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Abstract. A transcendental entire function fa(z) = z+ ez + a may have a Baker domain or a

wandering domain, which never appear in the dynamics of polynomials. We consider a sequence of

polynomials Pa,d(z) = (1+ a/d)z+(1+ z/d)d+1+ a, which converges uniformly on compact sets to

fa as d → ∞. We show its dynamical convergence under a certain assumption, even though fa has

a Baker domain or a wandering domain. We also investigate the parameter spaces of fa and Pa,d.

1. Introduction

LetX be the complex plane C, the complex sphere Ĉ = C∪{∞} or the punctured
plane C∗ = C \ {0}. We consider iterates of analytic self-maps of X. Fundamental
facts of iteration theory can be found in [2, 3, 9, 24]. Let f be an analytic self-map

of X. If X = Ĉ, then f is rational and if X = C and f cannot be continuously

extended to Ĉ, then f is transcendental entire. The maximal open subset of X
where the family {fn} is normal is called the Fatou set of f and denoted by F (f).
The complement of F (f) in X is called the Julia set of f and denoted by J(f). Fatou
sets and Julia sets are completely invariant. A connected component of F (f) is called
a Fatou component. A Fatou component U is called periodic if f p(U) ⊂ U holds for
some p ∈ N. Periodic components are well understood and are completely classified
into five cases. A component named a Baker domain is a periodic one where the
limit function of {fn} is not contained in X. By definition, rational functions do not
have Baker domains. Furthermore, if a transcendental entire function has a Baker
domain, then the limit function defined there is infinity. See [26] for a survey on Baker
domains. Singular values play an important role in the study of complex dynamics.
Here, singular values are critical values, asymptotic values or points in the closure of
the set of critical and asymptotic values. If a function has only finitely many singular
values, then it is called of finite type. Every type of periodic components except
Baker domains has a relationship with singular values which is useful to estimate the
number of the non-repelling cycles. We call a component U of F (f) is wandering if
fn(U) 6= fm(U) for all n and m (n 6= m). Sullivan [27] showed that rational functions
do not have wandering domains. As similar results on Baker domains and wandering
domains of rational functions, if a transcendental entire function is of finite type, then
it has neither Baker domains nor wandering domains (see, for example, [9, 13]). The
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possibility of existence of Baker domains or wandering domains is a great difference
between dynamics of rational functions and that of transcendental entire functions.

For an entire function f , the escaping set of f is defined by

I(f) = {z | fn(z) → ∞ as n→ ∞}.

If f is a polynomial, then infinity is a super-attracting fixed point and thus I(f)
is its immediate basin, which is contained in F (f). For a general transcendental
entire function f , Eremenko [8] studied it and proved that I(f) 6= ∅, J(f) = ∂I(f)
and I(f) ∩ J(f) 6= ∅. Obviously, Baker domains and wandering domains tending
to infinity are contained in escaping sets. Before his study, Devaney and Krych
[6] showed that the Julia set of λez contains uncountable many curves tending to
infinity for some λ. Each point of the curves except the end points tends to infinity
under the iterate of λez. Hence every curve without its end point is contained in
the escaping set. Each curve is a so-called hair and the union of hairs is a so-called
Cantor bouquet.

One approach to investigate the dynamics of a transcendental entire function
is to consider some suitable sequence of polynomials which converges uniformly on
compact sets to it. Bodelén et al. [5] considered the exponential family Eλ(z) = λez

and families of polynomial maps Qλ,d(z) = λ(1+ z/d)d. For a fixed λ, Qλ,d converges
uniformly on compact sets to Eλ as d → ∞. One of the important facts is that
Eλ has only one singular value and so do Qλ,d in C. This implies that Eλ and
Qλ,d have at most one non-repelling cycle and that they have neither Baker domains
nor wandering domains. Hence we obtain bifurcation sets for Eλ and Qλ,d just like
defining the Mandelbrot set in the case of quadratic polynomials. They showed the
hyperbolic components of the parameter planes of Qλ,d converge to those of Eλ as
d→ ∞. They also showed that for some parameters λ, hairs defined forQλ,d converge
point wise to the corresponding hairs defined for Eλ as d → ∞. We note that every
hair for Qλ,d is contained in F (Qλ,d) except its endpoint and that every hair for Eλ

is contained in J(Eλ). In this context, Krauskopf [15] considered how the Julia set
J(Qλ,d) tends to J(Eλ) as d → ∞. By definition J(f) is contained in C if f is

transcendental entire. We denote J(f)∪{∞} by Ĵ(f). We note that it is a compact

set in Ĉ. He showed that if Eλ has an attracting cycle, then J(Qλ,d) converges to

Ĵ(Eλ) in the Hausdorff metric. Kisaka [14] extended this result as follows: Assume a
sequence of polynomials Pn converges uniformly on compact sets to a transcendental
entire function f as n → ∞. If F (f) contains all the singular values and consists

only of basins of attracting cycles, then J(Pn) converges to Ĵ(f) in the Hausdorff
metric (see also [16] as remark). Krauskopf and Kriete [18] proved the similar results
for meromorphic functions. Moreover, the same authors [17] considered convergence
of hyperbolic components in a parameter plane in more general case. However, they
treated a family of entire functions of constant finite type, that is, there exists a finite
constant that equals the number of the singular values of each function.

