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Abstract. Let f : Rn → R
k be a continuous representative of a mapping in a Sobolev space

W 1,p, p > n. Suppose that the Hausdorff dimension of a set M is at most α. Kaufmann [12] proved

an optimal bound β =
pα

p−n+α
for the dimension of the image of M under the mapping f . We show

that this bound remains essentially valid even for 1 < p ≤ n and we also prove analogous bound for

mappings in Sobolev spaces with higher order or even fractional smoothness.

1. Introduction

Let Ω ⊂ R
n be an open set and let f ∈ W s,p(Ω,Rk) be a Sobolev mappings. We

study the possible dimension of the image f(M) of the set M ⊂ R
n of Hausdorff

dimension α, 0 < α ≤ n. These questions were originally studied in the theory of
quasiconformal mappings. Gehring and Väisälä in [8] showed upper and lower bound
for the dimension of the image and proved that for every K-quasiconformal mapping
f : Ω → R

n we have

dim(f(M)) ≤ p(n,K) dimM

p(n,K)− n+ dimM

where

p(n;K) := sup{p : f ∈ W 1,p
loc for every K-quasiconformal f in R

n} .
It was shown by Gehring [7] that n < p(n,K) and the exact value is known only in
the plane p(2, K) = 2K

K−1
by the result of Astala [2] while it remains open in higher

dimension.
It was shown by Kaufman that this upper bound actually holds for every su-

percritical Sobolev mapping. More precisely, he showed that dim f(M) ≤ pα
p−n+α

for

every M ⊂ R
n with Hα(M) < ∞ and f ∈ W 1,p(Rn,Rk), p > n. He especially gave

a probabilistic construction to demonstrate the sharpness of this result.
Later these results for supercritical Sobolev spaces were extended in the paper

Balogh, Monti and Tyson [4] and in the follow up works [3], [5] and [6] that deal also
with metric measure spaces. It is well-known that each Sobolev function satisfies
the ACL condition, i.e., the function is absolutely continuous when restricted to
almost all lines parallel to coordinate axes. It follows that images of Hn−1 almost all
segments are rectifiable curves and thus have Hausdorff dimension at most one. By
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the previously mentioned result of Kaufmann we know that images of m-dimensional

subspaces have zero H
pm

p−n+m measure. Balogh, Monti and Tyson [4] showed that for
any m < α < pm

p−n+m
it is true that the image of Hβ a.e. m-dimensional subspace

has dimension at most α where β = n−m− (1− m
α
)p and by a similar construction

as Kaufmann they also showed that this value of β is optimal for all p > n. These
results about the dimension of Hβ-a.e. subspace were extended in the papers of Hencl
and Honzík [10] to cover also the subcritical case p < n and later in [11] to cover
the case of higher order derivatives or even fractional Sobolev spaces W s,p. Here and
in the sequal we denote by W s,p the Tribel–Lizorkin spaces F s

p,2 which coincide with

W k,p for s = k ∈ N.
The aim of this paper is to return to the paper of Kaufmann and to study similar

problem for subcritical Sobolev space W 1,p, p < n, or even for higher order derivatives
and fractional Sobolev spaces W s,p, s > 0 and p > 1, both in supercritical sp > n and
subcritical case sp ≤ n. Below we give a full analogy of the result in the supercritical
case sp > n for fractional Sobolev spaces which of course includes the result also
for higher order Sobolev spaces. Note that this gives us a better result than simply
applying Sobolev embedding theorem and using the result of Kaufmann for s = 1.

Theorem 1.1. Let n, k ∈ N, s > 0, p > 1, sp > n and 0 < α ≤ n. Set

β =
pα

sp− n + α
.

Suppose that f ∈ W s,p(Rn,Rk) is a continuous representative and M ⊂ R
n is a set

with dim(M) ≤ α. Then dim(f(M)) ≤ max{α, β}.
When dealing with subcritical case p < n we have to realize, that the statement

cannot be longer that simple. Functions in W s,p, sp ≤ n, are not necesarily continu-
ous and hence we need to work with the correct representative of our function since
the change on a null set may change the dimension of the image. Second and more
important obstacle is the fact that it is possible to construct [14] (see also [13]) a
continuous mapping even in W 1,n((0, 1)n,Rk) such that the image of a zero dimen-
sional set equals [0, 1]k. This construction is based only on a fact that points have
zero capacity in W 1,n and hence similar construction can be done also in fractional
order Sobolev space W s,p, where points have zero capacity. In order to obtain some
bound on the dimension of the image we thus need to remove some lower dimensional
set where the behaviour can be really “wild”.

Theorem 1.2. Let n, k ∈ N, s > 0, p > 1, sp ≤ n and n− sp < α ≤ n. Set

β =
pα

sp− n + α
.

Suppose that f ∈ W s,p(Rn,Rk) is an s, p-quasicontinuous representative. Let us

have a set A with dim(A) ≤ α. Then there is a M ⊂ R
n with Hα(M) = 0 such

that dim(f(A \M)) ≤ max{α, β}. Moreover, if β > n then there is a M ⊂ R
n with

Hα(M) = 0 such that dim(f(Rn \M)) ≤ β.

We also include the following version of the result, which will be proved by the
same argument.
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Corollary 1.3. Let n, k ∈ N, s > 0, p > 1, sp ≤ n and n− sp < α ≤ n and put

β =
pα

sp− n + α
.

