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Abstract. Our aim in this paper is to establish generalizations of Sobolev’s inequality and
Trudinger’s inequality for general potentials of functions in grand Musielak—Orlicz—Morrey spaces.

1. Introduction

Grand Lebesgue spaces were introduced in [15] for the study of Jacobian. They
play important roles also in the theory of partial differential equations (see [10],
[16] and [29], etc.). The generalized grand Lebesgue spaces appeared in [12|, where
the existence and uniqueness of the non-homogeneous N-harmonic equations were
studied. The boundedness of the maximal operator on the grand Lebesgue spaces
was studied in [9]. For variable exponent Lebesgue spaces, see [6] and [7]. In [21] and
[17], grand Morrey spaces and generalized grand Morrey spaces were introduced. For
Morrey spaces, we refer to [24] and [27]. Further, grand Morrey spaces of variable
exponent were considered in [11].

On the other hand, the classical Sobolev’s inequality for Riesz potentials of LP-
functions (see, e.g. [2, Theorem 3.1.4 (b)]) has been extended to various function
spaces. For Morrey spaces, Sobolev’s inequality was studied in [1], [27], [5], [25],
ete., for Morrey spaces of variable exponent in [3], [13], [14], [22], [23], etc., for grand
Morrey spaces in [21] and [17], and also for grand Morrey spaces of variable exponent
in [11]. Recently, Sobolev’s inequality has been extended by the authors [19] to an
inequality for general potentials of functions in Musielak—Orlicz—Morrey spaces.

The classical Trudinger’s inequality for Riesz potentials of LP-functions (see, e.g.
|2, Theorem 3.1.4 (c)|) has been also extended to function spaces as above; see [22],
[23| for Morrey spaces of variable exponent, [11]| for grand Morrey spaces of variable
exponent and [20] for Musielak—Orlicz-Morrey spaces.

In this paper, we define (generalized) grand Musielak—Orlicz—Morrey space on a
bounded open set in R and give a Sobolev type inequality as well as a Trudinger
type inequality for general potentials of functions in such spaces.
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Throughout this paper, let C' denote various constants independent of the vari-
ables in question. The symbols ¢ < h and g ~ h means that ¢ < Ch and
C~'h < g < Ch for some constant C' > 0 respectively.

2. Preliminaries

Let G be a bounded open set in RY and let dg denote the diameter of G. We
consider a function

O(z,t) =to(x,t): G x [0,00) — [0, 00)
satisfying the following conditions (®1)—(P4):
(®1) ¢(-,t) is measurable on G for each ¢t > 0 and ¢(z, -) is continuous on [0, c0)

for each = € G;
(P2) there exists a constant A; > 1 such that

At < ¢(x,1) < A forall v € G

(®3) there exists a constant €y > 0 such that ¢ — t7°°¢(x, t) is uniformly almost
increasing, namely there exists a constant A > 1 such that

t70¢(z,t) < Ags™¢(z, s)

for all x € G whenever 0 < t < s;
(P4) there exists a constant A3 > 1 such that

¢(x,2t) < Azp(x,t) for all z € G and t > 0.
Note that (®3) implies that
t¢(x,t) < Ars " ¢(x, 5)

for all z € G and 0 < € < gy whenever 0 < ¢t < s. Also note that ($2), ($3) and (P4)
imply
0< ingqb(x, t) <supo(x,t) < o0
Tre

zeG
for each t > 0 and there exists w > 1 such that
(2]_) (A1A2)—1t1+50 S q)(l’,t) S A1A2A3tw

for t > 1; in fact we can take w > 1+ log A3/ log 2.
We shall also consider the following condition:

(®5) for every v > 0, there exists a constant B, > 1 such that

whenever |z —y| < 4t~ YY and t > 1.
Let ¢(z,t) = supy<,<; ¢(z,s) and

t
®(z,1) :/ o(z,r) dr.
0
Then ®(z,) is convex and
1 —
—P(x,t) < D(x,t) < AyP(x, 1)
2A3
forall z € G and t > 0.
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Example 2.1. Let p(-) and ¢;(-), j = 1,...,k, be measurable functions on G
such that

1 <p :=inf p(x) <supp(x) = p" < 0
zeG zeG

and

—o00 < ¢; = inf gj(x) <supg;(z) =1 ¢f <oo, j=1,...k

Set L(t) := log(e + t), LV (t) = L(t) and LW (¢) = L(LU=D(¢)), j = 2, .... Then,
k
(.10, (2, 1) = @ T (L9 (1))