In this paper, we consider a one-parameter family of transcendental entire func-
tion fa(z) = z + ez + a. It has infinitely many singular values (2n + 1)πi + a − 1
(n ∈ Z). It is easy to check that f−1 has a Baker domain by the similar argument
that shows Fatou’s first example of a Baker domain (see [10]). Furthermore, for some
parameters, fa has wandering domains, where a limit function is always infinity. It is
clear that Pa,d(z) = (1+a/d)z+(1+z/d)d+1+a converges uniformly on compact sets
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to fa. Recall that Pa,d has neither Baker domains nor wandering domains. Therefore,
we are interested in a dynamical approximation of fa by Pa,d. We show that J(Pa,d)

converges to Ĵ(fa) in the Hausdorff metric under the assumption that exp fa(z) has
an attracting cycle, even though fa has a Baker domain or a wandering domain (The-
orem 13). Roughly speaking, in this case, a Baker domain is a limit of a sequence of
attracting immediate basins growing bigger. Analogously a wandering domain is a
limit of a sequence of periodic components whose periods tend to infinity. In [23], we
see the results for a = −1 as a case of a Baker domain and for a = 2πi as a case of
wandering domains with rough sketch of proofs. In this note, the proof for the case of
wandering domains is quite different from that in [23]. We also remark that Garfias
[12] considered the convergence to Baker domains of functions z 7→ z − 1 + λzez.

This paper is organized as follows. In Section 2, as a preliminary, we define
two convergences, the Hausdorff convergence and the Carathéodory convergence.
The relationship between the convergences is considered from the view point of the
uniform convergence on compact sets of a sequence of polynomials. Section 3 deals
with fa. To understand the dynamics of fa, we introduce the idea of logarithmic lifts.
The bifurcation set in the parameter space of fa is defined and its components are
investigated. Section 4 deals with Pa,d. We consider hyperbolic components of its
bifurcation set. We also see some sequences of hyperbolic components of Pa,d converge
to components in the bifurcation set of fa functions corresponding to which have
wandering domains. In Section 5, we are concerned with the Hausdorff convergence

of J(Pa,d) to Ĵ(fa).

2. The Carathéodory convergence and the Hausdorff convergence

We introduce two ideas of convergence. The first one is a convergence of compact

sets in Ĉ. Let ρ be the spherical metric on Ĉ. We denote the ε-neighborhood of a

set A in Ĉ by Uε(A). The Hausdorff distance between two non-empty compact sets
A and B is defined by

d(A,B) = inf{ε > 0 | A ⊂ Uε(B), B ⊂ Uε(A)}.

This distance defines the Hausdorff metric on the set of all the non-empty compact

sets in Ĉ. Let K and Kn (n ∈ N) be non-empty compact sets in Ĉ. We say that Kn

converges to K in the Hausdorff metric, if d(Kn, K) → 0 as n→ ∞.

The second one is a convergence of open sets in Ĉ. Let O and On (n ∈ N) be

open sets in Ĉ. We say that On converges to O in the sense of Carathéodory, if the
following two conditions hold:

(1) for an arbitrary compact set K ⊂ O, there exists N ∈ N such that K ⊂ On

for all n > N , and
(2) if an open set U is contained in On for infinitely many n, then U ⊂ O.

Two ideas of the convergence defined above have the following relationship.

Lemma 1. Non-empty closed set Kn converges to K in the Hausdorff metric if
and only if the complement of Kn converges to the complement of K in the sense of
Carathéodory.

These concepts are formerly used, for example, in a study of Kleinian groups: the

convergence of limit sets, which are compact sets in Ĉ and the convergence of ordinary
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sets, which are complements of limit sets. The proof of Lemma 1 is straightforward.
We find an outline of the proof, for example, in [21].

To consider the Hausdorff convergence of Julia sets, we deal with Ĵ(f) = J(f) ∪
{∞} instead of J(f), if f is transcendental entire. Douady [7] showed that the
Hausdorff convergence of Julia sets of polynomials is lower semicontinuous. This can
be proved by the density of repelling periodic points in Julia sets and the Hurwitz
theorem. Hence we easily extend the result as follows.

Proposition 2. Let f be a transcendental entire function and Pn be polynomials.
If Pn converges uniformly on compact sets to f , then, for an arbitrary ε > 0, there
exists N ∈ N such that

Ĵ(f) ⊂ Uε(J(Pn))

for all n > N .

From the lemma above, Proposition 2 is rephrased as follows.

Proposition 3. Let f and Pn be as in Proposition 2. If there exists an open set
U such that U ⊂ F (Pn) for infinitely many n, then U ⊂ F (f).

From the proposition above, to prove the Carathéodory convergence of Fatou
sets, we only need to show that the condition (1) is satisfied.

3. Functions fa(z) = z + ez + a

3.1. To understand the dynamics of fa, we introduce the idea of logarithmic
lifts. Let g be an analytic self-map on C∗. Then there exists an entire function f
satisfying

exp f(z) = g(ez).

