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Abstract. We develop an isotopy principle for holomorphic motions. Our main result concerns

the extendability of a holomorphic motion h(t, z) of a finite subset E of the Riemann sphere C

parameterized by a pointed hyperbolic Riemann surface (X, t0). We prove that if this holomorphic

motion has a guiding quasiconformal isotopy, then it can be extended to a new holomorphic motion

of E ∪ {p} for any point p in C \ E that follows the guiding isotopy. The proof gives a canonical

way to replace a continuous motion of the (n+ 1)-st point by a holomorphic motion while leaving

unchanged the given holomorphic motion of the first n points.

1. Introduction

Suppose we are given a finite set {p1(t), . . . , pn(t)} of holomorphic maps from a
pointed hyperbolic Riemann surface (X, t0) with values in a Riemann surface Y such
that the set

Et = {p1(t), . . . , pn(t)}

consists of n distinct points in Y for every t ∈ X. Here X is called the parameter
space and Y is called the dynamical space.

Suppose in addition we are given a continuous function pn+1(t) : X → Y such
that for every value of t ∈ X,

Ẽt = Et ∪ {pn+1(t)} = {p1(t), . . . , pn(t), pn+1(t)}

consists of n+ 1 distinct points in Y .
If all of these hypotheses are satisfied, then Et is a holomorphic motion in Y

parameterized by X with a continuous motion extension Ẽt in Y parameterized by
the same X.
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The main goal of this paper is to give an additional condition, which we call a
guiding quasiconformal isotopy condition, that provides a canonical way to replace the
continuous function pn+1(t) : X → Y with a holomorphic function p̂n+1(t) : X → Y
such that

Êt = Et ∪ {p̂n+1(t)} = {p1(t), . . . , pn(t), p̂n+1(t)}

becomes a holomorphic motion extension of Et parameterized by the same X. More
precisely, we need p̂n+1(t0) = pn+1(t0) and p̂n+1(t) 6= pi(t) for all t ∈ X and 1 ≤ i ≤ n

Our main theorem says that this is possible when Y = C, the Riemann sphere.
The same method of proof works when Y is equal to any Riemann surface of fi-
nite analytic type, and we plan to incorporate this generalization into a subsequent
paper. One application is Slodkowski’s theorem which concerns the extension of a
holomorphic motion h(t, z) of a subset E in the Riemann sphere C parameterized
by the open unit disk ∆ with the basepoint 0. Our new proof has two parts. The
first part is the topological part which says that any holomorphic motion of a finite
subset E of the Riemann sphere C parameterized by the open unit disk ∆ always
has a guiding quasiconformal isotopy. The second part is the geometric part which
is the main theorem of this paper. The new proof provides a canonical holomorphic
replacement.

This result relies on the existence of a canonical cylindrical differential with a
double pole at any point, on the heights mapping for quadratic differentials, and
on the use of the Alhfors–Weill local holomorphic section (i.e., harmonic Beltrami
differentials) on Teichmüller spaces to produce holomorphic coordinates for the Teich-
müller space of quasi-circles.

The paper is organized as follows. In section 2 we review the definition of a
continuous motion and define a guiding quasiconformal isotopy. In section 3 we
state Theorem 1 which is the main result and Theorem 2 which is Slodkowski’s
theorem. In section 4 we present the theory of holomorphic quadratic differentials as
solutions to extremal problems, the heights mapping theorem and a limiting process
which yields a cylindrical quadratic differential with a single semi-infinite cylinder.
In section 5 we define our extension that follows a given guiding quasiconformal
isotopy. In section 6 we prove that the extension defined in section 5 is holomorphic.
The main ideas in sections 5 and 6 concern extremal infinite cylinders corresponding
to quadratic differentials with double poles and on the use of Alhfors–Weill local
holomorphic section (harmonic Beltrami differentials) for Teichmüller spaces. The
detailed proof of Theorem 1 is completed by sections 4, 5, 6. In section 7 we give our
new proof of Slodkowski’s theorem. In section 8 we discuss topological obstructions
that show that motions parameterized by a non simply-connected pointed hyperbolic
Riemann surface do not necessarily have guiding isotopies. Thus the guiding isotopy
assumption in Theorem 1 is necessary.

Acknowledgement. We have had many helpful conversations with Jeremy Kahn,
Linda Keen, Sudeb Mitra, and Hiroshige Shiga.

2. Motions and guiding isotopies

In this section we define a motion of a set E in a Riemann surface Y parameterized
by a pointed hyperbolic Riemann surface (X, t0) and guiding isotopies of the motion.
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Definition 1. (Continuous motion) Let E ⊂ Y . A continuous motion

h(t, z) : X × E → Y

of E in Y parameterized by X is a continuous map of (t, z) satisfying

1) h(t0, p) = p, for all p ∈ E, and
2) for any fixed t ∈ X, ht(p) = h(t, p) : E → Et = ht(E) ⊆ Y is a homeomor-

phism.

We think of the parameter t ∈ X as measuring time and ht(z) as specifying the
motion of the point z in a dynamical space Y .

Definition 2. (Holomorphic motion) A continuous motion h(t, z) of E in Y
parameterized by X is called a holomorphic motion of E if for each fixed p ∈ E,
hp(t) = h(t, p) : X → Y is holomorphic.

Definition 3. (Extension) Suppose

h(t, z) : X × E → Y and ĥ(t, z) : X × Ẽ → Y

are continuous (or holomorphic) motions of subsets E and Ê in Y parameterized by

X. If E ⊂ Ê and ĥ(t, z) = h(t, z) for all z ∈ E and all t ∈ X, then ĥ is called an

extension of h to Ê.