Then there is a set M ⊂ R
n with Hα(M) = 0 such that for any set A ⊂ R

n we have

dim(f(A \M)) ≤ max{dim(A), β}.
The following example shows that Theorem 1.2 is sharp. In the degenerate case

α ≤ n − sp the image can have as large dimension as we wish. This degeneracy
seems to be connected with the fact that s, p-quasicontinuous representatives of the
function f ∈ W s,p are well-defined and have Lebesgue points up to a set of dimension
n− sp (see Theorem 2.1 below) and on the set of lower dimension we can have really
“bad” behavior even for continuous representative.

Theorem 1.4. Let n, k ∈ N, s > 0, p > 1, sp ≤ n and 0 < α ≤ n. Set

β =

{

min{ pα
sp−n+α

, k} for α > n− sp,

k for α ≤ n− sp.

Then there is a continuous mapping f ∈ W s,p
0 (Rn,Rk) and M0 ⊂ (0, 1)n with 0 <

Hα(M0) <∞ such that for every M ⊂ (0, 1)n with Hα(M) = 0 we have dim
(

f(M0 \
M)
)

≥ β.

2. Preliminaries

By Q(z, r) we denote the cube centered at z ∈ R
d with radius r > 0.

We use the usual convention that C denotes a generic positive constant whose
value may change from line to line.

2.1. Fractional Sobolev spaces. Let us recall the Fourier analytic definition
of function spaces. We fix a C∞ function φ with φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0

for ξ ≥ 2. We then find a function ψ such that ψ̂(ξ) = φ(ξ)− φ(2ξ). We define the
operator

∆jf = F−1(f̂(ξ)ψ̂(2−jξ)) = f ∗ ψ2−j ,

where ψ2−j (x) = 2jnψ(2jx). This scaling is L1 homogeneous. Since ψ is a Schwartz
function we know that for every M > 0 there is CM > 0 such that |ψ(x)| ≤ CM(1 +
|x|)−M . Thus for k > 0

(2.1) sup
x∈B(0,2−j+k)\B(0,2−j+k−1)

|ψ2−j (x)| ≤ CM2jn2−Mk.

Analogous estimate holds for the derivatives and we obtain for example

(2.2) sup
x∈B(0,2−j+k)\B(0,2−j+k−1)

|∇2ψ2−j (x)| ≤ CM22j2jn2−Mk.

The function spaces of interest to us are the fractional Sobolev spaces W s,p, 1 < p <
∞, s > 0, where

(2.3) ‖f‖W s,p = ‖f‖p +
∥

∥

∥

(

∞
∑

j=−∞

(2sj|∆jf |)2
)

1
2
∥

∥

∥

p
.
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We note that this definition is equivalent to the standard definition found in literature,
where the summation starts with j = 0. This follows by a square function estimate

∥

∥

∥

(

−1
∑

j=−∞

(2sj|∆jf |)2
)

1
2
∥

∥

∥

p
≤ C

∥

∥

∥

(

−1
∑

j=−∞

(|∆jf |)2
)

1
2
∥

∥

∥

p
≤ C‖f‖p.

We use the modified definition in order to preserve homogeneity in the proof of the
positive result. For an introduction to fractional Sobolev spaces, see e.g. [16] and [9,
Chapter 6.5].

Let us remind that a function f is s, p-quasicontinuous if for every ε > 0 we may
find an open set C of (s, p)-capacity less than ε such that the function f is continuous
outside of C. The folowing is true:

Theorem 2.1. Let 1 < p < ∞ and 0 < sp < n. Let f ∈ W s,p(Rn) be an

s, p-quasicontinuous representative and set

Es,p = {x ∈ R
n : x is not a Lebesgue point of f}.

Then dimH(Es,p) ≤ n− sp.

(See the section 6.1 in [1].)
In the construction of the counterexamples we will need the estimate of the norms

of some simple functions (see [11, Lemma 2.3]).

Lemma 2.2. Let p ∈ (1,∞) and s ≥ 0. Let us fix f0 ∈ C∞
c (Rn) such that

f0 = 1 on Q0 = (0, 1)n and supp f0 ⊂ 2Q0.

A) Let r ≥ 1. The norm of the function fr(x) = f0(rx) can be estimated by

(2.4) ‖fr‖W s,p ≤ Crs−
n
p .

B) Let us fix N disjoint cubes Qi ⊂ (0, 1)n of side length 1/r. Let f̃i denote the

translates of fr such that f̃i ≡ 1 on Qi and supp f̃i ⊂ 2Qi and choose vectors

ξi in the unit ball of R
k, k ∈ N. Then for the function f : (0, 1)n → R

k

defined as

f(x) =
N
∑

i=1

f̃i(x)ξi we have ‖f‖W s,p ≤ CN
1
p‖fr‖W s,p ≤ CN

1
p rs−

n
p .

2.2. Probabilistic lemma. In order to prove Theorem 1.4 we will use a
probabilistic approach and we will need the following lemma (see [4, Lemma 4.4] for
the proof).