We call it a logarithmic lift of g. The difference of arbitrary two logarithmic lifts of
g is a multiple of 2πi. Bergweiler [4] showed that exp−1 J(g) = J(f) if f is neither
linear nor constant. For a set A ⊂ C and a constant a ∈ C, {z + a | z ∈ A}
is written by A + a. A logarithmic lift f satisfies F (f) = F (f) + 2πi. From this
property, examples of functions which have wandering domains can be constructed
(see [1]).

We consider following two families of functions:

gλ(z) = λzez and fa(z) = z + ez + a,

where λ ∈ C∗ and a ∈ C. Since exp fa(z) = gλ(e
z) for λ = ea, fa(z) is a logarithmic

lift of gλ(z). Hence fa+2πki(z) also is a logarithmic lift of gλ(z) for all k ∈ Z. We see
that, for k ∈ Z,

fa(z + 2πki) = fa(z) + 2πki and fa+2πki(z) = fa(z) + 2πki

and by induction we have

fn
a (z + 2πki) = fn

a (z) + 2πki and fn
a+2πki(z) = fn

a (z) + 2πkni

for n ∈ N (see [4]).
Here we show a rough sketch of the reason why fa has wandering domains for

some a. It might help readers intuitively understand the proof of Theorem 13. For
A ⊂ C∗, we call {z | ez ∈ A} the logarithmic lift of A. Choosing η so that |1+η| < 1,
we see that ge−η(z) has an attracting fixed point η. As a logarithmic lift of ge−η(z),
we consider f−η(z) = z + ez − η. The logarithmic lift of {η} is denoted by Q. Every
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point of Q is an attracting fixed point of f−η. Take one point of Q and denote
it by ζ . Then points of Q are written by ζ + 2πki, where k ∈ Z. Every Fatou
component containing ζ + 2πki, which we denote by Dk, is disjoint from the others.
Since F (f−η) = F (f−η+2πi), Dk is a component of F (f−η+2πi), too. We see that

fn
−η+2πi(Dk) = Dk + 2πni = Dk+n.

Therefore Dk is a wandering domain of f−η+2πi. Furthermore, the argument above
also implies that the limit function of every wandering domain is always infinity.

3.2. We briefly look at gλ(z) = λzez for λ ∈ C∗. This family was considered in
[11, 19, 22]. Each gλ(z) has two singular values. One is a critical value gλ(−1) =
−λ/e and the other is the asymptotic value 0. The finiteness of the number of
singular values implies that gλ has neither Baker domains nor wandering domains.
The asymptotic value 0 is always a fixed point of gλ. Assume that 0 is an attracting
fixed point and let A be its immediate basin. Choose a sufficiently small neighborhood
U of 0 in A so that U does not contain the critical value. Hence g−1(U) consists of
two components, say U1 and U2, both of which are contained in A, because gλ is not
univalent on the attracting immediate basin. Suppose U1 contains 0. There exist two
components of g−n

λ (U1), say Un
1 and Un

2 , satisfying U1 ⊂ Un
1 and U2 ⊂ Un

2 for every
n ∈ N. Since A =

⋃
n(U

n
1 ∪ Un

2 ), there exists n ∈ N such that Un
1 ∩ Un

2 6= ∅. This
shows that Un

1 ∩Un
2 contains the critical point and thus so does A. Therefore gλ has

at most one non-repelling cycle for every λ ∈ C∗ and the behavior of the orbit of the

critical value determines the dynamics. The bifurcation set M̃ of gλ is defined as

M̃ = {λ ∈ C∗ | {gnλ(−λ/e)} is bounded}.

Let H̃ be the set

H̃ = {λ ∈ C∗ | gλ has an attracting cycle}.

We call a connected component of H̃ an a-component of M̃ . We define the sets

V0 = {λ | 0 < |λ| < 1} and V1 = {λ = e1−µ | |µ| < 1}.

Note that V0 is doubly connected. Kremer [19] showed the following proposition.

Figure 1. The bifurcation set of gλ. Range: −2.5 ≤ Reλ ≤ 17.5, −4 ≤ Imλ ≤ 4.
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Proposition 4. Each of V0 and V1 is an a-component of M̃ corresponding to an
attracting fixed point. Conversely, if gλ has an attracting fixed point, then λ belongs
to V0 or V1. If λ belongs to V0, then 0 is an attracting fixed point and F (gλ) consists

of exactly one component. Each a-component of M̃ except V0 is open and simply
connected.

Remark. In general, an entire function is called hyperbolic if each singular value
is contained in the Fatou set and is attracted by an attracting cycle. For example,
in the parameter space of the set of quadratic polynomials {z 7→ z2 + c | c ∈ C}, the
subset of all the hyperbolic functions is open. Its connected components are called
hyperbolic components. Each component corresponds to a period of an attracting
cycle. Hyperbolic components are one of the most important objects in the study of
complex dynamics. In the case of our family, if |λ| > 1, then the asymptotic value
0 is a repelling fixed point. Hence gλ is not hyperbolic even though λ is contained

in H̃. However, since 0 is a fixed point, gλ has a nice property like the hyperbolicity

for λ ∈ H̃ (see, for example, [22]). Thus we are interested in connected components

of H̃.

