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Abstract. This paper concerns Hopf’s boundary point lemma, in certain CP™-type domains,
for a class of singular /degenerate PDE-s, including p-Laplacian. Using geometric properties of levels
sets for harmonic functions in convex rings, we construct sub-solutions to our equations that play
the role of a barrier from below. By comparison principle we then conclude Hopf’s lemma.

1. Introduction

1.1. Background. Construction of barriers is among many important and
fundamental tools in the analysis of partial differential equations. Barriers may be
used to quantify the behavior of solutions to partial differential equations close to
the boundary of the bulk domain. One of many consequences of barriers is the
Hopf’s boundary point lemma (or principle), originated in a paper by Hopf [Hopf],
and later developed in many diverse forms. Hopf’s boundary principle states that a
super-solution to a partial differential equation with a minimum value at a boundary
point, must increase (away from this boundary point) with a given quantity that is
dictated by the ingredients of the problem. In particular it means that the function
increases in a linear fashion away from its minimum value on the boundary, provided
the boundary is smooth enough.

This boundary point lemma has been successfully developed and applied to many
different problems. The main tool in proving it uses a simple barrier and the maxi-
mum principle. Therefore, the Hopf’s lemma can be deduced once we have a barrier.
In domains with enough boundary regularity (say C?) one can actually construct
simple (spherical) barriers for second order uniformly elliptic equation; K. Widman
proved the result for domains of Liapunov-Dini type (see below). Hopf’s lemma for
other operatros, in particular the p-Laplacian, has been shown by Tolksdorf (see [T,
Proposition 3.2.1]) for domains whose boundary has interior touching ball.

It would be interesting to see whether ideas in this paper can be developed to yield
further results on related type of problems. E.g., the strong comparison principle for
singular/degenerate operators is still unknown, even though there are partial results
in the literatures (see [T, Dam)]).
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In this paper we consider Hopf’s lemma, in certain CVP"-type! domains, for the
following type of operators

(1) Agu = div(H(|Vu|)Vu),

where H(t) =t~ 'h(t), h(0) = 0 and h(t) is a monotone increasing continuous func-
tion, satisfying some structural conditions (see Section 1.3).

1.2. Main result. The main result of this paper is the following extension of
Widman’s result to a wider class of operators (1), for which p-Laplacian is a par-
ticular case, in Liapunov-Dini domains with convex-Dini modulus of continuity (see
Definition 5 below). A simple consequence of our result (Remark 8) is the boundary
Harnack principle for H-harmonic functions in domains with convex-Dini boundary.
For p-Laplacian case the boundary Harnack principle was settled in Lipschitz domains
in [LN]. It seems plausible that the techniques in |[LN] can be applied to derive similar
results as ours, but that would require a detailed technical study and adaptation of
a deep and highly technical analysis to our case. In light of this technical machinery
our approach seems very easy and almost elementary.

Theorem 1. Assume u is a weak solution of equation (1) in the domain D.
Further assume 0 € 0D, 0D satisfies the inner convex-Dini condition at 0 (see Defi-
nition 5 below) and

u(x) >u(0) forall z € D.

Then there exist positive constants vy and ¢ such that

max u(x) —u(0) > cr,

for 0 < r < ry.

The proof of this theorem shall need several tools and definitions that will be
introduced in the next subsections. The proof then will be given in Section 2.

1.3. Structural conditions. In order to formulate the main result we shall
need a few definitions, and notations. For simplicity we shall call the weak solutions
of (1) H-harmonic functions. This type of operators arise in applications dealing
with flows where the flow-rate is proportional to

Vu
V|

Let us now list all the assumptions we impose on h, that can formally be divided
into three groups:

H(|Vu|)Vu = h(|Vul)

e physical (see equations (2)),
e coercive (see equation (4), or (5)),
e technical (see equation (6)).