Definition 4. (Guiding quasiconformal isotopy) A guiding isotopy for a contin-
uous motion h(t, z) of E in Y parameterized by X is an extension of h to a continuous
motion G of the all of Y parameterized by the same X. It is called a guiding quasicon-
formal isotopy if for each fixed t ∈ X, Gt(z) = G(t, z) : Y → Y is a quasiconformal
homeomorphism of Y and if the Beltrami coefficient

(1) X ∋ t 7→ µt ∈ L∞(Y )

where

µt(z) =
∂Gt(z)

∂Gt(z)

defines a continuous map with respect to the topology of X and the L∞-norm topol-
ogy of L∞(Y ).

A notion very close to the concept of guiding isotopy is the notion of quasicon-
formal trivializaiton defined in Definition 2.1 of [11] and Definition 1.1 of [25]. In
contrast to our definition of quiding quasiconformal isotopy the definition in [11] and
[25] does not require that µt vary continuously in the L∞ topology. The idea of using
a guiding quasiconformal isotopy is suggested in [7] where it is used to solve a version
of the guiding homeomorphism problem.

We have the following proposition about guiding quasiconformal isotopies.

Proposition 1. (Uniqueness up to isotopy) Suppose h(t, z) : X × E → Y is a
holomorphic motion. If h has a guiding quasiconformal isotopy G(t, z) : X×Y → Y ,
then any guiding quasiconformal isotopy H(t, z) : X × Y → Y is quasiconformally
isotopic to G on Y \ E.

Proof. For any t ∈ X, let Ht(z) = H(t, z) and Gt(z) = G(t, z). Then both of
them are quasiconformal homeomorphisms of Y . Let Ft = G−1

t ◦ Ht. Since both
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of them are extensions of h, we have that Ft(z) = z for all z ∈ E. Since Ft is a
quasiconformal homeomorphism, we can define its Beltrami coefficient

µt(z) =
∂Ft(z)

∂Ft(z)
∈ L∞(Y )

on Y . It is a continuous map from X to L∞(Y ). Thus φ(t) = Ft is a continuous map
from X to the space of quasiconformal homeomorphisms of Y . But φ(t0) = Ft0 =
Id. �

This proposition shows that the isotopy class of the extension H of h relative
to Y \ E is unique. A related result appeared in [25, Theorem C] as well as in [20,
Proposition 5.13].

3. Statement of the main results

In this section we suppose (X, t0) is a pointed hyperbolic Riemann surface and
Y = C. We also suppose h(t, z) is a continuous motion of E = {p1, . . . , pn} in
C parameterized by X. Since the points pj(t) = h(t, pj) of E move continuously
and distinctly, there is a continuous path of Möbius transformations At such that
At(p1(t)) = 0, At(p2(t)) = 1, and At(p3(t)) = ∞. Then the ordered n-tuple

At(Et) = {0, 1,∞, At(p4(t)), . . . , At(pn(t))}

is a continuous motion of A0(E) and the continuous motion At ◦ h is normalized at
0, 1 and ∞. Obviously, if h is a holomorphic motion, then the family At also depends
on t holomorphically. Thus At ◦ h is also a holomorphic motion and so by showing
how to extend a holomorphic motion of a subset in C normalized at 0, 1,∞, and
by choosing an appropriate holomorphic path of Möbius transformations At we also
provide a method for extending holomorphic motions that are not normalized.

Thus we can assume in the beginning that E contains 0, 1,∞ and h is a continuous
(or holomorphic) motion normalized at 0, 1,∞.

Theorem 1. (Main Theorem) Suppose

E = {p1 = 0, p2 = 1, p3 = ∞, p4, · · · , pn}

is a finite subset of C containing n ≥ 3 distinct points. Assume h : X × E → C is a
normalized holomorphic motion of E in C parameterized by X. Suppose p is a point
in C \E. If h has a guiding quasiconformal isotopy G : X ×C → C, then there is a

holomorphic motion ĥ : X × (E ∪ {p}) → C that extends h.

If the parameter space X is compact or compact except for a finite number of
punctures, this theorem has no interest because the only holomorphic functions are
constant. So the interesting case is when X is an open hyperbolic Riemann surface
with a nontrivial boundary component.

We prove the Main Theorem in sections 5 and 6.
If X = ∆, the unit disc, and t0 = 0, then Theorem 1 gives a new proof of the

following theorem.

Theorem 2. (Slodkowski’s Theorem) Any holomorphic motion h(t, z) : ∆×E →
C of a subset E in C parameterized by ∆ can be extended to a holomorphic motion
H(t, z) : ∆×C → C.
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We prove in section 7 that any holomorphic motion of a finite subset in C pa-
rameterized by ∆ has a guiding quasiconformal isotopy. Thus when the parameter
space is the unit disc the assumption of Theorem 1 is always satisfied and this yields
our proof Theorem 2.

4. Cylinders with maximal modulus

In this section we review basic facts about the existence of cylindrical holomorphic
quadratic differentials.