Lemma 2.3. Let {Xi}∞i=1 be a countable sequence of independent random vari-

ables, identically distributed according to the uniform distribution on the unit ball

B in R
k. Let c = {ci} ∈ ℓ∞ and finally let 0 < β ′ < k. Then there is a constant C

which depends only on k and β ′ so that

Eξ

(
∣

∣

∣

∞
∑

i=1

ciXi

∣

∣

∣

−β′)

≤ Cρ(c)−β′

where ρ(c) denotes the second largest value, i.e.

ρ(c) =

{

‖c‖∞ if ‖c‖∞ = supi∈N |ci| is not attained,

supi 6=i0 |ci| if the supremum is attained at i0.
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2.3. Hausdorff and capacitary dimension. Let α > 0 and ε > 0. We use
the usual Hausdorff measure of a set E ⊂ R

d, i.e.

Hα
ε (E) = inf

{

∞
∑

i=1

diamαAi : E ⊂
∞
⋃

i=1

Ai, diamAi < ε
}

and Hα(E) = lim
ε→0+

Hα
ε (E).

The Hausdorff dimension of a set E is

dimH(E) = sup{α > 0: Hα(E) = ∞} = inf{α > 0: Hα(E) = 0}.
For α > 0 and A ⊂ R

k, denote by

Iα(µ) :=

ˆ

A

ˆ

A

|x− y|−α dµ(x) dµ(y)

the α-energy of a nonzero finite Radon measure µ with compact support in A. The
capacitary dimension of a set A is defined as

dimc(A) = sup{α > 0: ∃µ with Iα(µ) <∞}.
We will use the well-known fact (see [15, Theorem 8.9]) that the Hausdorff dimension
is equal to the capacitary dimension.

2.4. The key lemma. It is well-known the Sobolev space W 1,p, p > n, is
embedded into Hölder continuous functions and moreover, we have the estimate

ˆ

B(c,R)

|Df |p ≥ C|f(x)− f(y)|pRn−p

for every ball x, y ∈ B(c, R). In [10, Lemma 3.1] we have shown that similar estimate
holds even for p < n on some possibly smaller ball with the additional correction term
(see (2.5) below). However for general Sobolev space W k,p, k > 1 this is not possible
if the function f is for example linear on B(c, R). In this case we can have similar
estimate on some bigger ball with a different correction term (see (2.6) below). This
key estimate was first shown in [11, Lemma 3.1].

Lemma 2.4. Suppose that a and b are Lebesgue points of f in W s,p(Rn), 1 <
p < ∞ and s > 0. Let 0 < γ < p/2 and denote R0 = |a − b|. Then there are

z ∈ {a, b} and either 0 < R ≤ R0 such that

(2.5)

ˆ

B(z,R)

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx ≥ Cγ |f(a)− f(b)|pRn−sp(R/R0)
γ

or R0 ≤ R such that

(2.6)

ˆ

B(z,R)

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx ≥ Cγ|f(a)− f(b)|pRn−sp(R/R0)
p−γ.

where the positive constant Cγ depends only on γ, p, s and dimension n.

3. Proof of the supercritical case

Proof of Theorem 1.1. Suppose ‖f‖W s,p ≤ 1. Let us first discuss the case β > α.
Let us take α̃ > α and

(3.1) β̃ >
pα̃

sp− n+ α̃
> β.
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We only need to show that if Hα̃(M) = 0 then dim(f(M)) ≤ β̃. We choose a
0 < ε < 1 and take a covering of M by balls B(zj , tj) such that

∑

tα̃j < ε. We refine
the covering using a stopping time argument. We consider the dyadic cubes Q such
that if l = diam(Q) and y is the center of Q then

∑

{j : zj∈Q and B(tj ,zj)⊂B(y,10l)}

tα̃j ≥ lα̃.

We assume that zj never falls to the boundary of Q, obviously we may always modify
the covering to satisfy this. We select all the maximal dyadic cubes Qi with this
property and then we replace the original covering by a new covering

{B(xi, ri); ri = 10 diam(Qi), xi is the center of Qi}.
It is obvious that

⋃

j

B(tj, zj) ⊂
⋃

i

B(xi, ri)

and

(3.2)
∑

i

rα̃i ≤ Cε.

Moreover, the new covering also has the property that whenever we choose x and
R > 0 we get

(3.3)
∑

B(xi,ri)⊂B(x,R)

rα̃i ≤ CRα̃,

this follows from the choice of maximal dyadic cubes in the construction. Denote
ρi = diam(f(Bi(xi, ri))). As f is continuous (since f ∈ W s,p for sp > n) we may
assume that ri ≤ 1 and ρi ≤ 1. Without loss of generality we may assume that
∑

i ρ
β̃
i ≥ 1, otherwise dim(f(M)) ≤ β̃ and the proof is over. We claim that for every

0 < γ < 1 there are some 0 < δ, σ < 1 such that

(3.4)
∑

δ<ri≤2δ, σ<ρi≤2σ

ρβ̃i > Cγδ
γσγ.

Otherwise we easily get a contradiction from

1 ≤
∑

i

ρβ̃i ≤
∑

{a∈N : 2−a<ri≤2−a+1}

∑

{b∈N : 2−b<ρi≤2−b+1}

ρβi ≤ Cγ

∞
∑

a=1

∞
∑

b=1

2−aγ2−bγ.