The following three conditions on h have physical nature.

e h(0) = 0: with vanishing gradient flow vanishes;
(2) e monotonicity of h(t): larger gradient = more flow;

e H depends only on |Vu|: isotropy with respect to the position and direction.

IThe additional condition we impose on the Dini modulus of continuity €(t) is that the function
te(t) is convex (more discussion in Section 1.4).
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Equation (1) is the Euler-Lagrangian of the functional

3) szémwmm

where F(t) = fg h(t)dr, F € C*(][0,0)), F(0) = F'(0) = 0 and F is strictly convex.

The coercivity condition is needed to assure the existence of the solution (min-
imizer). It is well known that this problem is, in general, ill-posed if h is bounded.
The best illustration is the minimal surface equation

) Vu
div | —
V1+|Vul?
in the annulus Bs\ By, with boundary data 0 on 0By and M on dB;. For large enough
M the catenoid cannot reach the level M without leaving the domain B,\ B; and the

equation has no solution in W(D). To avoid this we can impose the rather strong
condition

(4) ct?~t < h(t) < Ot

for some p > 1, which makes the application of the direct methods of the calculus
of variations in the Sobolev space W'P(D), p > 1, possible (see |D]). In the special
case H(t) = t*~2 we obtain the p-Laplacian.

Alternatively we can impose a weaker coercivity condition and work in Sobolev—
Orlicz spaces W (D). Let us shortly introduce these spaces following [RR] (see also
[RR1]). The Orlicz norm is defined as follows

4|7 = min {M ) /DF ('ﬂ]\)) dr < F(l)} .

This norm defines the Banach space L¥(D). If we now denote by ¢ the inverse
function of h and define the Legendre transform of F' by

P = [ o

then assuming h(1) = 1 one can easily prove using Young’s inequality the general-
ization of Holder’s inequality

/WWSWMWW
D

If both F and its Legendre transform F™* satisfy the so-called A, condition, i.e., there
exists tg > 0, Cy > 0 such that

(5) F(2t) < CoF(t) and F*(2t) < CoF*(t) for t > to,

then
(L"(D))" = L" (D)
and, in particular, L¥ (D) is reflexive, since (F*)* = F' [RR, Theorem 10, p. 112].
Now analogously we can define the Sobolev—Orlicz space W (D) by the Sobolev—
Orlicz norm as sum of Orlicz norms of u and |Vu|. Under A, condition W1¥(D)
will be reflexive and we can apply the direct methods of the calculus of variations.
The technical condition is presented in the following remark.
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Remark 1. In our proof the function
F//(t)
() = =
F(t)
plays an important role and we need the following technical condition on R. We
assume that for every positive, monotone increasing, bounded function ¢(s) in R,

0 < c<e(s) < C < oo, there exist constants @« > 0 and § > 0, depending on
function R, and constants ¢ and C, such that

(6) [TR@@wMSza[Tngw.

Condition (6) is satisfied for more or less any “reasonable” function R = F”/F’. For
monotone decreasing R one can take a = 1, § = C (this covers the case F(t) = t?,
p > 1). The authors think that it is easier to check the condition (6) for a given
function F', than to try to introduce a broad class of functions satisfying it.

Definition 2. (H-potential) For two convex domains K; € K5 we call the min-
imizer u of

(1) J(v) = /K L FlIel) s

in the class of functions {v € W' (K5) | v =1 on K} an H-potential (see [RR]).

1.4. Liapunov—Dini boundary. In the case of harmonic functions (F(t) = ¢?)
Widman [W]| using the Green representation was able to prove a Hopf-type result
for domains with Liapunov-Dini boundary (see below). Moreover, the following
estimates for the second derivatives of the solution v of uniformly elliptic equation
with Holder continuous coefficients have been proved as well (see equation (2.4.1) in
IWI)

2 €(6(x))
© Do) < Cp 5,
where €(t) is a Dini modulus of continuity (see (3) below) and §(z) is the distance of
the point = from the boundary. It is also shown that CP™ regularity is necessary
for Hopf lemma in axially symmetric domains (see Remark 1 in [W]).