Theorem 3. Assume E is a finite subset of C containing two or more points
and ∆(p) is a conformal disc centered at p in C \ E. Let γ be a simple closed curve
in Y = C \ (E ∪ ∆(p)) and homotopic to the boundary of ∆(p). Then there exists
a unique holomorphic quadratic differential q of finite norm defined on Y with the
following properties:

(1) all of the regular horizontal trajectories of q are closed and homotopic to γ,
(2) the regular horizontal trajectories form a cylinder A that fills C \ (E ∪∆(p))

except for a critical graph C,
(3) each regular horizontal trajectory α in this cylinder has length equal to 2π

and the totality of these trajectories fill A,
(4) C is a closed, connected set of measure zero and is the union of critical

horizontal trajectories of q that join its zeros and poles,
(5) C is a connected, simply connected finite graph, the poles of q form the

endpoints of C and any zero of order k is a vertex of C from which k + 2
edges of C emanate, and

(6) ‖q‖ =
˜

C\(E∪∆(p))
|q(z)| dx dy = 2πb, where b is the height of A measured in

the metric |q|1/2.

q is the unique holomorphic quadratic differential on Y with the properties that it
has a characteristic cylinder with maximal modulus among all cylinders homotopic
to the boundary of ∆(p) and its circumference measured with respect to the metric
|q(z)|1/2|dz| is equal to 2π.

Proof. The existence and uniqueness of q with these properties is well-known,
see [30, 19, 15, 12]. For any simple closed curve α not homotopically trivial and not
homotopic to a puncture on any hyperbolic Riemann surface, such a holomorphic
quadratic differential is obtained by maximizing the modulus of a cylinder among all
cylinders on the surface homotopic to α. A similar conclusion is true even if we begin
with a system {αj} of non-homotopic simple closed curves, and either the heights
of the annuli can be arbitrarily specified (the heights theorem of Renelt [27]) or the
projective class of the moduli of the annuli can be arbitrarily specified (the Strebel
moduli theorem [30]).

For completeness of exposition here we give a sketch of the proof in the case we
need, namely, the case where there is just one annulus with core curve homotopic to
a boundary component and the size of this boundary component shrinks to zero.

Lemma 1. Suppose A is an annular Riemann surface conformal to the ring
domain {z : r < |z| < R} and µ(z) is an L∞ Beltrami differential on A with ‖µ‖∞ <

1. In terms of the conformal parameter w let q(w)(dw)2 =
(
dz
z

)2
and let Aµ be

the same annulus with the conformal structure induced by µ. This means a local
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homeomorphism w = h(z) from a neighborhood of a point p in A is declared to be
conformal if

hz(z) = µ(z)hz(z).

Let Λ(A) be the extremal length of the family of arcs in A that join its two boundary
components and Λ(Aµ) be the extremal length with the same family with respect to
the conformal structure induced by µ. Then

(2) log Λ(Atµ) = log Λ(A) + 2 Re
t

‖q‖

¨

A

µq dx dy +O(|t|2).

Proof. This formula follows from the Reich–Strebel inequalities and is proved
in [13] and [15]. �

Lemma 2. Suppose A is an annulus embedded in a Riemann surface Y and the
modulus of A is as large as possible among all annuli homotopic to A in Y . Let g

be a conformal map from A onto the region {z : r < |z| < R}. Then −
(

dg
g

)2

is the

restriction of a holomorphic quadratic differential q on Y and
¨

Y

|q| dx dy =

¨

A

∣∣∣∣
1

z2

∣∣∣∣ dx dy = 2π log(R/r).

All of the regular horizontal trajectories of q are closed and are the images under g
of the circles ρeiθ, r < ρ < R.

Proof. This lemma is proved in [12] and, for general measured foliations, in [16].
For the benefit of the reader we repeat the main ideas of the proof here.

The complex Banach space Q(Y ) of integrable holomorphic quadratic differentials
on Y is a closed subspace of L1(Y ), the space of integrable quadratic differentials and
the dual Banach space L1(Y )∗ is isometric to L∞, the space of essentially bounded
Beltrami differentials under the pairing

(q, µ) =

¨

Y

µq dx dy.

In particular, if µ represents a linear functional ℓ ∈ L1(Y )∗ then

‖ℓ‖∗ = sup
q∈L1(Y )

(˜
µq dx dy

)

‖q‖
= ‖µ‖∞.

Our strategy to prove this lemma uses the identification of Q(Y )⊥⊥ with Q(Y ) pro-

vided by this pairing. Showing that
(

dg
g

)2

is in Q(Y )⊥⊥ also shows that it is in Q(Y ).

If
(

dg
g

)2

/∈ Q(Y )⊥⊥, then there is a Beltrami differential µ supported in A such that
¨

A

µq dx dy = 0

for all q ∈ Q(Y ) and
˜

A
µ
(

dg
g

)2

dx dy 6= 0. By the Hamilton–Krushkal variational

lemma there would be a curve of deformations µt tangent to µ at t = 0 for which,
by Lemma 1, Λ(Aµt

) is smaller than Λ(A) and for which Y (µt) represents the same
point of Teichmüller space as Y . This conclusion contradicts the assumption that
Λ(A) has maximum modulus among homotopic annuli A embedded in Y . �
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The following result is also well known [15, 17].

Lemma 3. Let f be a quasiconformal homeomorphism mapping a hyperbolic
Riemann surface Y to a Riemann surface f(Y ) and let K be the maximal dilatation
of f . Let q be a holomorphic quadratic differential on Y of finite norm with given
heights and qf a holomorphic quadratic differential on f(Y ) such the height along
the isotopy class of any curve γ in Y measured with respect to | Im (q(z)1/2 dz)|
is equal to the height of the isotopy class f(γ) in f(Y ) measured with respect to
| Im (qf (w)

1/2 dw)|. Then

(3) K−1‖q‖ ≤ ‖qf‖ ≤ K‖q‖.