We choose the precise value of γ later. We fix the σ and δ with property (3.4) and
reduce the family of the points xi accordingly. The family now has K elements and

(3.5) K ≥ Cγδ
γσγ−β̃

while also Kδα̃ ≤ Cε. Therefore, we get the relation (as ε < 1)

(3.6) δ−α̃−γ ≥ Cσγ−β̃ .

We now invoke the Lemma 2.4. We take two Lebesgue points of f denoted as
x, x′ ∈ Bi(xi, ri) such that |f(x) − f(x′)| ≥ ρi/4 and |x − x′| ≥ ri and we put
R0 = |x − x′|. For small enough γ we have n − sp + γ < 0 and hence (2.5) remains
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valid also for R = R0. This shows that we can always assume that R ≥ R0 and use
(2.6). We get that there is a ball centered at z = x or z = x′ and R ≥ 3R0 such that

(3.7) |f(x)− f(x′)|p ≤ CRsp−n(R0/R)
p−γ

ˆ

B(z,R)

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx.

Moreover, we see that if R ≤ δ and γ < p the estimate remains valid for R = δ. We
therefore assume R ≥ δ. We denote these balls B(zj , Rj) and using Vitali covering
we pass to a disjoint subcollection indexed by k such that

⋃

j

B(zj, Rj) ⊂
⋃

k

B(zk, 5Rk).

By ri ≥ δ (see (3.4)) and (3.3) we know that each of the balls

(3.8) B(zk, 5Rk) contains at most C(Rk/δ)
α̃ of the points xi.

For j ∈ N (recall Rk ≥ δ) we consider

Sj :=
{

xi : xi ∈ B(zk, 5Rk) and 2j < Rk/δ ≤ 2j+1
}

.

Using Hölder inequality (#S=number of elements of a set S)

(sup
j∈N

2jγ#Sj)
∞
∑

j=1

2−jγ ≥
∞
∑

j=1

#Sj ≥ #{xi} = K

we get that there is a j such that #Sj > C2−jγK. This and (3.8) give that

(3.9) #{zk : 2j < Rk/δ ≤ 2j+1} ≥ C
2−jγK

(Rk/δ)α̃
≥ C2−j(α̃+γ)K.

Finally by ‖f‖W s,p ≤ 1, (3.7), |f(x)− f(x′)| ∼ ρi ∼ σi, R0 = |x−x′| ∼ ri ∼ δ (where
we used (3.4)) and (3.5) we have

(3.10)

1 ≥
ˆ

⋃
{k;2j<Rk/δ≤2j+1}

B(zk ,Rk)

(

∞
∑

l=−∞

(2sl|∆lf(x)|)2
)p/2

dx

≥ Cσp(2jδ)n−sp2j(γ−p)2−j(α̃+γ)K

≥ Cσp−β̃+γ(2jδ)n−sp2j(−γ+p)2−j(α̃+γ)δγ

≥ C2j(n−sp−α̃+p−2γ)σp−β̃+γδn−sp+γ.

We first observe that β = pα
sp−n+α

> α implies that n− sp− α̃+ p− 2γ > 0 for small

γ and suitable α̃ close to α and together with sp > n also p− β̃ + γ > 0 for suitable

β̃ close to β and any γ > 0. Therefore, by (3.6) we may use σ ≥ Cδ
α̃+γ

−γ+β̃ to obtain

(3.11) 1 ≥ Cδ
(p−β̃+γ) α̃+γ

−γ+β̃ δn−sp+γ.

The last exponent is negative if we take γ = 0 by (3.1) and therefore it is also negative
for a small γ. We have δ → 0 as ε → 0, which is a contradiction. This finishes the
case β > α.

In case β ≤ α we make the following preliminary observation: if (s−1)p−n > 0,
thenW s,p is imbedded into Lipschitz functions and the statement is trivial. Therefore,
we assume the opposite. For the most part, we repeat the previous argument. The
value of β is not relevant to us and is effectively replaced by α. Therefore, we take
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α < α̃ < β̃ and proceed to obtain the same coverings as before. Set Rmax = ε1/α̃. We
obtain (3.9) for some j and this inequality is usefull only if 2j ≤ Rmax/δ and in this
case we obtain the inequality (3.10) as before, or there is at least one Rk ≥ Rmax. In
that case, we get use (s− 1)p− n + γ < 0 for small γ and (2.6) to obtain

1 ≥
ˆ

B(zk ,Rk)

(

∞
∑

l=−∞

(2sl|∆lf(x)|)2
)p/2

dx

≥ CσpRn−sp
k (Rk/R0)

p−γ ≥ σpRn−sp
max (Rmax/R0)

p−γ.

Therefore, we take j̃ = j if for all k we have Rk ≤ 2Rmax and j̃ = log2(Rmax/δ)
otherwise. As 2j ≤ Rmax/δ in the first case we always have

(3.12) 2j̃ ≤ Rmax

δ
.

In the second case (Rk ≥ R0 for some k), (3.2), ri ∼ δ, j̃ = log2(Rmax/δ) and

Rmax = ε1/α̃ imply that K < C2j̃α̃. Now j̃ = log2(Rmax/δ) and δ ≥ R0 = |x − x′|
give us

Rn−sp
max (Rmax/R0)

p−γ ≥ K2−j̃α̃2j̃(n−sp+p−γ)δn−sp.