Since there is no Green representation for p-harmonic functions it is not possible
to repeat Widman’s direct estimates of the function’s growth. Our proof is based on
barrier construction and works for the general operator Ay under some regularity
assumptions on the boundary.

Let us present the definition of Liapunov—Dini surface following [W].

Definition 3. A modulus of continuity €(r) N\, 0 as » — 0 is called Dini modulus
of continuity if [t 1e(t) dt < .

Definition 4. A Liapunov-Dini surface S is a closed, bounded (n—1)-dimensional
surface satisfying the following conditions:

(a) At every point of S there is a uniquely defined tangent hyper-plane, and thus
also a normal.

(b) There exits a Dini modulus of continuity €(¢) such that if g is the angle
between two normals, and r is the distance between their foot points, then
the inequality 8 < €(r) holds.
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(c) There is a constant pg > 0 such that for any point x € S, any line parallel to
the normal at = meets SN B, (x) at most once.

In simple words the above definitions says, that the surface S is locally the graph
of a C'HPi function in a ball of fixed radius.

Since in general the function te(t) is not convex we introduce a sub-class of Dini
modules of continuity as follows.

Definition 5. A Dini modulus of continuity €(r) is called convex-Dini if the
function te(t) is convex.

Note that domains with CY® boundary are convex-Dini. The introduction of
such a sub-class is necessary because our proof relies on the construction of barriers
in convex rings with C''P™ boundary. It it in general not true that for any Dini
modulus of continuity €(¢) there is another Dini modulus of continuity é(t) > €(t)
such that té(t) is convex.

Remark 6. If the Dini modulus of continuity is convex-Dini then a domain D
with Liapunov-Dini boundary satisfies a kind of inner (outer) convex C1P™ condition
in the following sense: There exists a convex Liapunov-Dini domain K such that for
any point xy € 0D there exists a translation and rotation K,, of the domain K
satisfying

K,,cD, (K,,CR"\D) and 0K,, NID = {x}.

Moreover, we can take
K=K,, =B,,(0,...,0,rp)) N {z | z, > 2|2'|e(|2'])},

where x = (2/,x,), 'p < pap/2 and € is the convex-Dini modulus of continuity.
Without loss of generality (if necessary by modifying e at “corners” with 0B, ((0, ...,
0,7p))) we can assume that K has smooth boundary. Let us also observe that for
any a > 0 by taking rp small enough we can have

B(l_a)rD((O, RN 0, TD)) c K.
Let us assume that for rp

9) Bs, ((0,...,0,7p)) € K.

1D

In the sequel we will use as barriers the H-potentials in the convex rings

(10) K\B,,,2((0,...,0,7p)) and DBs.,((0,...,0,—rp))\(—K),

where — K is obtained from K by symmetry with respect to the origin. We will refer
to convex rings (10) as inner and out convex rings.

2. Proof of main result

Without loss of generality we can assume that the outer normal of 0D a the
origin is (0,...,0,—1). Since for the solutions of (1) we have the maximum principle
(see Appendix II) we need to construct a barrier in the inner convex ring from (10).

Actually we will construct barriers in arbitrary convex ring K\ Kj, where K €
Ky are two convex domains with Liapunov-Dini boundary.

From the Hopf lemma for harmonic functions (|[W]) we know that if Aw =0 in
K,\ K7, with boundary values w = 0 on 0K, and w = 1 on 0K; then Vw # 0 on
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O(K3\K7). Now we will prove the existence of a convex, smooth, monotone increasing
function f: [0,1] — [0,1], f(0) =0, f(1) =1, f(0) > 0, f'(1) < oo such that

(11) Agf(w) >0

in Ky\K;. This will mean that the function f(w) is a subsolution for Ay, has

non-vanishing gradient at any boundary point and thus can be used as a barrier.
We start by computing
H'(|V f(w)])
Ap f(w) = H(Vf(w))Af(w) + —577 57—
[V f(w)]

where Au = VuD?*uVu is the oo-Laplace operator. Using

Af(w) = f'(w)Aw + f"(w)[Vw]* = f"(w)[Vw?,

Ao f(w),

and
Ao f(w) = (f'(w))*Ascw + (f'(w))? f" (w)| V],
we arrive at

A f(w) = H(f'(w)|Vw|) f"(w)|Vuw|?