Proof. By the Dirichlet principle [14, 15] for measured foliations

‖q‖ =

¨

Y

|q| dx dy

is equal to the infimum of 2D(v) = 2
˜

Y
(v2x+2v2y) dx dy, where the infimum is taken

over all measured foliations |dv| that realize the heights of q, and any measured
foliation that realizes this infimum is the absolute value of the imaginary part of the
square root of q. Note that |d(v ◦ f)| has the same corresponding heights on Y that
|dv| has on f(Y ), and

(v ◦ f)z = (vw ◦ f)fz + (vw ◦ f)f z.

Since v is real-valued and defined up to plus or minus sign and up to the addition of
a constant, |vw| and |vw| are invariant and |vw|

2 = |vw|
2 = (1/4)(v2x + v2y). Thus we

can use exactly the same calculation that is given at the end of Chapter 1 in [1]. We
have

|(v ◦ f)z| ≤ (|vw| ◦ f)(|fz|+ |fz|),

and

DY (|dv ◦ f |) = 2

¨

Y

|(v ◦ f)z|
2|dz ∧ dz| ≤ 2

¨

Y

(|vw| ◦ f)
2(|fz|+ |fz|)

2|dz ∧ dz|

= 2

¨

f(Y )

|vw|
2 (|fz|+ |fz|)

2

|fz|2 − |fz|2
|dw ∧ dw|

= 2

¨

f(Y )

|vw|
2

(
|fz|+ |fz|

|fz| − |fz|

)
|dw ∧ dw| ≤ K(f)Df(Y )(|dv|).

This implies the left hand side of (3). The right hand side follows from the same
argument applied to f−1. �

Lemmas 1, 2, and 3 and a limiting process yield the proof of Theorem 3. �

5. Definition of the extension

In this section we assume the hypothesis of Theorem 1. Thus we are given a
holomorphic motion

Et = h(t, E) = {p1(t) = 0, p2(t) = 1, p3(t) = ∞, p4(t), . . . , pn(t)}

of the finite set
E = {p1 = 0, p2 = 1, p3 = ∞, p4, . . . , pn}

in C parameterized by the pointed hyperbolic Riemann surface X.
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From the guiding quasiconformal isotopy G(t, z) : X × C → C, we are given
another continuous function

pn+1(t) = G(t, p) : X → C

so that

Ẽt = Et ∪ {pn+1(t)} = {p1(t) = 0, p2(t) = 1, pn+1(t) = ∞, p4(t), . . . , pn(t), pn+1(t)}

is a continuous motion of the set

Ẽ = {p1 = 0, p2 = 1, p3 = ∞, p4, . . . , pn, pn+1 = p}

parameterized by X and Ẽt is a set of n+ 1 distinct points in C for each t ∈ X.
Let us use

h̃(t, z) =

{
pj(t) for z = pj , 1 ≤ j ≤ n, and

pn+1(t) for z = p
: X × Ẽ → C

to denote this continuous motion. Note that it is a holomorphic motion when re-
stricted on X ×E.

Among univalent functions f from the open unit disc ∆ into C\E with f(0) = p,
by a normal families argument, one can select such a function for which |f ′(0)| is as
large as possible. Then D = f(∆ \ {0}) is a punctured disc embedded in C \E with
a puncture at the point p.

If we put w = f−1(z) then by Theorem 3 and a limiting argument, w maps D to
{w : 0 < |w| < 1} and

(4) −

(
dw

w

)2

is the restriction of a global meromorphic quadratic differential on C, holomorphic

except at the points in Ẽ. It has a double pole at p, simple poles at the points of E
and closed regular horizontal trajectories that surround p and that fill the Riemann

sphere except for the points of Ẽ and the points of its compact critical trajectories.
The critical horizontal trajectories form a connected tree with endpoints at the points
of E. Pairwise identifications of arcs of equal angle along the circumference {|w| = 1}
form its critical graph. In the generic case, when the critical graph has only three
pronged singularities, there are 2(n+ 1) intervals that partition the circle {w : |w| =
1}. These intervals are pairwise identified so as to realize the critical graph with
n + 1 edges, where n is the cardinality of E. For a proof of the existence of q with
these properties see [24] and [19]. We put q equal to the negative of this quadratic
differential. Thus, by definition,

(5) q = +

(
dw

w

)2

in D and q is meromorphic on C and holomorphic on C \ Ẽ. It has simple poles
at the points of E and a double pole at p. The heights of q determine the angles
pointing from p to the points of E and pointing to the edges which are critical vertical
trajectories of q.

Our goal is to use the guiding isotopy G assumed in Theorem 1 to define a

replacement ĥ of h̃. This replacement is obtained by a limiting process in such a way
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that ĥ becomes a holomorphic motion of Ẽ parameterized by X that extends the

holomorphic motion h of E parameterized by X. We define ĥ in several steps.

Step I. For 0 < ǫ < 1 let Dǫ = {z ∈ C : |w| = |f−1(z)| ≤ ǫ} and

Yǫ = C \ (E ∪Dǫ).

Define the reflection jǫ across the (analytic) circle αǫ = {z : |w| = ǫ} by

jǫ(w) =
ǫ2

w
.

It maps the annulus {z : ǫ < |w| < 1} onto the annulus {z : ǫ2 < |w| < ǫ} and we can
form the double Riemann surface Y d

ǫ of Yǫ which is

(6) Y d
ǫ = Yǫ ∪ αǫ ∪ jǫ (Yǫ) .

Y d
ǫ becomes a surface of finitie analytic type by identifying arcs on the circle {w : |w| =

ǫ2} that correspond under the reflection jǫ to identified arcs on the circle {w : |w| =
1}.