Therefore with the help of (3.5) we have in both cases the inequality (3.10) as

(3.13)
1 ≥
ˆ

⋃
{k;2j<Rk/δ≤2j+1}

B(zk ,Rk)

(

∞
∑

l=−∞

(2sl|∆lf(x)|)2
)p/2

dx

≥ C2j̃(n−sp−α̃+p−2γ)σp−β̃+γδn−sp+γ.

Now we split cases. If p > α, we use (3.6) and we obtain

1 ≥ C2j̃(n−sp−α̃+p−2γ)δ
(p−β̃+γ) α̃+γ

−γ+β̃ δn−sp+γ .

For γ = 0 and β̃ = α the power of δ and 2j̃ is the same and negative (recall that

β = pα
sp−n+α

< α). For very small γ with γ << β̃ − α̃ << 1 this gives with the help

of (3.12) that

1 ≥ CR(n−sp−α̃+p−2γ)
max δ−γ̄ ,

where the constant γ̄ is positive if γ is chosen small enough. Now we see that for ε→ 0
the right hand side of the inequality goes to infinity as Rmax = ε1/α̃, a contradiction.

If we assume p ≤ α, the estimate (2.6) gives (here we may select any Rk from
the covering and we use the fact that the integral is at most 1)

σp ≤ CRsp−n
k (δ/Rk)

p−γ

and therefore by (3.12) and sp− n− p ≥ sp− n− α ≥ 0

(3.14) (2j̃σ)p ≤ CRsp−n
max 2p(j̃−j)−γj̃ ≤ CRsp−n

max

as j̃ ≤ j. Since for small γ we have p− β̃+ γ < 0 we can use (3.13), (3.14) and (3.12)
to obtain

1 ≥ C2j̃(n−sp−α̃+p−2γ)σ(p−β̃+γ)δn−sp+γ

≥ C2j̃(−α̃+β̃+4γ)R(p−β̃+γ)(sp−n)/p
max Rn−sp+γ

max ≥ CR(p−β̃+γ)(sp−n)/p
max Rn−sp+γ

max

and the result now follows, as the exponent is negative (sp < n and p − β̃ + γ < 0)
and Rmax → 0 with ε → 0. �
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4. Proof of the subcritical case

Let us introduce dyadic cubes on R
n. For w ∈ Z we denote Dw = {Qi} where Qi

are closed cubes with vertices in the points 2−w
Z

n ∩ [0, 1]n and with volume 2−wn.

Proof of Theorem 1.2. Let us first observe that the value of the fraction defining
β is decreasing in s and approaches ∞ as sp→ (n− α)+. Therefore the case β < α
may be treated by the trivial imbedding of W s,p into W s′,p for s′ ≤ s, we just replace
s by some smaller s′ for which pα

s′p−n+α
= α.

Let us suppose that α ≤ β, ‖f‖s,p ≤ 1 and take β̃ > β. Let us first treat the case

β ≥ n. As β = pα
sp−n+α

and β̃ > β we can fix some small ε > 0 such that

β̃

p
ε+ α− β̃

p
(α + sp− n) < 0(4.1)

and β − β̃ + 2ε
2β̃

p
< 0.(4.2)

For k ∈ N ∪ {0} and w ∈ Z we denote the system of cubes where the norm is big as

Dε,k
w =

{

Q ∈ Dw :

ˆ

Q

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx ≥ 2−w(α+(k−1)ε)

}

,(4.3)

Mε,0
w =

⋃

Q∈Dε,0
w

5Q and Mε,k
w =

⋃

Q∈Dε,k
w \Dε,k−1

w

5Q for k ≥ 1,

where 5Q is the cube with the same center and orientation inflated 5 times. We work
with the Cantor type set

M̃ε,k
j =

⋃

j≤w

Mε,k
w

and

Mε,k =
⋂

j∈Z

M̃ε,k
j .

From ‖f‖s,p ≤ 1, (2.3) and (4.3) we obtain that the set Mε,0
w may be covered by

2w(α−ε) balls of the diameter 5
√
n2−w and therefore Hα(Mε,0) = 0.

Let us first handle the case β = pα
sp−n+α

> n. Since n− sp ≤ α < n we can fix K
such that

(4.4)
p

α + (K − 1)ε+ sp− n
> 1 but

p

α +Kε+ sp− n
≤ 1.

Our exceptional set M is the union of Mε,0 with non-Lebesgue points of f . We want
to estimate the dimension of the Lebesgue points of f in the set f(Rn \Mε,0). The
set f(Rn \M) is covered by sets

(4.5) f(Mε,1 \Mε,0), f(Mε,2 \ (Mε,1 ∪Mε,0)), . . . , f(Rn \ ∪0≤k<KM
ε,k)

therefore it is enough to estimate the dimension of each of these sets individually. Let
us recall that the set of non-Lebesque points of our s, p-quasicontinuous representative
has dimension smaller or equal to n − sp (see Theorem 2.1) and as n − sp < α we
can add these points to the set M without increasing its dimension bound.
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First we choose 0 ≤ k < K, j ≥ 1 and then we choose an integer l ∼ log j. We
have

(4.6) Mε,k ⊂ M̃ε,k
j =

⋃

j≤w

⋃

Q∈Dε,k
w \Dε,k−1

w

5Q.