(12) H'(f'(w)[Vwl) T, 0 e \
el L) A (7)) Vol

We thus need to find a function f, such that f'(¢) > 0 for t € [0, 1] and Ag f(w) > 0.
To comply with the latter we need (see (12))

£ @)V H(f ()| Vwl) + £ ()| Vool H (£ (w)| Vu]) |

_H'(f'(w)[Vw))
— f'(w)[Vul

which after substitution H'(t) = Fl;(t) - F;gt) and H(t) +tH'(t) = F"(t) simplifies to

(f'(w))* Accw,

" F(f(w)[Vwl) -
(13) )= (e~ Fwl vl ) Vel A
Let us note that
(14) 0=Aw=0,,w— (n—1)kd,w,

where v is the unit vector in the direction of Vw and & is the mean curvature of the
level set; here we have used that the level sets of a positive harmonic potential are
smooth. From this we conclude

Asow = (0,w)*0,,w = (n — 1)k|Vwl|?.

Since the level sets of a harmonic potential in a convex ring are convex (see |L|),
the mean curvature and thus A w is positive near the boundary. This along with
f'(w) > 0 and (13) (which is yet to be proven) implies that it is enough to find a
function f such that
(15) P ) R( ()| Val) > [Vul * A,
where R(t) = I;,/((f)).

The Hopf lemma proved in [W] for harmonic functions yields

(16) 0<c< |Vw(z)| <C < oo,
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where the constants ¢ and C' depend only on the convex ring. Using this we easily
obtain

cmin(w(z),l —w(z)) < §(z) < Cmin(w(z), 1 —w(x))
and together with (8)
€(d(x))
‘ o(x)
¢(Cmin(w, 1 —w)) _ C(w),

cmin(w, 1 — w)

|Vw| | Asw| < ¢ 3| D*w| < ¢3Cp min

< c*Cp

where ((t) € L'(]0, 1]) depend only on the convex ring.
In order to have (15) we need to construct a function f such that

(17) f"(w)R(f'(w)|Vw]) = ¢(w).

For any = € K5\ K let us denote by ¢, the gradient flow line of w which contains x.
Let us parametrize the curve £, by w € [0,1]. We can now integrate (17) on any ¢,
in parameter w

w2 w2
(18) f ) R(f(w)|Vw])dw = [ ((w) dw,
w1 w1
Observe that since the level sets of w are convex the function |Vw| on £, as a
function of w are monotone increasing (see equation (14)), but on the other hand we
know that it is bounded by (16). Thus we can apply our technical condition (6)

w2 f(w2) f(w2)
£ (w)R(f ()| V] duw = / Rc(s)s)ds > a / R(Bs) ds,
w1 F(w1) f(wr)

where s = f’(w) and the function ¢(s) = |Vw|(s) > 0 is a monotone function such
that ¢ < ¢(s) < C.
If we now construct a function f such that

I/ (w2) w2
(19) a / R(3s) ds > / C(w) duw
f(w1) w1

for all 0 < wy; < wy < 1, then for this function f the inequality (18) will be satisfied
for all gradient flow lines ¢, and thus the inequality (17) will be satisfied everywhere
in K5\ K7, and we would be done.