Step II. The quadratic differential q induces a quadratic differential qǫ on Y d
ǫ by

using the image under jǫ of identifications on {z : |w| = 1} as indentifications along
the circle {z : |w| = ǫ2}. The resulting Riemann surface is a complex sphere with 2n
points removed, namely, the points of E ∪ jǫ(E). On that surface the norm of qǫ is
finite and given by

(7) ‖qǫ‖ =

¨

Y d
ǫ

|qǫ| = 2π log(1/ǫ2) = −4π log ǫ.

The critical vertical trajectories of qǫ form two trees, the first of which has endpoints
comprised of the points of E and the second of which has endpoints jǫ(E). All of
the zeros of qǫ are located at the interior nodes of these two trees and the poles are
located at the points of E ∪ jǫ(E). If n is the cardinality of E then the number of
poles of qǫ on the Riemann sphere is 2n and then number of zeros is 2n− 4.

Note that the horizontal trajectories of qǫ are radial lines in the w-parameter and
that for w = reiθ the vertical measure is |dθ|.

Step III. By restriction the guiding isotopy Gt(z) = G(t, z) yields a quasicon-
formal map

Gt,ǫ : Yǫ → Yt,ǫ = Gt,ǫ(Yǫ).

Let Y d
t,ǫ be the surface Yt,ǫ doubled along its boundary curve αt,ǫ = Gt(αǫ). There

is an anticonformal involution jt,ǫ of Y d
t,ǫ with the property that Y d

t,ǫ is the union of
the domains Yt,ǫ, jt,ǫ(Yt,ǫ) and a simple closed curve αt,ǫ. The curve αt,ǫ comprises
the common boundary of these the Fuchsianization of these two domains and the
involution jt,ǫ fixes the points of αt,ǫ. Thus we have

(8) Y d
t,ǫ = Yt,ǫ ∪ αt,ǫ ∪ jt,ǫ(Yt,ǫ).

Without changing the notation, we let Gt,ǫ equal to Gt in the domain Yǫ and equal
to jt,ǫ ◦Gt ◦ j

−1
ǫ in the domain jǫ(Yǫ). Thus we get a quasiconformal homeomorphism

Gt,ǫ : Y
d
ǫ → Y d

t,ǫ.

Then Gt,ǫ induces a heights mapping from quadratic differentials on Y d
ǫ onto quadratic

differentials on Y d
t,ǫ. The heights mapping carries qǫ to a meromorphic quadratic
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differential qt,ǫ with simple poles at the points of Et ∪ jt,ǫ(Et) = Gt,ǫ(E)∪Gt,ǫ(jǫ(E))
and with finite norm,

(9) ‖qt,ǫ‖ ≤ Kt(−4π log ǫ),

where Kt is the maximal dilatation of Gt.

Step IV. Now take a sequence of positive numbers ǫn decreasing to 0 and let
qt,n = qt,ǫn . For any sequence of positive integers k ≥ 1 the quadratic differentials
qt,n+k have common domain of definition Yt,ǫn and for all k one has the inequality

¨

Yt,ǫn

|qt,n+k| ≤ Kt(−4π log ǫn).

Now take a normal limit on compact subsets, first as k → ∞ and then as n → ∞,
and denote the limiting quadratic differential by qt.

Step V. The quadratic differential qt has the following properties:

i) qt is meromorphic on the Riemann sphere C and holomorphic except at n+1
points,

ii) it has simple poles at the n points of Et = Gt(E) and a double pole at another
point p̂(t),

iii) the height of qt along the homotopy class of a simple curve that surrounds
p̂(t) is 2π, and

iv) the heights of other simple closed curves in the Riemann sphere minus Et are
equal to the corresponding heights of q on the Riemann sphere minus E.

Step VI.

Definition 5. We define the replacement ĥ of h̃ by

(10) ĥ(t, z) =

{
p̂j(t) = limǫ→0Gt,ǫ(z) for z = pj, 1 ≤ j ≤ n, and

p̂n+1(t) = p̂(t) for z = p.

Lemma 4. The map ĥ(t, z) is a motion of Ẽ that extends the holomorphic

motion h of E. That is, for each t ∈ X the extension ĥ of h is an injection from Ẽ
into C.

Proof. The map Gt,ǫ defined in Step III depends on the reflection defined in
Step II, which depends on ǫ. The heights mapping induced by Gt,ǫ carries qǫ to a
holomorphic quadratic differential qt,ǫ on Y d

t,ǫ with simple poles at 2n points, n of
which lie in Yt,ǫ and n of which lie in jt,ǫ(Yt,ǫ). As ǫ → 0 the location of the poles
of qt,ǫ in Yt,ǫ converge to the points of Et. Therefore, p̂j(t) = pj(t) for all 1 ≤ j ≤ n

and all t ∈ X. Since p̂(t) = ĥ(t, p) lies in jt,ǫ(Yt,ǫ) and the modulus of the maximal
annulus in Y d

t,ǫ \ (Et ∪ jt,ǫ(Yt,ǫ)) increases to infinity as ǫ → 0. Thus p̂n+1(t) = p̂(t)
cannot coincide with any of those points in Et. �

Note that although p̂j(t) = G(t, pj) = pj(t) for 1 ≤ j ≤ n and t ∈ X, the

location of the point p̂n+1(t) = ĥ(t, p) is not equal to pn+1(t) = G(t, p). The limiting
differential

(11) qt = lim
ǫ→0

qt,ǫ



Guiding isotopies and holomorphic motions 495

is holomorphic on the Riemann sphere C except at the points Êt = Et ∪ {p̂(t)}. It
has simple poles at the points of Et and a double pole with quadratic residue equal to
1 at p̂(t). The sense in which (11) is a limit is described in Step IV; it is a limit in the
uniform topology on compact sets. In the next section we show that the location p̂(t)

of the double pole of qt, which is the definition of ĥ(t, p), extends h holomorphically
to the point p ∈ C \ E.

