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Abstract. We investigate the modified Hardy–Littlewood maximal operators, uncentered

Mkf(x) = sup 1
µ(kB)

´

B
|f | dµ, and centered M c

kf(x) = sup 1
µ(B(x,kr))

´

B(x,r) |f | dµ, k ≥ 1, in the

setting of a general metric measure space (X, d, µ). By using an enhanced version of the basic

covering theorem we prove that M3 and M c
2 are weak type (1, 1).

1. Introduction

Let (X, d, µ) be a metric measure space, that is let d be a metric and let µ be
a Borel measure on X, which we always assume to be finite on bounded sets and
nontrivial in the sense that µ(X) > 0. Given r > 0 and x ∈ X let B(x, r) = {y ∈
X : d(x, y) < r} be the open ball related to d of radius r and with center x; if the
latter ‘<’ is replaced by ‘≤’, then the closed ball is considered. Throughout the
paper, if not declared specifically, the term ball and the symbol B will denote either
an open or a closed ball. However, if an introduced notion or a declared statement
concerns balls, then either only open balls or only closed balls are taken into account.
In general, neither the center nor the radius of a ball as a set are uniquely determined.
Thus, for a ball B and k > 0 by kB we always mean the ball concentric with B and
of radius k times that of B.

For a parameter k ≥ 1 consider the modified Hardy–Littlewood maximal operator

Mk = Mk,d,µ acting on a function f by

Mkf(x) = sup
x∈B∈B0

1

µ(kB)

ˆ

B

|f | dµ, x ∈ X.

Here the supremum is taken over all open balls B ∈ B0 containing x, where B0 =
B0(d, µ) denotes the family of all balls B with the property µ(B) > 0. The centered
version M c

k = M c
k,d,µ is given by

M c
kf(x) = sup

r>r0(x)

1

µ(B(x, kr))

ˆ

B(x,r)

|f | dµ, x ∈ X,

where r0(x) = inf{r > 0: µ(B(x, r)) > 0}. For k = 1, M1 and M c
1 are the usual,

uncentered and centered, Hardy–Littlewood maximal operators on (X, d, µ); we shall
skip the 1 subscript and simply write M and M c. Clearly M c

k ≤ Mk (which precisely

doi:10.5186/aasfm.2015.4024
2010 Mathematics Subject Classification: Primary 42B25.
Key words: Metric measure space, non-doubling measure, modified Hardy–Littlewood maximal

operator, weak type (1, 1).
Research supported by NCN of Poland under grant 2013/09/B/ST1/02057.



444 Krzysztof Stempak

means that M c
kf(x) ≤ Mkf(x) for any function f and every x ∈ X; the analogous

agreement is used in similar situations) and for 1 ≤ k1 < k2 we have Mk2 ≤ Mk1 ,
and similarly in the centered case; in particular, Mk ≤ M and M c

k ≤ M c. If in the
above definitions open balls are replaced by the closed ones, then to distinguish the
relevant operators from the former ones we write Mk and M

c

k. An easy argument,
with a use of the monotone convergence theorem and continuity of µ from above,
shows that Mk = Mk and M c

k = M
c

k (see also [11, Lemma 3], where a slightly more
general context was considered). Thus, distinguishing between open and closed balls
for the modified maximal operators is immaterial.

If µ is a doubling measure on X, that is µ(2B) . µ(B) uniformly in B (note that
this condition implies that µ(B) > 0 for every B), then also µ(kB) . µ(B) uniformly
in B for any fixed parameter k > 1. Thus, for any fixed k > 1 we have Mk ≃ M and
M c

k ≃ M (this is also because M c ≃ M in the doubling case). Therefore, considering
the modified operators Mk and M c

k is essential only in the non-doubling case. Hence,
in what follows, we tacitly assume that µ is non-doubling.

The operators Mk and M c
k are important substitutes of the usual Hardy–Little-

wood maximal operator and are used frequently in the non-doubling case. See, for
instance, [9, p. 469], where k = 3, and M c

3 is considered in the setting of separable
metric spaces, [13, p. 126], where k > 1 and Mk is considered in the setting of Rn

and closed Euclidean cubes with sides parallel to the axes, [7, p. 493], where k = 5
and M5 is considered in the context of geometrically doubling metric spaces, and
[10] where k > 1 and Mk and M c

k are considered in the setting of separable locally
compact metric spaces and a Radon measure.