Since F'(0) = 0 and F’(c0) = o0, the function R(t) = ?,;((Z’)) is not integrable near
zero and at +oo, due to

/t R(7)dr =log ];,((jt;)

As w; — 0 and wy — 1 the right hand side of (19) remains bounded (¢ € L'(0,1))
and we can write

f'(w2) « w2
@0) o " Ris)ds = G Qos F(3 () ~log P ) = [ ¢y o

Now we can take f'(0) =m > 0 and construct

(21) f(w) = §71g (F'(Bm)es <)
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where ¢ is the inverse function of h = F’" on R*. Thus we obtained that (11) is
satistied for f(w) = [" f'() dr, where fis given by (21).

By changing the parameter m € (0,00) we can construct f such that f(1) is any
positive number.

The proof of the theorem now will easily follow from applying the barrier f(w)
in the inner convex ring (10) with the parameter m to be chosen such that

1) = min u(z) > 0.
f( ) ZGBTD/Q((O 7777 07TD)) ( )

Remark 7. Observe that if f(w) is a sub-solution of (1) then in general we can-
not say anything about the function a.f (w), and we should construct the appropriate
sub-solution by changing the parameter m in (21).

Remark 8. If the boundary value of a non-negative H-harmonic function
vanishes in a neighborhood of y and the boundary 0D satisfies the outer convex
ChPini condition at y, then we can apply the super-solution barrier f(1) — f(w) in
the outer convex ring (see (10)), and obtain the Lipschitz bound

u(z) < CMdist(z, K),
for x € B,,(y) N D, where r, C' depending only on D and M = maxp, () u.

Remark 9. One can make the condition (6) even weaker: there exists a constant
a > 0 and a monotone increasing continuous function

L:R"—=R", L(0)=0, L(oco)=o00
such that

T L(T)
(22) /t R(c(s)s)ds > a/L(t) R(s)ds.

For functions F' satisfying (22) one will obtain
1) = L7 g (F/(Lm))es <o)
where ¢ is the same as in (21).

3. Appendix: A comparison principle

The comparison principle for p-harmonic functions is well known (see [HKM]),
but for the general operator Ay we could not find a reference. Therefore we shall
present a proof of this.

Theorem 2. Let u be a weak solution of (1) and v be its weak sub-solution in
the domain D with C' boundary. Further let v < w on 0D in the sense of trace
operator. Then v < w in D.

Proof. Let us denote by F* the Legandre transform of F. Observe that g(t) =
(F*(t)) is the inverse function of the function h(t) = F'(t). By Young’s inequality

ab < F(a) + F*(b)

and the equality holds if and only if b = h(a).
If w is weak solution of (1) then from the convexity of F' it follows that

[ F(vupds < [ BTl ds
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for any w such that u —w € Wol’p(D). Otherwise
/F(\V(u+t(w—u))|) < (1—t)/ F(\Vu|)dx+t/ F(|Vuwl) dz
D D D

< / F(|Vu|)dz — et
D

for some € > 0 and differentiating in ¢ we obtain
(23) / H(Vu)VaV (4 — w) dz < 0,
D

which gives a contradiction after approximating v —w € VVO1 P(D) by a test function
¢ € C(D).

Let us now assume that v £ u and take as a test function ¢ = (v — u)*. By the
definition of the sub-solution

/ H(|Vv|) VoV dz < 0.
D

Thus
H(|Vv|)VoVude < H(|Vv|)VoVudz,

D1 Dl

where Dy = supp ¢ C D. Using now Young’s inequality we obtain

H(|Vv|)VoVudz < / R(|Vv|)|Vu| dx

Dy

(24) o
g/D F(|Vu|)d:)3+/D F(h(|V)) de.

Since h(t) = F'(t) = tH(t), and Young’s inequality is an equality for b = h(a), we
deduce

H(|Vv|)VuVudr = / h(|Vv|)|Vo| dz

(25) by Dy

~ [ F(ohda+ [ P09 d

Dy

By (23)—(25) we arrive at

[ (i< [ R,

D1 Dy

where the inequality is strict unless Vu = Vv a.e. in D;; a contradiction in since
u—ve WP (Dy). O
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