6. Harmonic coordinates and the holomorphic replacement

For t ∈ X, let Y d
t,ǫ = C be the Riemann sphere such that

Y d
t,ǫ = Y d

t,ǫ \ (Et ∪ jt,ǫ(Et)).

Remember we always assume that 0, 1,∞ are in Et.
Consider the Teichmüller space Teich(Y d

t,ǫ). Let M(Y d
t,ǫ) be the space of all Bel-

trami differentials µ on Y d
t,ǫ. That is, µ = µ(z)dz/dz such that µ(z) ∈ L∞(Y d

t,ǫ) with
‖µ(z)‖∞ < 1. Let wµ be the quasiconformal homeomorphism fixing 0, 1,∞ solving
the Beltrami equation

(12) wz = µ(z)wz.

Then two elements µ, ν ∈ M(Y d
t,ǫ) are equivalent if (wν)−1 ◦ wµ is homotopic to the

identity relative to Et ∪ jt,ǫ(Et) and the Techmüller space Teich(Y d
t,ǫ) is the space of

all equivalence classes [µ]. Then we have a holomorphic spilt submersion

Pt,ǫ(µ) = [µ] : M(Y d
t,ǫ) → Teich(Y d

t,ǫ).

From the Ahlfors–Weill extension procedure (see [2]), Pt,ǫ has a local holomorphic
section

St,ǫ : Ut,ǫ

(
⊂ Teich(Y d

t,ǫ)
)
→ M(Y d

t,ǫ)

defined on a neighborhood Ut,ǫ about the basepoint in Teich(Y d
t,ǫ) such that

Pt,ǫ ◦ St,ǫ = Identity.

Now consider the subspace Y2n of C
2n

,

Y2n = {z = (z1, z2, z3, z4, · · · , zn, zn+1, · · · , z2n) ∈ C
2n
}

where z1 = 0, z2 = 1, z3 = ∞, and zi 6= zj for all 1 ≤ i 6= j ≤ 2n. Then the map

πt,ǫ([µ]) = (wµ(Et), w
µ(jt,ǫ(Et))) : Teich(Y d

t,ǫ) → Y2n

is a universal holomorphic cover (see [5, 26]).
Now let t ∈ X be a fixed point and let s ∈ X be a variable. Then the map

Gs,ǫ ◦G
−1
t,ǫ : Y

d
t,ǫ → Y d

s,ǫ

can be considered as a point [µt,s,ǫ] in Teich(Y d
t,ǫ), where µt,s,ǫ is the Beltrami coefficient

of Gs,ǫ ◦G
−1
t,ǫ .

Suppose δ > 0 is a small number. Let

∆t = {s | |s− t| < δ}

be a disk in X, where | · | means the hyperbolic distance on X. Then ∆t is simply
connected.
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Consider the map

fǫ(s) = (wµt,s,ǫ(Et), jt,ǫ(Et)) = (Es, jt,ǫ(Et)).

For a fixed δ small enough (depending on t), fǫ(s) ∈ Y2n for all s ∈ ∆t.
From the assumption that Es = wµt,s,ǫ(Et) is a holomorphic motion, fǫ(s) depends

on s holomorphically. Since ∆t is simply connected, we can lift fǫ(s) to a holomorphic
map

f̃ǫ(s) : ∆t → Teich(Y d
t,ǫ)

such that

Pt,ǫ ◦ f̃ǫ(s) = fǫ(s).

When δ > 0 is small enough we have that f̃ǫ(∆t) ⊂ Ut,ǫ. Thus we get another
holomorphic map

f̂ǫ(s) = St,ǫ ◦ f̃ǫ(s) : ∆t → M(Y d
t,ǫ)

shown in the following diagram:

M(Y d
t,ǫ)

Pt,ǫ

��

T (Y d
t,ǫ)

πt,ǫ

��

St,ǫ

[[

Dt

f̂ǫ(s)

EE
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛
☛

f̃ǫ(s)
;;
✇
✇
✇
✇
✇
✇
✇
✇
✇ fǫ(s) // Y2n

The Riemann surface

Ŷ d
s,ǫ = wf̂ǫ(s)(Y d

t,ǫ)

is the gluing of two Riemann surfaces Ys,ǫ and jt,ǫ(Yt,ǫ) at same angles measured by
the quadratic differentials qs,ǫ and qt,ǫ from the heights mappings, respectively, along
αs,ǫ and αt,ǫ. Remember that Y d

s,ǫ is the gluing of two Riemann surfaces Ys,ǫ and
js,ǫ(Ys,ǫ) at same angles measured by the quadratic differential qs,ǫ from the heights
mapping along the same αs,ǫ. Note that αt,ǫ and αs,ǫ have the same total length 2π.

For any fixed s ∈ Dt, when ǫ → 0, both jt,ǫ(Yt,ǫ) in Ŷ d
s,ǫ and js,ǫ(Ys,ǫ) in Y d

s,ǫ

considered as sets in the Riemann sphere C tend to the same point p̂(s). Since

wf̂ǫ(s)(z) is holomorphic on ∆t for all ǫ > 0, its limiting function

p̂(s) = lim
ǫ→0

wf̂ǫ(s)(z), ∀ z ∈ jt,ǫ(Yt,ǫ)

is also holomorphic on ∆t.
Finally we have shown that p̂(t) : X → C is holomorphic and this completes the

proof of Theorem 1.