In the specific case of (Rn, d, µ), n ≥ 1, with the metric d generated by either
of the two norms, ‖ · ‖2 or ‖ · ‖∞, and an arbitrary Borel measure µ (finite on
bounded sets), the following is known. The centered operator M c is of weak type
(1, 1) regardless of n ≥ 1, while the uncentered operator Mk is of weak type (1, 1) for
k = 1 when n = 1 and for k > 1 when n ≥ 2. In the latter case of n ≥ 2 the result
is sharp since there are examples of measures (the Gaussian measure, for instance)
for which M is not of weak type (1, 1). Moreover, on the real line, M1 is of weak
type (1, 1) for an arbitrary metric d for which balls are open intervals of the form
(a, b), a < b, a, b ∈ R ∪ {±∞}; this is a consequence of a specific covering lemma
related to the one-dimensional situation, see [4, p. 31, Lemma 2.6]. On the other
hand, in the case of Rn, n ≥ 2, the assumptions on the metric d cannot be relaxed
too much. Aldaz [2] furnished an example of a Borel measure µ (positive on all balls
and of polynomial growth) on the upper half plane H = R×R+ equipped with the
hyperbolic metric, such that the associated centered maximal operator M c is not of
weak type (1, 1). Clearly, this example may be readily transferred onto R2.

Throughout the paper a standard notation is applied. By L1(X) = L1(X, µ) we
denote the usual Lebesgue L1 space on the measure space (X, µ). A function f on
X is always meant to be Borel measurable, either complex-valued or with values in
the extended real number system R = R ∪ {±∞}. It may be checked that for any
such f , Mkf and M c

kf are lower semicontinuous, hence Borel measurable (see also
[11, Lemma 2], where a slightly more general context was considered). By a local

integrability of a function f on X we mean its integrability with respect to the family
of all balls; thus f ∈ L1

loc(X) := L1
loc(X, d, µ) provided

´

B
|f | dµ < ∞ for every ball

B. Note that this notion does not refer to compactness.
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2. A refinement of the basic covering lemma

In this section (X, d) is an arbitrary metric space. The following result enhances
the ‘basic covering theorem’, [6, Theorem 1.2].

Theorem 2.1. Let τ > 3 be fixed. Every family F of balls of uniformly bounded

radii contains a disjointed family G such that
⋃

B∈F

B ⊂
⋃

B∈G

τB.

Simple examples on the real line show that the above result is sharp in the sense
that τ = 3 is not enough. Indeed, in the case of closed balls, consider the family
of closed intervals [0, 1 − 1

n
] and [−1 + 1

n
, 0], n ≥ 2, while in the case of open balls,

consider the family of open intervals (−2−n, 1− 1
n
) and (−1+ 1

n
, 2−n), n ≥ 3. However,

in the case when the family F is finite, τ = 3 is enough; this is the content of the
Vitali–Wiener covering lemma.

The theorem follows from a slightly more general result, which will be also needed
in the proof of Theorem 3.1, by taking in Proposition 2.2 δ = 1 and κ = (τ − 1)/2
for a given τ > 3.

Proposition 2.2. Let κ > 1 and δ > 0 be given. Every family F of balls of

uniformly bounded radii contains a disjointed family G such that
⋃

B∈F

δB ⊂
⋃

B∈G

(

(1 + δ)κ+ 1
)

B.

Moreover, every ball B ∈ F meets a ball from G with radius at least 1
κ

times that of

B.

Proof. The proof is a suitable modification of the proof of [6, Theorem 1.2]; to
be consistent, we use the analogous notation. Let Ω denote the set of all disjointed
subfamilies ω of F with the property: if a ball B ∈ F meets a ball B′ ∈ ω, then
B also meets B′′ ∈ ω such that r(B′′) ≥ 1

κ
r(B). Then Ω is nontrivial, partially

ordered by inclusion, and if C ⊂ Ω is a chain, then also ω0 = ∪ω∈Cω ∈ Ω. By the
Kuratowski-Zorn lemma, there is a maximal element of Ω; denote it by G. We now
claim that every B ∈ F meets a ball from G. If not, then the collection A of these
balls B that do not meet G is nonempty and hence we can choose B0 ∈ A such that
r(B0) ≥

1
κ
r(B) for every B ∈ A. Consider the disjointed collection G ′ = G ∪ {B0}.