For a fixed w ≥ j we pick one of the cubes 5Q in the above union and estimate
the diameter of f(5Q \ ∪u≤k−1M̃

ε,u
l ) using Lemma 2.4. Let us take two Lebesgue

points of f denoted as x, x′ ∈ 5Q \ ∪u≤k−1M̃
ε,u
l and consider a ball B(x, r). In case

r < 2−ln−1/2 we choose integer v ≈ log2 r such that −v ≥ l and since

x /∈
⋃

u≤k−1

M̃ε,u
l =

⋃

u≤k−1

⋃

l≤w

⋃

Q∈Dε,u
w \Dε,u−1

w

5Q =
⋃

l≤w

⋃

Q∈Dε,k−1
w

5Q

we can find a cube Q ∈ D−v (of side length 2v) such that B(x, r) ⊂ Q and Q /∈ Dε,k−1
−v .

It follows that

(4.7)

ˆ

B(x,r)

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx ≤ 2v(α+(k−2)ε)

while for the larger r (r ≥ 2−ln−1/2) we get simply

(4.8)

ˆ

B(x,r)

(

∞
∑

j=−∞

(2sj|∆jf(x)|)2
)p/2

dx ≤ 1.

Similar estimates hold for x′. We denote |x−x′| = R0. Combining the estimates (2.5),
(2.6), (4.7), (4.8) we get

(4.9) |f(x)− f(x′)| ≤ max{A1, A2, A3},
where A1 corresponds to the case r < R0, A2 to R0 < r < 2−ln−1/2 and A3 to
2−ln−1/2 ≤ r.

The quantity A1 represents the situation when r < R0, therefore we also have
−v > Cw (recall that x, x′ ∈ 5Q for some Q ∈ Dw). We use (2.5), (4.7) and r ∼ 2v

to obtain

Ap
1 ≤ sup

r<R0

C2v(α+(k−2)ε)rsp−n(R0/r)
γ ≤ sup

r<R0

Crα+(k−2)εrsp−n(R0/r)
γ.

As n− sp < α we can assume that 0 < γ < α+ sp−n and the supremum is attained
for r = R0 and with the help of R0 ∼ 2−w we get

Ap
1 ≤ C2−w(α+(k−2)ε+sp−n).

The quantity A2 is reserved for the case R0 ≤ r < 2−ln−1/2, where we may still use
(4.7), but we need to use (2.6) and we obtain

Ap
2 ≤ sup

R0≤r<2−ln−1/2

C2v(α+(k−2)ε)rsp−n(R0/r)
p−γ

≤ sup
R0≤r<2−ln−1/2

Crα+(k−2)εrsp−n(R0/r)
p−γ.

By (4.4) and 0 ≤ k < K we have

(4.10)
p

α + (k − 2)ε+ sp− n
≥ p

α+ (K − 1)ε+ sp− n
> 1
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and we obtain that the power of r is negative (for fixed but small enough γ) and
hence the supremum is attained for r = R0 and with the help of R0 ∼ 2−w we get

Ap
2 ≤ C2−w(α+(k−2)ε+sp−n).

In the case r ≥ 2−ln−1/2 we estimate A3 using (4.8) and (2.6) as

Ap
3 ≤ sup

r≥2−ln−1/2

Crsp−n(R0/r)
p−γ ≤ CRp−γ

0 2−l(sp−n−p+γ),

where in the last inequality we used that sp− n− p < 0 by (4.10). We have chosen
l ≈ log j (recall that j ≤ w by (4.6)) and it follows that the terms with 2−l are very
small and thus we get

Ap
3 ≤ C2−w(p−2γ).

From ‖f‖s,p ≤ 1 we can see that for a fixed w there are at most 2w(α+(k−1)ε) cubes
Qi in Dε,k

w . We denote

ui = diam f

(

5Qi \
⋃

u≤k−1

M̃ε,u
l

)

and proceed to estimate

(4.11)
∑

Qi∈D
ε,k
w

uβ̃i ≤ 2w(α+(k−1)ε)max{A1, A2, A3}β̃.

By (4.10) we can see that the estimate of A3 is better than the estimate of A1 and
A2. This gives

(4.12)
∑

Qi∈D
ε,k
w

uβ̃i ≤ C2w(α+(k−1)ε)−w β̃
p
(α+(k−2)ε+sp−n).

As sp < n it is easy to check that p < β = pα
sp−n+α

< β̃ and with (4.1) this implies

that the power of 2w in the previous expression is negative as it equals to

(k − 1)ε− β̃

p
(k − 1)ε+

β̃

p
ε+ α− β̃

p
(α + sp− n).

By (4.6) we may sum over w ≥ j to get

(4.13) Hβ̃
(

f(Mε,k
j \⋃0≤u<k−1M

ε,u
l )
)

≤ C(j),

where C(j) → 0 as j → ∞. Let us fix l0 ∈ N and choose j0 such that log j0 > 10l0
(recall l ∼ log j). Now

Mε,k \⋃0≤u<k−1M
ε,u
l0

=

∞
⋂

j=j0

(

Mε,k
j \⋃0≤u<k−1M

ε,u
l0

)

⊂
∞
⋂

j=j0

(

Mε,k
j \⋃0≤u<k−1M

ε,u
l

)

.

By (4.13) we get that Hβ of the image of this set is 0 and in the limit l0 → ∞ we get

Hβ̃
(

f
(

Mε,k \⋃0≤u<k−1M
ε,u
))

= 0 .