7. A new proof of Slodkowski’s Theorem

In this section, we give a new proof of Theorem 2. It is based on Theorem 1 and
Lemma 5 below which guarantees that when X is the unit disk ∆ there is always a
guiding quasiconformal isotopy.

Given a finite subset E in C containing 0, 1,∞. We recall some facts from the
beginning of the previous section. Let Ω = C\E be the Riemann surface and let T (Ω)
be its Teichmüller space. Let M(C) be the open unit ball of the space L∞(C). Each
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element µ ∈ M(C) is called a Beltrami coefficient. Let wµ be the quasiconformal
homeomorphism fixing 0, 1,∞ solving the Beltrami equation (12).

Two elements µ0, µ1 ∈ M(C) are equivalent if there is a continuous curve of
Beltrami coefficients µt coinciding with µ0 and µ1 at t = 0 and t = 1 such that
wµt |E = wµ0|E = wµ1|E for all 0 ≤ t ≤ 1. We use [µ]E to denote an equivalence
class. The Teichmüller space T (Ω) is equal to the space T (E) of all equivalent classes
[µ]E for all µ ∈ M(C). Then T (E) is a complex Banach manifold and the projection

PE(µ) = [µ]E : M(C) → T (E)

is holomorphic.

Lemma 5. Suppose ∆ is the open unit disk with the base point 0. Suppose

E = {p1 = 0, p2 = 1, p3 = ∞, p4, . . . , pn}, n ≥ 3,

is a finite subset of the Riemann sphere C and h(t, z) : ∆ × E → C is a normalized
holomorphic motion of E. Then h has a guiding quasiconformal isotopy G(t, z) : ∆×
C → C.

Proof. Let

Yn−3 = {z = (z1, · · · , zn−3) ∈ C
n−3}

where zi 6= zj for all 1 ≤ i 6= j ≤ n−3 and zi 6= 0, 1,∞ for all 1 ≤ i ≤ n−3. From the

normalized holomorphic motion h(t, z) : ∆ × E → C, we can define a holomorphic
map

f(t) = (h(t, p4), · · · , h(t, pn)) : ∆ → Yn−3.

We know that the map

πE([µ]E) = (wµ(p4), · · · , w
µ(pn)) : T (E) → Yn−3

is a holomorphic universal covering (refer to [5, 26]). Since ∆ is simply connected,
we can lift f to get a holomorphic map

f̃(t) : ∆ → T (E)

such that

πE ◦ f̃ = f.

From the Douady–Earle barycentric extension procedure (see [6]), there is a con-
tinuous section S of PE (see [20]), that is, a continuous map S from T (E) to M(C)
such that PE ◦ S is the identity on T (E). Define

f̂(t) = S ◦ f̃(t) : ∆ → M(C)

Then we have that

PE ◦ f̂ = f̃ and πE ◦ PE ◦ f̂ = f.
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The relationship of the various maps is illustrated in the diagram below, which is the
same as the diagram shown in the previous section except for different labeling.

M(C)

PE

��
T (E)

πE

��

S

\\

∆

f̂

EE
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞
☞

f̃
<<
②
②
②
②
②
②
②
②
② f // Yn−3

For any f̂(t) ∈ M(C), Define

G(t, z) = wf̂(t)(z) : ∆×C → C.

Since πE ◦ PE(f̃) = f , we get G(t, 0) = 0, G(t, 1) = 1, G(t,∞) = ∞, and

(G(t, p4), · · · , G(t, pn)) = f(t).

Thus G is an extension of h. Thus G is a guiding quasiconformal isotopy for h. This
completes the proof. �

Lemma 5 says that for any normalized holomorphic motion h : ∆ × E → C of
any finite subset E in C parameterized by ∆, our guiding quasiconformal isotopy
assumption in Theorem 1 holds. Thus for any new point p ∈ C \ E, we can have

a holomorphic motion ĥ : ∆ × (E ∪ {p}) → C extending h. A general version of
Lemma 5 is proved as [25, Theorem C] and [20, Theorem 5.5]. To complete the
proof, we need the λ-Lemma of Mañé, Sad and Sullivan, [23].

Lemma 6. (λ-Lemma) Suppose h(t, z) : ∆ × E → C is a holomorphic motion,
where E is a (not necessarily finite) subset of C. Then it can be extended uniquely
to a holomorphic motion h(t, z) : ∆×E → C, where E means the closure of E in C.

Now suppose h(t, z) : ∆×E → C is the normalized holomorphic motion in Theo-
rem 2. Let E∞ = {0, 1,∞, p1, · · · , pn, · · · } be a countable dense subset of E. Let F =
{q1, · · · , qn, · · · } be a countable dense subset of C\E. Let En = {0, 1,∞, p1, · · · , pn}
and Fn = {q1, · · · , qn}. Then hn = h|∆×En is a holomorphic motion for every n > 3.
Our main result (Theorem 1) with the consideration of Lemma 5 implies that we can
extend hn to a holomorphic motion Hn(t, z) : ∆ × (En ∪ Fn) → C. Inductively, we
have a holomorphic motion H∞(t, z) : ∆ × (E∞ ∪ F ) → C which extends every hn.
The λ-Lemma implies we can extend this last holomorphic motion into a holomor-
phic motion H(t, z) of the closure of E∞ ∪ F which is the whole Riemann sphere C

with parameter space ∆. This holomorphic motion H is an extension of h and this
completes our new proof of Theorem 2.