By the choice of B0, we have G ′ ∈ Ω which contradicts the maximality of G and the
claim follows.

Now, every ball B ∈ F meets a ball B′ ∈ G such that r(B) ≤ κr(B′). By using
the triangle inequality we conclude that δB ⊂

(

(1 + δ)κ + 1
)

B′, which finishes the
proof. �

3. Weak type (1, 1) of modified maximal operators

The following result may be seen as an enhancement of the results of Nazarov,
Treil and Volberg [9] (the case of a separable metric space and the centered maximal
operator), Tolsa [13] (the case of X = Rn, d = d∞), Sawano [10] (the case a separable
locally compact metric space and a Radon measure), and Hytönen [7] (the case of a
geometrically doubling metric space). See also [12].
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Theorem 3.1. The maximal operators M3 and M c
2 are of weak type (1, 1) with

the weak type constants equal to one.

Proof. The proof is rather standard but we include it for completeness. We first
treat the uncentered case. Given f , k ≥ 3 and λ > 0, consider the level set

Ek,λ(f) = {x ∈ X : Mkf(x) > λ}.

We shall prove the estimate

(3.1) µ(Ek,λ(f)) ≤
1

λ
‖f‖1, f ∈ L1(X), λ > 0,

for k > 3. Since E3,λ(f) =
⋃

k>3Ek,λ(f) and Ek,λ(f) increases (with respect to
inclusion) as k → 3+, the corresponding estimate for k = 3 follows by a limiting
argument.

Proving (3.1), as usual in such situation, we shall consider the truncated maximal
operators Mk,R, R > 0, where Mk,R differs from the definition of Mk, by admitting
only the balls of radii < R (convention that sup ∅ = 0 is useful here and later on).
Note that Mk,Rf is lower semicontinuous, hence Borel measurable, for any f (for this
fact the reader may consult [11, Lemma 2]).

Thus, since Mk,R ր Mk as R → ∞, it suffices to show that

(3.2) µ(ER
k,λ(f)) ≤

1

λ
‖f‖1, f ∈ L1(X), λ > 0,

uniformly in R → ∞, where ER
k,λ(f) is defined as Ek,λ(f), but with Mk,R replacing

Mk. The final reduction relies on proving that for a given R > 0

(3.3) µ
(

ER
k,λ(f) ∩ B(x0, N)

)

≤
1

λ
‖f‖1, f ∈ L1(X), λ > 0,

uniformly in N → ∞, where x0 ∈ X is a fixed reference point.
Thus, for fixed k > 3, R > 1, and N > 1, consider

Ak,R,N(λ, f) = ER
k,λ(f) ∩ B(x0, N)

and for every x ∈ Ak,R,N(λ, f) choose a ball Bx = B(yx, rx) of positive measure
and such that x ∈ Bx, rx < R and µ(kBx) < λ−1

´

Bx
|f | dµ. Note that Bx ⊂

B(x0, N+2R). From the covering {Bx}x∈Ak,R,N (λ,f) of Ak,R,N(λ, f) choose a disjointed
subfamily of balls, {Bγ}γ∈Γ, Bγ = B(yx(γ), rx(γ)), as in Theorem 2.1. Since all balls
from this subfamily are included in B(x0, N+2R), the subfamily is at most countable.
Therefore,

µ(Ak,R,N(λ, f)) ≤ µ
(

⋃

γ∈Γ

kBγ

)

≤
∑

γ∈Γ

µ(kBγ) <
∑

γ∈Γ

λ−1

ˆ

Bγ

|f | dµ ≤
1

λ
‖f‖1.