In view of (4.5) it remains to consider the set R
n \⋃0≤k<K M

ε,k. We consider only
the part of this set which is containded in the unit cube, the other parts are handled
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the same way. We cover this set with all 2wn cubes from Dw. Similarly as in (4.12)
we obtain the estimate

∑

Qi∈D
ε,k
w

uβ̃i ≤ C2wn2−w β̃
p
(α+(K−2)ε+sp−n).

As β̃ > β ≥ n we obtain from the second inequality in (4.4) and (4.2) that the power
of 2w is again negative as

n− β̃ + β̃ − β̃

p
(α+ (K − 2)ε+ sp− n) ≤

[

β − β̃ +
2εβ̃

p

]

+
β̃

p
[p− (α+Kε+ sp− n)]

and we may proceed similarly as above to get our conclusion.
Let β = αp

α+sp−n
< n and choose α̃ > α close enough so that

(4.14) η := α̃− β̃

p
(α− 2ε+ sp− n) < 0 .

We proceed as above, but we only consider the sets A and Mε,0. We may assume that
A is a subset of unit cube. We estimate only the dimension of the set f(A \Mε,0)
and this is similar to the previous estimate of f(Mε,1 \Mε,0). Let us fix j ∈ N and
l ∼ log j. Instead of the covering (4.6) we cover A by dyadic cubes {Qi}ai=1 such that
Qi has side length 2−wi ≤ 2−j and

∑

i

diamα̃(Qi) < 1 and hence #{i : wi = w} ≤ 2α̃w.

We consider two Lebesgue points x, x′ ∈ Qi \ M̃ε,0
l and consider a ball B(x, r). As

before we have (4.9) and analogously to the proof of (4.11) we obtain for every w ≥ j
∑

{i : wi=w}

diamβ̃f
(

Qi \ M̃ε,0
l

)

≤ 2wα̃max{A1, A2, A3}β̃ ≤ C2wα̃−w β̃
p
(α−2ε+sp−n) = C2wη.

By (4.14) we may sum this over all w ≥ j and finish the proof as before.
To prove the corollary, we define the set M as before. We choose K so that (4.4)

holds, but also choose K ′ so that for k < K ′ we have α + (k − 1)ε < dim(A) but
α+(K ′ − 1)ε ≥ dim(A). We then put K̃ = min(K,K ′). The set f(A \M) is covered
by

(4.15) f(Mε,1 \Mε,0), f(Mε,2 \ (Mε,1 ∪Mε,0)), . . . , f
(

A \⋃0≤k<K̃M
ε,k
)

.

We estimated the dimension of all these terms except the last one. However, it is
obvious that the dimension of f

(

A \⋃0≤k<K̃ M
ε,k
)

may be estimated using the same
method as in the previous paragraph

(4.16)
∑

{i: wi=w}

diamβ̃f
(

Qi \ M̃ε,0
l

)

≤ C2w(dimA+ε)2−w β̃
p
(α+(K̃−2)ε+sp−n)

and with the help of α + (K ′ − 1)ε ≥ dim(A) we easily show that the exponent is
negative for K ′ ≤ K. For K < K ′ and dimA ≤ β we use (4.4) to show that the
exponent in (4.16) is negative. For β < dimA we may argue as at the very beginning
of the proof and by choosing s′ ≤ s we can assume that this cannot happen. This
proves the corollary. �
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5. Counterexample

For the construction of the counterexample in Theorem 1.4 we use the approach
that was developed in [4, Theorem 1.4], [12, Theorem 3] and [11, Theorem 1.2]. The
function f has wild behavior on a regular α-dimensional set and in the proof we
need a measure on the image of this set (pushforward of the α-dimensional Hausdorff
measure) and then we use the definition of capacitary dimension which equals the
Hausdorff dimension. For the convenience of the reader we include all details.

Proof of Theorem 1.4. First we will treat the nondegenerate case α > n − sp
and β ≤ k and at the end we briefly mention how to adjust the construction for other
cases.

Let us denote Q0 = (0, 1)n and by Qj, j ∈ N we denote the system of 2jn dyadic
cubes of side length 2−j in Q0. We fix a system of cubes Aj ⊂ Qj such that its
cardinality satisfies ([a] denotes integer part)

#Aj = [2jα]

and

for every Q ∈ Aj+1 there is Q̃ ∈ Aj such that Q ⊂ Q̃.

We denote A =
⋃

j∈NAj. It is easy to check that the Hausdorff dimension of the set

M0 :=

∞
⋂

j=1

⋃

Q∈Aj

Q.

equals α and 0 < Hα(M0) < ∞. Moreover, we can and will require that the cubes
are evenly distributed in the next steps so that there is 0 < C0 such that

(5.1) for each j ∈ N and Q ∈ Aj we have Hα(Q ∩M0) ≤ C02
−jα.

Let M ⊂ (0, 1)n satisfy Hα(M) = 0 as in the assumption of the theorem.
For each ξ we describe later, we will construct a map fξ ∈ W s,p(Rn,Rk) that

satisfies

(5.2) Hβ′(

fξ(M0 \M)
)

= ∞
almost surely in ξ, for each β ′ < β, and thus we will get our conclusion.