8. Trace monodromy and the isotopy principle

In this section we show why the guiding isotopy assumption in Theorem 1 is neces-
sary. To do this we describe a topological obstruction to the extension of continuous
motions parameterized by a surface with non-trivial fundamental group. This de-
scription depends on monodromy and something we call trace monodromy, concepts
which are developed in [3]. Using these ideas we give an example of a holomorphic
motion of a finite subset in the Riemann sphere parameterized by any non-simply
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connected bounded domain in the complex plane that cannot be extended to a con-
tinuous motion of the whole Riemann sphere parameterized by the same domain.

Suppose X is any hyperbolic Riemann surface and E = {0, 1,∞, p4, . . . , pn}. If
h is a continuous motion of X × E → C, then for any z in E − {0, 1,∞}, h(t, z) =
hz(t) : X → C0,1 = C\{0, 1,∞} is continuous and, for any choice of z ∈ E−{0, 1,∞}
one obtains a homomorphism of fundamental groups:

hz
∗ : π1(X) → π1(C0,1).

We call these homomorphisms the trace monodromies induced by h. Taking into
account the arbitrary normalization at three points in E and the arbitrary choice of
a fourth, one finds that the number of different trace monodromy conditions is given
by the binomial coefficient

(
n

4

)
.

By definition a trace monodromy is trivial if it maps every element of π1(X) to
the identity of π1(C0,1). The trace monodromy obstruction to topological extension
described in the following theorem and the more general monodromy obstruction are
presented in [3].

Theorem 4. Suppose X is a Riemann surface with a base point t0. Let h : X ×
E → C be a normalized holomorphic motion of a finite set E with card(E) ≥ 4. If
h has a guiding quasiconformal isotopy, then for each z ∈ E the trace monodromy
hz
∗ : π1(X, t0) → π1(C0,1) is trivial.

Proof. We outline the proof here. Suppose H(t, z) : X × C → C is a guiding
isotopy for h. Let γ(s), 0 ≤ s ≤ 1, be a simple closed curve in X with γ(0) =
γ(1) = t0. Let µ(s) be the Beltrami coefficient of H(γ(s), ·) which is continuous on
s. Then H(γ(s), ·) = wµ(s)(·) since both are quasiconformal maps fixing 0, 1,∞ with

the same Beltrami coefficient. Let Ĥ(s, t) = wtµ(s)(z) : [0, 1] × [0, 1] → C0,1 for any

z 6= 0, 1,∞ ∈ E. Then it is a continuous map for which Ĥ(s, 1) = H(γ(s), z) and

Ĥ(s, 0) = z. Thus Ĥ(γ(s), z) is a continuous curve in C0,1 homotopic to a point z in
C0,1. This implies that the trace monodromy is trivial. �

Using this theorem, we can construct a counterexample of a holomorphic motion
of a finite subset of the Riemann sphere parameterized by any non-simply connected
planar domain which does not satisfy our guiding quasiconformal isotopy assumption
in Theorem 1.

Example 1. Suppose X is a planar domain in the Riemann sphere C such that
C−X has more than one connected component and at least one component contains
more than one point. Let t0 be the base point of X. Then for any finite subset E in
C with #(E) ≥ 4, there is a holomorphic motion h(t, z) : X × E → C that has no
guiding quasiconformal isotopy.

Proof. Since C − X has a component containing more than one point, we can
use two points in this component and a square root map to map X into a half-
plane. Then applying a Möbius transformation, we can assume that X is a bounded
planar domain such that C−X has one unbounded component and several bounded
components.
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Suppose z0 ∈ E − {0, 1,∞}. Since X is planar, we can map it conformally to a

planar domain X̃ containing only one point z0 in E. Thus we have a domain X̃ such

that z0 ∈ X̃ and X̃ ∩ (E − {z0}) = ∅ and 0 is in a bounded component of C − X̃

and E −{0, z0} are all in the unbounded component of C− X̃ and a conformal map

z = φ(t) : X → X̃ such that φ(t0) = z0. Define h(t, z) = z for any z 6= z0 and
t ∈ X and φ(t, z0) = φ(t). Then h is a holomorphic motion with non-trivial trace
monodromy. From Theorem 4, it does not have a guiding quasiconformal isotopy. �

Remark 1. When the cardinality of E is 4 and X = C − {0, 1} is the thrice-
punctured sphere with a base point t0, Douady constructed the following counterex-
ample. Let E = {0, 1,∞, t0}, let h(t, z) : X × E → C and define h by h(t, 0) = 0,
h(t, 1) = 1, and h(t,∞) = ∞, and h(t, t0) = t. Then Douady showed that h is a maxi-
mal holomorphic motion and, therefore, cannot be extended further. Since an annulus
A can be thought as a covering space of the thrice-punctured sphere, there is a cover-

ing map π : A → X. Earle considered h̃(t, z) = (π∗h)(t, z) = h(π(t), z) : A× E → C

and showed it is a maximal holomorphic motion and so it also cannot be extended
further. See [8] for these two counterexamples and the definition of a maximal holo-
morphic motion. The topological obstruction defined in [3] gives us more flexibility
to construct more counterexamples. One can find other counterexamples when the
parameter space is the punctured disk in [3] or an annulus.

Remark 2. In [3] it is shown that when card(E) = 4 a holomorphic motion

h : X × E → C can be extended to a holomorphic motion h̃ : X × C → C if, and
only if, its trace monodromy is trivial.
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