3.3. Since fa may have a Baker domain or wandering domains where a limit
function is infinity, we define the bifurcation set M of fa by the logarithmic lift of

M̃ , that is,

M = {a ∈ C | ea ∈ M̃}.

The logarithmic lift of V0 is {a | Re a < 0}, which we denote by B. Summarizing
Lauber’s results in [20] what we need in this paper, we state the following theorem.

Theorem 5. For a ∈ B, fa has a Baker domain which is the only component of
F (fa). Conversely, if fa has a Baker domain, then a ∈ B.

The logarithmic lift of each a-component of M̃ except V0 consists of infinitely
many components. For any two of these, say U1 and U2, there exists k ∈ Z such that
U2 = U1 + 2πki.

Theorem 6. Let U be a component of the logarithmic lift of some a-component

of M̃ except V0. Then, for a ∈ U , F (fa) only consists of either attracting basins or
wandering domains. If fa has wandering domains, then fa′ has wandering domains
for every a′ ∈ U .

Proof. Theorem 5 shows that fa has no Baker domain. Suppose fa has a non-
repelling periodic point of period p, say ζ . We write λ = ea. Since gpλ(e

ζ) = eζ

and (gpλ)
′(eζ) = (f p

a )
′(ζ), eζ is a non-repelling periodic point of gλ. Hence eζ is an

attracting periodic point and thus so are ζ + 2πki for k ∈ Z. Let D be a component
of F (fa) and denote exp(D) by E. Since E is a component of F (gλ), there exists
n ∈ N such that gnλ(E) contains eζ . Therefore fn

a (D) contains ζ + 2πki for some
k ∈ Z. This gives that F (fa) consists of only attracting basins.

Assume that fa0 has wandering domains for a0 ∈ U . We write λ(a0) = ea0 . Let
ζ(a0) be an attracting periodic point of gλ(a0) of period p. Take a point w(a0) of the
logarithmic lift of ζ(a0). As it was seen in § 3.1, there exists k ∈ Z∗ = Z \ {0} such
that (f p

a0
(w(a0)) − w(a0))/2πi = k. From the continuity of (f p

a )
′(z) with respect to

z and a and the Hurwitz theorem, there exists ε > 0 such that fa has an attracting
periodic point ζ(a) of period p for all a satisfying |a− a0| < ε. Due to the continuity
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of ζ(a), we can take a point w(a) of the logarithmic lift of ζ(a) so that it is continuous
with respect to a. Since (fa0(w(a0))−w(a0))/2πi takes only integers and is continuous
with respect to a, it is constant in {a | |a− a0| < ε}. The component U being open,
we see that every fa has wandering domains for a ∈ U . �

A component U of the logarithmic lift of an a-component of M̃ is called an a-
component of M if fa has an attracting periodic point for some and therefore for all

a ∈ U . A component U of the logarithmic lift of an a-component of M̃ is called an
w-component of M if fa has wandering domains for some and therefore for all a ∈ U .

Theorem 7. The logarithmic lift of every a-component of M̃ has at most one
a-component of M .

Proof. It is clear if an a-component is V0. Assume that the logarithmic lift of
an a-component except V0 has an a-component, say W . Any other component of
the logarithmic lift is given by W + 2πki for k ∈ Z∗. Take a ∈ W and let D be an
attracting periodic component of fa. Then D again is a Fatou component of fa+2πki

and satisfies

f p
a+2πki(D) = D + 2πkpi.

Hence D is a wandering domain of fa+2πki. �

Remark. There exist a-components of M̃ whose logarithmic lift only con-
sists of w-components of M . For example, let λ0 be the negative real root of
λ2 = eλe

−1+1, which is approximately −1.29844 . . . . The function gλ0
has an at-

tracting two cycle, which is {−1,−λ0/e}. Since every logarithmic lift of gλ0
(z) is of

the form flog |λ0|+(2k+1)πi(z) = z + ez + log |λ0| + (2k + 1)πi for some k ∈ Z, we see
f 2
log |λ0|+(2k+1)πi(πi) = (4k + 3)πi. Hence every component of the logarithmic lift of

the a-component of M̃ containing λ0 is a w-component of M .

One component of the logarithmic lift of V1 is given by {a | |1 − a| < 1}, which
we denote by A0. Any other components of the logarithmic lift are given by {a |
|1 + 2πki− a| < 1} for k ∈ Z∗, which we denote by Wk.

Proposition 8. A0 is an a-component ofM andWk’s (k ∈ Z∗) are w-components
of M .

Proof. We denote the principal branch of logarithm by Log z = log |z| + i arg z,
where arg z satisfies −π < arg z ≤ π. Every fixed point of fa is given by zk =
Log(−a)+2πki for k ∈ Z. They are attracting if and only if |f ′

a(zk)| = |1−a| < 1. �

4. Functions Pa,d(z) =
(
1 + a

d

)
z +

(
1 + z

d

)d+1
+ a

Every polynomial

Pa,d(z) =
(
1 +

a

d

)
z +

(
1 +

z

d

)d+1

+ a

has d critical points in C

cka,d = −d+ d d

√∣∣∣∣
d+ a

d+ 1

∣∣∣∣e
i(θ/d+2πk/d)
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for k = 0, 1, . . . d − 1, where θ = arg(−(d + a)/(d + 1)) satisfying −π < θ ≤ π. We

note that the all are on the circle {z | |z + d| = d d
√

|d+ a/d+ 1|} and divide it into
d arcs of same length. The set of all the critical points of Pa,d is denoted by Ca,d.