This finishes the proof of (3.3) and hence the proof of the statement concerning M3.
In the centered case we repeat the above argument, with an appropriate modifi-

cation of notation, and in the decisive part of the reasoning we argue as follows. For
a given k > 2 and every x ∈ Ac

k,R,N(λ, f), choose rx < R such that Bx = B(x, rx) is a

ball of positive measure such that µ(kBx) < λ−1
´

Bx
|f | dµ. Writing k = (1+ δ)κ+1,

with some δ > 0 and κ > 1, we use Proposition 2.2 to select from the covering
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{δBx}x∈Ac
k,R,N

(λ,f) of Ac
k,R,N(λ, f) a disjointed subfamily {Bγ}γ∈Γ, at most countable,

with properties as in the proposition. Then

µ(Ac
k,R,N(λ, f)) ≤ µ

(

⋃

γ∈Γ

kBγ

)

≤
∑

γ∈Γ

µ(kBγ) <
∑

γ∈Γ

λ−1

ˆ

Bγ

|f | dµ ≤
1

λ
‖f‖1.

This finishes the proof of the inequality analogous to (3.3), but with Mk replaced by
M c

k and hence the proof of the statement concerning M c
k . �

Theorem 3.1 is sharp in the sense that, in general, any k < 3 or any k < 2 is not
enough in the uncentered or in the centered case, respectively, for Mk or M c

k to be
of weak type (1, 1). This was shown by Sawano [10]; see [10, Proposition 1.1] for the
centered case and comments in the beginning of [10, Section 3] for the uncentered
case.

Finally, we comment on a dichotomy property for Mkf , f ∈ L1
loc(X), in the

general framework of metric measure spaces, which was well known in the doubling
case. In [3] it was discovered that the following dichotomy holds: for any function
f ∈ BMO(Rn) either Mf ≡ ∞ or Mf < ∞, x-a.e. Later on Fiorenca and Krbec,
see [5, Theorem 2.2] and remarks following this theorem, observed that the property

“ if Mf(x0) < ∞ for some x0 ∈ Rn, then Mf(x) < ∞, x-a.e.”

should be linked to the bigger class L1
loc(R

n) rather than only to BMO(Rn). Aalto
and Kinnunen [1] furnished an elegant argument to show that the above-mentioned
property holds in the general setting of measure metric spaces with doubling mea-
sures.

In the case of an arbitrary (nondoubling) framework of metric measure spaces the
corresponding result, expressed in terms of modified Hardy–Littlewood operators, is
contained in the following proposition.

Proposition 3.2. Let f ∈ L1
loc(X) and assume that Mk′f(x0) < ∞ for a k′ ≥ 1

and some x0 ∈ X. Then, for k > 2k′ + 1 we have Mkf(x) < ∞, µ-a.e. x ∈ X.

Proof. Fix k′ ≥ 1 and k > 2k′ + 1, and let δ = 2(k′+1)
k−(2k′+1)

. We claim that for any

f ∈ L1
loc(X), x0 ∈ X, R > 0, and δ > 0 (arbitrary in this moment), it holds

Mk

(

f · χX\B(x0, (1+δ)R)

)

(x) ≤ Mk′f(x0), x ∈ B(x0, R).

Indeed, with x0 ∈ X, R > 0 and δ > 0, for a fixed x ∈ B(x0, R) consider any ball
B(y, r) such that x ∈ B(y, r) and B(y, r) ∩ B(x0, (1 + δ)R)c 6= ∅. This implies that
r > δ

2
R, B(y, r) ⊂ B(x0, 2(1 +

1
δ
)r), and for every a > 0 we have

B(x0, ar) ⊂ B
(

y, (a+
2

δ
+ 1)r

)

.

Majorizing the mean

(3.4)
1

µ(B(y, kr))

ˆ

B(y, r)

|f |χX\B(x0, (1+δ)R) dµ

we replace the region of integration B(y, r) by B(x0, 2(1 +
1
δ
)r) and µ(B(y, kr)) by

µ(B(x0, (k − (1 + 2
δ
))r)); note that k > 1 + 2

δ
for δ chosen in the beginning of the

proof. Then the mean (3.4) is replaced by

1

µ(B(x0, k′r′))

ˆ

B(x0, r′)

|f | dµ,
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where r′ = 2(1 + 1
δ
)r and the claim follows.

With the claim, using the subadditivity of Mk, we write

Mkf(x) ≤ Mk

(

f · χB(x0, (1+δ)R)

)

(x) +Mk

(

f · χX\B(x0, (1+δ)R)

)

(x)

and note that the first term on the right hand side is, by Theorem 3.1, µ-a.e. x ∈ X
finite, and the second term is finite for every x ∈ B(x0, R). Letting R → ∞ completes
the proof. �
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