental function itself. Indeed, we already saw that the same
construction that leads to a hyperbolic entire function with full hyperbolic dimension
also yields a function for which the area property fails. Furthermore, such connections
are suggested by work of Urbański with several collaborators (see e.g. [UZ03, MU08])
on the existence of conformal and invariant measures, and Hausdorff dimension of
radial Julia sets, for finite-order entire and meromorphic functions.

In particular, in [MU08], a class of hyperbolic meromorphic functions of finite
order is treated that satisfy a strong regularity of growth property, known there as the
balanced condition. In the case of a finite-order entire function f ∈ B, the function
is balanced if and only if

(7.1) |f ′(z)| ≍ (1 + |z|)ρ(f)−1 · (1 + |f(z)|)
for all z ∈ J(f) [MU08, Lemma 3.1]. It follows from this condition that (6.4) holds
for all t > 1, and hence all of these functions have the area property and satisfy the
conclusions of Theorem 6.3. In particular, this implies that Poincaré functions of
postcritically finite polynomials with non-smooth Julia sets are not balanced in the
sense of Mayer and Urbański. Indeed, the critical exponent c of the Poincaré series
of such a polynomial coincides with the Hausdorff dimension of its Julia set, which
is larger than one. It follows that the Poincaré function does not satisfy (6.4) for
1 < t < c.

It is plausible that the minimal exponent in (6.4) is connected to the concept of
eventual hyperbolic dimension, which is defined in analogy with [RS10, Section 5] as
follows:

edimhyp(f) ..= lim
R→∞

sup{dimK : K hyperbolic,min
z∈K

|z| ≥ R}.
(Recall that a set is hyperbolic for f if it is compact, invariant and expanding.)

Classes of functions with the area property. Given the many interesting
connections between the area property and interesting applications in complex dy-
namics and function theory, it makes sense to identify classes of entire transcendental
functions f ∈ B having the area property. As mentioned above, the balanced condi-
tion of Mayer and Urbański [MU08] gives rise to such a class of functions, but it is
rather restrictive; in particular, it does not include Poincaré functions, which have
been our primary source of non-trivial examples. We believe that there should be a
natural geometric condition on the tracts of an entire transcendental function f ∈ B
that covers all balanced functions in this class (in the sense of (7.1)) as well as all
Poincaré functions of postcritical polynomials. This condition should ensure that the
area property holds and that quadratic differentials with at most a double pole push
forward to at most a simple pole at infinity. Furthermore, hyperbolic functions in
the corresponding quasiconformal equivalence class should have hyperbolic dimen-
sion strictly less than two. As this question takes us beyond the scope of this note,
it will be left to a subsequent paper.
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