We define auxiliary functions

ϕd(z) = −d + (z + d)ei2π/d and ψd(z) = −d+ (z + d)ei2π/d
2

for d ∈ N. These are rotations around −d of angle 2π/d and of angle 2π/d2, respec-
tively.

Proposition 9. The action of Pa,d has rotation symmetry around −d of angle
2π/d, that is , Pa,d(ϕd(z)) = ϕd(Pa,d(z)) holds. In particular, ϕd(F (Pa,d)) = F (Pa,d)
and ϕd(J(Pa,d)) = J(Pa,d) hold. Assume Pa,d has an attracting cycle. If it has another
non-repelling cycles, then they are attracting of the same period.

Proof. A straightforward calculation gives Pa,d(ϕd(z)) = ϕd(Pa,d(z)). By induc-
tion, we have P n

a,d(ϕd(z)) = ϕd(P
n
a,d(z)) for all n ∈ N. It immediately follows that

ϕd(F (Pa,d)) = F (Pa,d) and ϕd(J(Pa,d)) = J(Pa,d) from the definitions of Fatou sets
and Julia sets.

Assume Pa,d has an attracting cycle. Its immediate basin contains at least one
critical point. The number of all the accumulation points of its orbit is finite, which
is the period. For any critical point, the number of those is the same as above. The
claim is obtained. �

Proposition 9 shows that the dynamics of Pa,d is essentially determined by the
behavior of the orbit of one critical point since all the critical points are equally
distributed on the circle centered at −d. Fixing d, we denote one of the critical
points of Pa,d by ca. We define the bifurcation set of Pa,d as

Md = {a ∈ C | {P n
a,d(ca)} is bounded}.

In addition, we call a component of

{a ∈ C | Pa,d has an attracting cycle}

a hyperbolic component of Md according to the standard definition.

Theorem 10. The bifurcation set Md has a rotation symmetry around −d of
angle 2π/d, that is, ϕd(Md) =Md holds.

Proof. The definition of ϕd and a simple calculation show that

Pϕd(a),d(z) =
(
1 +

a

d

)
ei2π/dz +

(
1 +

z

d

)d+1

− d+ (d+ a)ei2π/d.

Hence we have

Pϕd(a),d(ψd(z)) = ei2π/dei2π/d
2

((
1 +

a

d

)
z +

(
1 +

z

d

)d+1

+ a

)
− d+ dei2π/dei2π/d

2

= ψd ◦ ϕd ◦ Pa,d(z).

Fix a and abbreviate ϕd(a) to a′. It is easy to see that Ca′,d = ψd(Ca,d). Hence, for

cka′,d ∈ Ca′,d, there exists k(0) ∈ {0, 1, . . . , d − 1} such that cka′,d = ψd(c
k(0)
a,d ). From

Proposition 9 and the formula above, we have

Pa′,d(c
k
a′,d) = Pa′,d(ψd(c

k(0)
a,d )) = ψd ◦ ϕd ◦ Pa,d(c

k(0)
a,d ) = ψd ◦ Pa,d ◦ ϕd(c

k(0)
a,d ).
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Since ϕd(c
k(0)
a,d ) is also contained in Ca,d, there exists k(1) ∈ {0, 1, . . . , d−1} such that

c
k(1)
a,d = ϕd(c

k(0)
a,d ). It follows

P 2
a′,d(c

k
a′,d) = Pa′,d ◦ ψd ◦ Pa,d ◦ ϕd(c

k(0)
a,d ) = Pa′,d ◦ ψd ◦ Pa,d(c

k(1)
a,d ) = ψd ◦ P

2
a,d ◦ ϕd(c

k(1)
a,d ).

Iterating this procedure, we obtain

P n
a′,d(c

k
a′,d) = ψd ◦ P

n
a,d(c

k(n)
a,d )

for some k(n) ∈ {0, 1, . . . , d − 1}. If a ∈ Md, then {P n
a,d(c

k
a,d)}

∞
n=0 is bounded for all

k, and so is ψd(∪
d
k=1{P

n
a,d(c

k
a,d)}

∞
n=0). We conclude that a′ ∈Md. �

Every Pa,d has fixed points −d and

−d+ d d
√

|a|ei(ν/d+2πk/d),

for k = 0, 1, . . . d− 1, where ν = arg(−a) satisfying −π < ν ≤ π. We define sets

Ad = {a | |1− a| < 1} and Bd = {a | |a+ d| < d}.

Proposition 11. Ad and Bd both are hyperbolic components corresponding to
attracting fixed points of Pa,d. Conversely, if Pa,d has an attracting fixed point, then
a belongs to Ad or Bd. If a belongs to Bd, then F (Pa,d) consists of two components.

