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Unfortunately, the proof of Theorem 2 in [1] contains a mistake: the exponents
sk in (20) can be complex, and this affects most of the arguments that follow. Below
is the modified proof of Theorem 2.

To prove Theorem 2, we use the following two facts about the class F:

1. F is a differential ring [2]. This means that F is closed under addition, mul-
tiplication and differentiation.

2. All functions y ∈ F are entire functions of completely regular growth in the
sense of Levin–Pflüger [4], with piecewise-trigonometric indicators, the no-
tions which we recall now.

Let f be a holomorphic function in an angular sector S = {reiθ : |θ−θ0| < ǫ, r >
0}. We say that f has completely regular growth with respect to order ρ > 0 if the
following finite limit exists

(1) lim
r→∞, reiθ 6∈E

log |f(reiθ)|

|r|ρ
=: hf(ρ, θ),

uniformly with respect to θ, for |θ− θ0| < ǫ. Here E ⊂ S is an exceptional set which
can be covered by discs centered at zj of radii rj, such that

∑

j : |zj |<r

rj = o(r), r → ∞.

Such sets E are called C0-sets in [4].
The limit hf (ρ, θ) is called the indicator. It is always continuous as a function

of θ ∈ (−ǫ, ǫ). Notice that if f has completely regular growth with respect to order
ρ, then it has completely regular growth with respect to any larger order, and the
indicator with respect to the larger order is zero.

An entire function f is said to be of completely regular growth, if it has completely
regular growth in any sector with respect to its order ρ = ρ(f).

If f1 and f2 are two functions of completely regular growth with respect to the
same order ρ then evidently

hf1+f2(ρ, θ) ≤ max{hf1(ρ, θ), hf2(ρ, θ)},

and equality holds if hf1(ρ, θ) 6= hf2(ρ, θ).
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Petrenko [5, Sect. 4.3] proved that all entire functions in F have completely
regular growth with piecewise-trigonometric indicators. We say that h is piecewise-
trigonometric if the interval [0, 2π] can be partitioned into finitely many intervals
such that h(θ) = ck sin ρ(θ − θk) on each interval.

Let V ⊂ F be a vector space of finite dimension n + 1. Let ρ be the maximal
order of elements of V . From now on, all indicators will be considered with respect
to this order ρ, and we suppress it from notation.

For each V there exist finitely many rays such that for any sector S complemen-
tary to these rays all possible indicators of elements of V are strictly ordered:

(2) h1(θ) < h2(θ) < . . . < hm(θ), eiθ ∈ S.

Here m ≥ 1 is the number of distinct indicators in S. Such sectors will be called
admissible for a vector space V .

We fix an admissible sector S of our vector space V , and construct a special basis

in V . Let hj be the indicator of some element of V . Then we define Vj ⊂ V be the
subspace consisting of functions whose indicator at most hj. If all possible indicators
are ordered as in (2), then

V1 ⊂ V2 ⊂ . . . ⊂ Vm = V.

We choose dimV1 linearly independent functions in V1, then dim V2−dim V1 functions
in V2 which represent linearly independent elements of the factor space V2/V1, and
so on. So that the basis elements chosen from Vj\Vj−1 are linearly independent as
elements of Vj/Vj−1.

Let w0, w1, . . . , wn be this basis, ordered in such a way that the indicators in-
crease,

(3) hw0
(θ) ≤ hw1

(θ) ≤ . . . ≤ hwn
(θ), eiθ ∈ S.

Notice that, the indicator of any linear combination of the form

(4) c0w0 + . . .+ cn−1wn−1 + wn

is the same as the indicator of wn. This sequence (wj) is called a special basis of V
corresponding to the sector S.

Lemma 2. Outside of a C0 exceptional set E as in (1), the special basis satisfies

log |W (w0, . . . , wn)| =

n
∑

j=0

log |wj|+ o(rρ)

in the sector S.

Proof. If f1 and f2 are two functions of completely regular growth in S, then the
limit in (1) also exists for their ratio f = f1/f2 and this limit is equal to hf1(θ)−hf2(θ).
Let

L(w0, . . . , wn) =
W (w0, . . . , wn)

w0, . . . , wn

.

The statement of the Lemma is equivalent to hL(θ) ≡ 0.
As L is a determinant consisting of the logarithmic derivatives of functions of

class F, we have hL(θ) ≤ 0 by the Lemma on the logarithmic derivative [3]. It
remains to prove that hL(θ) ≥ 0.