Let us fix f0 ∈ C∞
c (Rn) such that f0 = 1 on Q0, 0 ≤ f0 ≤ 1 and supp f0 ⊂ 2Q0.

For each Q ∈ Aj, j ∈ N, let ψQ ∈ C∞
0 (Rn) be a function defined as an appropriate

translate of f2j from Lemma 2.2. That is ψQ is supported in the cube 2Q of side
length 2−j+1 and

(i) 0 ≤ ψQ ≤ 1,
(ii) ψQ ≡ 1 on Q,
(iii) ψQ ≡ 0 on the complement of 2Q,

(iv) ‖ψQ‖W s,p ≤ C(2j)s−
n
p .

Let ξ = {ξQ}Q∈A be a countable sequence of elements from the unit ball in R
k. For

each j ∈ N we define

fξ,j(x) =
1

j2
2−j α

β

∑

Q∈Aj

ψQ(x)ξQ
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and finally we set

fξ =

∞
∑

j=1

fξ,j.

It is easy to see that fξ is continuous since

‖fξ,j‖L∞ ≤ C
1

j2
2−j α

β .

By Lemma 2.2 B), #Aj = [2jα] and β = pα
sp−n+α

we obtain

(5.3) ‖fξ‖W s,p ≤
∞
∑

j=1

‖fξ,j‖W s,p ≤ C

∞
∑

j=1

1

j2
2−j α

β (#Aj)
1
p (2j)s−

n
p ≤ C

∞
∑

j=1

1

j2
<∞

and hence fξ ∈ W s,p(Rn,Rk).
In the remaining part of the proof we would like to show that for a generic choice

of ξ we obtain a map fξ with the desired property (5.2). Let us view ξ = {ξQ}Q∈A

as a sequence of independent random variables, identically distributed according to
the uniform probability distribution on the unit ball B in R

k. Since Hausdorff and
capacitary dimension coincide (see Preliminaries) it is now enough to show that for
each β ′ < β(≤ k) we can find a measure µ on fξ(M0 \M) with finite β ′-energy.

We can fix a compact set M̃ ⊂M0 \M such that 0 < Hα(M̃) <∞. We consider

the measure (fξ)#(Hα|M̃), i.e. the pushforward of the Hα-measure on M̃ via the map
fξ. We claim that the expectation satisfies

(5.4) Eξ

(

Iβ′

(

(fξ)#(Hα|M̃)
)

)

<∞
for each β ′ < β. It follows that almost surely with respect to ξ we obtain that

Iβ′

(

(fξ)#(Hα|M̃)
)

<∞
and our conclusion follows once we prove the claim (5.4).

Using Fubini theorem we may transform the integral from (5.4) to
ˆ

M̃

ˆ

M̃

Eξ

(

|fξ(x)− fξ(y)|−β′)

dHα(x) dHα(y).

We write

(5.5) fξ(x)− fξ(y) =
∑

Q∈A

cQ(x, y)ξQ

where the coefficients for Q ∈ Aj are given by

(5.6) cQ(x, y) =
1

j2
2−j α

β
(

ψQ(x)− ψQ(y)
)

.

The sequence of the coefficients c clearly belongs to ℓ∞ and thus we may use
Lemma 2.3 (note that β ′ < k) and our task is reduced to the proof of

ˆ

M̃

ρ(c(x, y))−β′

dHα(x) ≤ C <∞,

where the constant C is independent of y. Let us fix y ∈ M̃ . For x ∈ M̃ let us denote
by j(x) the largest integer such that both x and y lie in the same or adjacent cubes
from Aj(x). It follows that we can find Q1 ∋ x and Q2 ∋ y with Q1, Q2 ∈ Aj(x)+1

and 2Q1 ∩ Q2 = ∅. It follows that ψQ1
(x) = 1 and ψQ1

(y) = 0 and hence there is a
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nonzero term in (5.6) of size 1
(j(x)+1)2

2−(j(x)+1)α
β . Similar nonzero term corresponds

to ψQ2
and hence

ρ(c(x, y)) ≥ 1

(j(x) + 1)2
2−(j(x)+1)α

β .

For a fixed y we can find at most 3n dyadic cubes Q ∈ Aj(x) such that x ∈ Q and
hence the construction of Aj (5.1) gives us

Hα
(

{x ∈ M̃ : j(x) = j}
)

≤ 3nHα
(

Q ∩M0

)

≤ C2−jα.

Now we can estimate
ˆ

M̃

ρ(c(x, y))−β′

dHα(x) ≤ C

∞
∑

j=0

2−jα

(

1

(j + 1)2
2−(j+1)α

β

)−β′

.

Since β ′ < β it is easy to see that the series converges, which finishes our proof in
the case α > n− sp.

Now let us consider the case α > n− sp with β = k < pα
sp−n+α

. We use the same

construction but β = k now. It is easy to check that

(5.7) −α
β
+
α

p
+ s− n

p
≤ 0

and hence the right hand side in (5.3) still converges and fξ ∈ W s,p. The proof of
dim

(

fξ(M0 \M)
)

≥ β for a generic choise of ξ remains the same.
It remains to consider the cases α ≤ n− sp where we again use the construction

with β = k. Since β = k and sp − n + α < 0 it is easy to check (5.7) and hence
fξ ∈ W s,p. The proof of dim

(

fξ(M0 \M)
)

≥ β is again the same. �
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