Proof. The point −d is an attracting fixed point if and only if |P ′
a,d(−d)| =

|1 + a/d| < 1. The point −d + d d
√

|a|eiν/d is an attracting fixed point if and only

if |P ′
a,d(−d + d d

√
|a|eiν/d)| = |1 − a| < 1. From Proposition 9, we see that if one of

−d+ d d
√

|a|ei(ν/d+2πk/d) (k = 0, 1, . . . , d− 1) is an attracting fixed point, so are all.
If a ∈ Bd, then −d is an attracting fixed point. Since infinity is a super-attracting

fixed point and its immediate basin is completely invariant, we only need to show
that the immediate basin of −d is completely invariant. The immediate basin of −d
contains at least one critical point and hence contains all the critical points in C from
Proposition 9. Consequently, the immediate basin of −d is completely invariant. �

We denote ϕk
d(Ad) by W k

d for k 6= 0 satisfying −d/2 < k ≤ d/2 if d is even and
−[d/2] ≤ k ≤ [d/2] if d is odd.

Theorem 12. For a ∈ W k
d , Pa,d has an attracting cycle whose period is greater

than 1. For fixed k, the period corresponding to W k
d tends to infinity as d → ∞.

Furthermore, W k
d converges toW k in the sense of Carathéodory and Ad also converges

to A0 in the sense of Carathéodory.

Proof. Choose a ∈ Ad and k 6= 0. We write a′ = ϕk
d(a). Let w be an attracting

fixed point of Pa,d. The formula in the proof of Theorem 10 gives

Pa′,d(ψd(w)) = ψd ◦ ϕ
k
d ◦ Pa,d(w) = ψd ◦ ϕ

k
d(w).

Iterating this, we conclude ψd(w) is a periodic point of Pa′,d of period d/ℓ, where ℓ is
the greatest common divisor of d and k. As ψd and ϕd are rotations, we have

|P ′
a′,d(ψd(z))| = |(ψd ◦ ϕ

k
d ◦ Pa,d)

′(z)| = |(Pa,d)
′(z)|

for z ∈ C. Since ϕt
d(w) is an attracting fixed point of Pa,d for t (0 ≤ t ≤ d − 1), it

follows that

|P ′
a′,d(ψd ◦ ϕ

t
d(w))| = |(Pa,d)

′(ϕt
d(w))| < 1.
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Therefore ψd(w) is an attracting periodic point of Pa′,d. Because of ℓ < k, the period
d/ℓ tends to infinity as d → ∞. Every W k

d and every W k is an open disk of radius
1. Fix k ∈ Z∗. The center of W k

d , ϕk
d(0) = −d + dei2πk/d converges to 2πki as

d → ∞, which is the center of W k. Hence it is immediate to show the convergence
by definition. �

Figure 2. Left: the bifurcation set of Pa,5, middle: the bifurcation set of Pa,25, right: the
bifurcation set of fa. Range: −5 ≤ Re a ≤ 4.6, −8 ≤ Im a ≤ 8.

5. The Hausdorff convergence of J(Pa,d) to Ĵ(fa)

We show the main theorem in this paper.

Theorem 13. If ea belongs to an a-component of M̃ , then J(Pa,d) converges to

Ĵ(fa) in the Hausdorff metric.

Proof. In the case that a belongs to an a-component of M , the claim is shown
by the similar argument in [14].

If a ∈ B, then Re a < 0 by definition. We recall that the Baker domain equals
F (fa). Let Fa = {z | Re z < log(|Re a|/2)}. We have

Re fa(z) < Re z + Re a/2

for z ∈ Fa. It follows that Fa is contained in the Baker domain. Furthermore, for
every compact set K in F (fa), there exists n ∈ N such that fn

a (K) ⊂ Fa from
Theorem 5.

Let ζ be an attracting periodic point of a holomorphic map h of period p. We
say that D = {z | |z − ζ | < r} is an absorbing disk of ζ if hp(D) ⊂ D. Hence every
absorbing disk is contained in the immediate basin of the attracting cycle. Certainly,
every attracting periodic point has absorbing disks.

Choose d > |a|2/|Re a|. This implies |a|/d + Re a/|a| < 0. Hence −d is an
attracting fixed point of Pa,d for all d > |a|2/|Re a|, because we have

|P ′
a,d(−d)|

2 =
∣∣∣1 + a

d

∣∣∣
2

= 1 + 2
Re a

d
+

|a|2

d2
< 1 +

|a|

d

(
|a|

d
+

Re a

|a|

)
< 1.

From the above a ∈ Bd and thus F (Pa,d) consists of two components by Proposi-
tion 11. The immediate basin of the attracting fixed point −d of Pa,d is denoted by



Dynamical convergence of a certain polynomial family to fa(z) = z + ez + a 459

Od. We also have

1−
∣∣∣1 + a

d

∣∣∣ >
1−

∣∣1 + a
d

∣∣2

2
=

|a|

2d

∣∣∣∣
|a|

d
+ 2

Re a

|a|

∣∣∣∣ >
|Re a|

2d
.