We prove this by induction in n. The statement is evident when n = 0. When
n = 1 we set f = w1/w0. Then L = f ′/f . If hL(θ0) < 0, we integrate f ′/f along the
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ray arg z = θ0. If the exceptional set E intersects which ray, we bypass it by a curve
close to the ray consisting of arcs of circles. The result is that

f = c+O(e−δrρ).

This implies that

hw1−cw0
(θ0) < hw1

(θ0),

which contradicts the definition of the special basis.
Suppose now that the statement of the Lemma holds for spaces V of dimension

at most m + 1, with some m ≥ 1. We have to prove it for n = m + 1. Assume by
contradiction that hL(w0,...,wn)(θ0) < 0 for some θ0. Define functions Bj as solutions
of the following system of linear equations

n−1
∑

j=0

Bjw
(k)
j = w(k)

n , k = 0, . . . , n− 1.

By Cramer’s rule,

Bj = ±
Wj

Wn

,

where Wj is the Wronskian of size n made of functions wi with i 6= j. We use the
formula for differentiation of the logarithm of the quotient of Wronskians [6, Part
VII, Probl. 59], [3, p. 251]

(5)
d

dz
log

(

Wj

Wn

)

=
Wj,nW

WjWn

=
Lj,nL

LjLn

,

where Wj,n is the Wronskian of size n − 1 with wj and wn deleted, and W is our
Wronskian of size n+ 1. Notation L,Lj,Lj,n has similar meaning. Using the induc-
tion assumption, we conclude that the right hand side of (5) has negative indicator.
Integrating with respect to z along an appropriate curve near the ray arg z = θ0, that
avoids the exceptional set E, we obtain Bj = cj + O(e−δrρ), 0 ≤ j ≤ n − 1, where
cj 6= 0 and δ > 0 are constants. So we conclude that the indicator of

wn −
n−1
∑

j=0

cjwj

at the point θ0 is strictly less than hwn
(θ0). This contradicts the property (4) of the

special basis. The contradiction completes the proof of Lemma 2. �

Proof of Theorem 2. Let f : C → P
n be a linearly non-degenerate holomorphic

curve whose homogeneous coordinates are functions of F.
Let ρ be the order of our curve; it is equal to the maximal order of components

fj.
Let V ⊂ F be the subspace spanned by the homogeneous coordinates. To such a

space V we associated finitely many exceptional rays, whose complement consists of
admissible sectors. Let us fix any admissible sector S, and a special basis w0, . . . , wn

in S.
Let wj = (f, αj), 0 ≤ j ≤ n, then the vectors {α0, . . . , αn} are linearly indepen-

dent. We define subspaces

Xk = {w ∈ C
n+1 : (w, α0) = . . . = (w, αk−1) = 0}, 1 ≤ k ≤ n,
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so that codimXk = k. We use the notation u = log ‖f‖, uj = log |wj|. If z is outside
of an exceptional set E, we have

uj(z) ≤ uj+1(z) + o(|z|ρ), 0 ≤ j ≤ n− 1,

view of (3). So

log dk(z) ≤ log dist(f(z), Xk)

= max
0≤j≤k−1

log |(f(z), αj)| − log ‖f‖ = uk−1(z)− u(z) + o(rρ).

Then, using Lemma 2 and u = un + o(rρ), we obtain

n
∑

j=1

log
1

dk(z)
≥ −

n−1
∑

j=0

uj(z) + nu+ o(rρ)

= −
n

∑

j=0

uj(z) + (n+ 1)u(z) + o(rρ)

= − log |W (w0, . . . , wn)|+ (n + 1)u(z) + o(rρ).

Integrating this with respect to θ on the sector S, and then adding over all admissible
sectors, we obtain

n
∑

j=1

mk(r, f) +N1(r, f) ≥ (n + 1)T (r, f) + o(rρ).

Integrals over the exceptional set E contribute o(rρ) [4]. For curves f with compo-
nents in F we always have T (r, f) = crρ, so the error term is o(T (r, f).

The opposite inequality follows from Theorem 1, where exceptional set is absent
because we deal with functions of finite order.

The author thanks Jim Langley for finding a mistake in the previous version of
this paper.
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