Moreover, let Dd = {z | |z + d| < d d
√

|Re a|/2}. An elementary calculation yields,
for z ∈ Dd,

|Pa,d(z) + d| =

∣∣∣∣(z + d)

((
1 +

a

d

)
+

1

d

(
1 +

z

d

)d)∣∣∣∣

≤ |(z + d)|

(∣∣∣1 + a

d

∣∣∣+ 1

d

∣∣∣∣
d+ z

d

∣∣∣∣
d
)
< |z + d|

(∣∣∣1 + a

d

∣∣∣+ |Re a|

2d

)
.

We conclude that Dd is an absorbing disk of −d. Hence Dd is contained in Od. The
sequence {−d+d d

√
|Re a|/2} is monotonically decreasing and tends to log |Re a|/2 as

d→ ∞. Hence it is easy to check that Dd tends to Fa in the sense of Carathéodory.
Take an arbitrary compact set K contained in the Baker domain and an arbitrary
ε > 0. There exists n ∈ N such that fn

a (K) ⊂ Fa−2ε. Since Pa,d converges uniformly
on compact sets to fa, there exists N1 such that

|fn
a (z)− P n

a,d(z)| < ε

for all n > N1 and all z ∈ K. The Carathéodory convergence of Dd to Fa shows
that there exists N ≥ N1 such that Uε(fn

a (K)) ⊂ Dd for all d > N . This implies
P n
a,d(K) ⊂ Dd for all d > N . Hence we obtain that K ⊂ Od for all d > N from the

complete invariance of Fatou sets. Therefore Od converges to the Baker domain in
the sense of Carathéodory.

Figure 3. a = −0.9 + 0.5i. Left: the Fatou set of Pa,5 which has an attracting fixed point −5,
middle-left: the Fatou set of Pa,50 which has an attracting fixed point −50, middle-right: the Fatou
set of Pa,150 which has an attracting fixed point −150, right: the Fatou set of fa which has a Baker
domain. Range: −3 ≤ Re z ≤ 5, −8 ≤ Im z ≤ 8.

Assume a ∈ M is contained in a w-component of M . We show that Pa,d has
attracting periodic points for all sufficiently large d. For λ = ea, gλ has an attracting
periodic point, say η. Its period is denoted by p. Let ζ0 be a point of the logarithmic
lift of η the absolute value of whose imaginary part is the smallest. Since ζ0 is a point
contained in a wandering domain, there exists k ∈ Z∗ such that

f p
a (ζ0) = ζ0 + 2πki,
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which we denote by ζ1. Since η is an attracting periodic point, by using an absorbing
disk of η, we have r0 and r1 satisfying 0 < r1 < r0 such that

f p
a (D0) ⊂ D1 ⊂ D0 + 2πki

for D0 = {z | |z − ζ0| < r0} and D1 = {z | |z − ζ1| < r1}. Let 4ε = r0 − r1. Writing
ξd = ϕk

d(ζ0), we easily see that ξd tends to ζ1 as d → ∞. Hence there exists N1 such
that |ξd − ζ1| < ε for all d > N1. We define a set Ed = {z | |z − ξd| < r1 + 2ε}. It
follows that D1 ⊂ Ed ⊂ D0 + 2πki for all d > N1. Since Pa,d converges uniformly on
compact sets to fa, there exists N2 ≥ N1 such that

|P p
a,d(z)− f p

a (z)| < ε

for all d > N2 and all z ∈ D0. This implies

P p
a,d(D0) ⊂ Ed.

Writing

G = ϕ−k
d (Ed) = {z | |z − ζ0| < r1 + 2ε},

we have P p
a,d(G) ⊂ Ed = ϕk

d(G) since G ⊂ D0. Hence, by Proposition 9, we obtain

P p
a,d(Ed) ⊂ P p

a,d(ϕ
k
d(G)) = ϕk

d(P
p
a,d(G))

⊂ ϕk
d(Ed) = {z | |z − ϕ2k

d (ζ0)| < r1 + 2ε}.

This gives

P 2p
a,d(G) ⊂ ϕ2k

d (G).

Iterating this procedure d times, we have

P d·p
a,d (G) ⊂ ϕd·k

d (G) = G.

It follows that, for every d > N2, there exists an attracting periodic point of Pa,d in
G, say ηd. More precisely, ηd is a periodic point of period pd = d/ℓ of P p

a,d, where ℓ is
the greatest common divisor of d and k. Since we can choose an arbitrary small r0,
ηd tends to ζ0 as d→ ∞. From the inclusion above, we also have

P pd·p
a,d (ϕt·k

d (G)) ⊂ ϕt·k
d (G)

for every t (0 ≤ t ≤ pd−1). Since every ϕt·k
d (G) has only one attracting periodic point

of Pa,d, we have P t·p
a,d(ηd) = ϕt·k

d (ηd) for every t (0 ≤ t ≤ pd−1). For −pd/2 < t ≤ pd/2

if pd is even and −[pd/2] ≤ t ≤ [pd/2] if pd is odd, we denote ϕt·k
d (ηd) by ηtd. Fixing

t ∈ Z, we see that ηtd tends to ζ0 + 2πtki as d → ∞ since ϕt·k
d (ζ0) tends to ζ0 + 2πtki

as d → ∞. From the argument above, we choose N3 ≥ N2 and r3 > 0 such that
H = {z | |z−ζ0| < r3} ⊂ F (fa) andH0

d = {z | |z−ηd| < r3} ⊂ F (Pa,d) for all d > N3.
We also write H t

d = {z | |z − ηtd| < r3}. It is clear that H t
d converges to H + 2πkti

in the sense of Carathéodory as d → ∞ for each t ∈ Z. The set
⋃pd/2

t=−(pd/2)+1H
t
d for

even pd or
⋃[pd/2]

t=−[pd/2]
H t

d for odd pd is denoted by Hd. Let Dd = {z | |z + d| < Rd},

where Rd = |ζ0 + d| − (r1 + r3 + 2ε). We may assume r1 + r3 + 2ε < π/2. By the
choice of ζ0, we see that Dd ∩{ζ0+2πkti | t ∈ Z} = ∅ for all d > N3. It follows that,
for each d, the number of H t

n satisfying Dd ∩ H t
n 6= ∅ is finite. Since Dd converges

to D = {z | Re z < Re ζ0 − (r1 + r3 + 2ε)}, the limit of Carathéodory convergence
of Hd does not intersect with D. Assume that there exists a connected open set U
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in Dc which is contained in infinitely many Hd. For each M > 0, there exist a finite
number of t such that Dc ∩ {z | | Im z| < M} ∩ (

⋃
dH

t
d) 6= ∅. Furthermore we see

ϕk
d(ζ0) = Re ζ0 −

2πk

d
Im ζ0 +O(d−2) + i

(
2πk + Im ζ0 +

2πk

d
Re ζ0 +O(d−2)

)
.

Hence there exists a unique t such that U ⊂ H t
d for infinitely many d. Hence U is

contained in H + 2πkti. This shows that Hd converges to
⋃

k∈Z(H + 2πki) in the
sense of Carathéodory.

For each attracting periodic point ζ of gλ, we denote the logarithmic lift of ζ
by Lζ and, in addition,

⋃
ζ Lζ by L. By an argument similar to the above, we have

N ∈ N and r > 0 such that:

(i) for each η ∈ L, {z | |z − η| < r} ⊂ F (fa),
(ii) for d > N , Pa,d has attracting cycles,
(iii) for every attracting periodic point ξ of Pa,d of period p, P p

a,d({z | |z − ξ| <
r}) ⊂ {z | |z − ξ| < r}.

We denote the set of all the attracting periodic points of Pa,d by Sd. Then
⋃

ξ∈Sd
{z |

|z−ξ| < r} converges to
⋃

η∈L{z | |z−η| < r} as d → ∞ in the sense of Carathéodory.

Figure 4. a = 0.32 + 3.1i. Left: the Fatou set of Pa,25 which has an attracting cycle of period
50, middle-left: the Fatou set of Pa,50 which has an attracting cycle of period 100, middle-right:
the Fatou set of Pa,100 which has an attracting cycle of period 200, right: the Fatou set of fa which
has wandering domains. Range: −4 ≤ Re z ≤ 4, −8 ≤ Im z ≤ 8.

Let K be a compact set in F (fa) and denote exp(K) by K ′. Then there exists an
attracting periodic point ζ of gλ which is contained in the derived set of {gnλ(K

′)}∞n=0.
Choose a positive number ε satisfying r > 2ε. Take an absorbing disk D of ζ of gλ so
that every component of the its logarithmic lift is contained in {z | |z− η| < r− 2ε}
for some η ∈ L. There exists n ∈ N ∪ {0} such that gnλ(K

′) ⊂ D. This implies
fn
a (K) ⊂ {z | |z − η| < r − 2ε} for some η ∈ L. Since Pa,d converges uniformly on

compact sets to fa, there exists N1 ∈ N such that

|Pa,d(z)− fa(z)| < ε

for all d > N1 and all z ∈ K. It follows that

P n
a,d(K) ⊂ Uε(fn

a (K)) ⊂ {z | |z − η| < r}
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for all d > N1. From the Carathéodory convergence we proved above, there exists
N ≥ N1 such that, for all d > N , P n

a,d(K) ⊂ {z | |z − ζd| < r} for some attract-
ing periodic point ζd of Pa,d. Since Fatou sets are completely invariant, we have
K ⊂ F (Pa,d) for all d > N . Therefore F (Pa,d) converges to F (fa) in the sense of
Carathéodory and thus J(Pa,d) converges to J(fa) in the Hausdorff distance. �

Remark. We take another family of polynomials Ra,d(z) = z + (1 + z/d)d + a.
It is clear that Ra,d converges uniformly on compact sets to fa as d→ ∞. If |a| < 1,

that is, F (fa) only consists of attracting basins, then J(Ra,d) converges to Ĵ(fa) in
the Hausdorff metric by the similar argument of Kisaka [14]. However, it was shown
in [23] that if a = −1, that is, f−1 has a Baker domain, then J(R−1,2d) does not

converge to Ĵ(f−1) in the Hausdorff metric.
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