J=1

satisfies (®1), (92), (P3) with 0 < &g < p~ —1 and (®4). (2.1) holds for any w > p*.
Dy, 4q; (03 (z, 1) satisfies (®5) if p(-) is log-Holder continuous, namely

Cp
Ip(z) — p(y)| < ) (z #y)
and ¢;(-) is (j + 1)-log-Holder continuous, namely

for j =1,...,k (cf. [19, Example 2.1]).
We also consider a function x(x,r): G x (0,dg) — (0, 00) satisfying the following
conditions:

(k1) K(z,-) is continuous on (0, dq) for each z € G and satisfies the uniform dou-
bling condition: there is a constant (); > 1 such that

Q1 k(z,r) < k(2 1') < Quk(z,7)

for all x € G whenever 0 < r <7’ < 2r <dg;
(k2) 7+ r7%(x,r) is uniformly almost increasing for some § > 0, namely there
is a constant ()3 > 0 such that

r0k(z,7) < Qa5 k(x, )
for all x € G whenever 0 < r < s < dg;
(k3) there is a constant Q3 > 1 such that
Q3 ' min(1, ) < k(z,7) < Qs
forallz € Gand 0 < r < dg.

Example 2.2. Let v(-) and 5(-) be functions on G such that v~ := inf,cq v(x) >
0, vt = sup,eqv(z) < N and —¢(N — v(z)) < B(x) < c for all z € G and some
constant ¢ > 0. Then x(z,r) = r*@(log(e + 1/r))?®@ satisfies (k1), (k2) and (k3);
we can take any 0 < 6 < v~ for (k2).
Given ®(z,t) and x(z,r), we define the Musielak—Orlicz—Morrey space L**(Q)
by
K(z,r)

17(G) = {1 € L@ _sp BT (0. £0)]) d < o0 .

veG,0<r<dg | B(2,7)] B(z,r)NG
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It is a Banach space with respect to the norm
wq = 1nf S A > 0; sup / , A)d §1}
oo =int {250 s ZE0 [ (sl

(cf. |26]).
In case k(z,r) =™, L¥*(G) is the Musielak—Orlicz space

17(G) = {f € LL(G)s [ 011w dy < oo}
with the norm

I£lee = {3> 0; [ Bl dy <1}

Remark 2.3. The Musielak—Orlicz spaces L®(G) include
e Orlicz spaces defined by Young functions satisfying the doubling condition;
e variable exponent Lebesgue spaces.

The Musielak—Orlicz—Morrey spaces L®*(G) include Morrey spaces as well as
variable exponent Morrey spaces.

3. Grand Musielak—Orlicz—Morrey space

For € > 0, set ®.(x,t) := t°®(x,t) = t'*¢(x,t). Then, ®.(z,t) satisfies (P1),
(P2) with the same A; and (®4) with the same Az. If ®(x,t) satisfies ($5), then so
does ®.(x,t) with the same {B,}.~o.

If 0 < e < g, then ®.(x,t) satisfies ($3) with g( replaced by ey — ¢ and the same
As. Tt follows that

1 _
- < <
o, O (z,t) < D (x,t) < AyD.(z,1)

forallz € G, t >0 and 0 < e < ¢gy. By (93), we see that for 0 < e < g

(3.1)

< Aya®.(z, if0<a<l1,
(3.2) b.(x at){_ 20de(e,1) - HH0=<a

> Ay ta® (v,t) ifa > 1.
Let
& =sup{c > 0: r"7k(z,r)™" is bounded on G x (0, min(1,dg))}.

By (k2), 0 <& < N. If 3 = 0, then let oy = 0; otherwise fix any oy € (0,5). We
also take dp such that 0 < dy < d for J in (x2).
For —dy < 0 < 0y, set
Ko(z,7m) = 1K(2,T)
for x € G and 0 < r < dg. Then k,(z,r) satisfies (k1), (k2) and (k3) with constants
independent of o.

Lemma 3.1. For 0 < e < ¢, let
O (z,s) =sup{t >0 :d.(x,t) <s} (ve€G, s>0).
Then there exists o € (0, min(1, dg)) such that k,(xz,7) <1 and
O (2, ko(z,7)7h)) > 11
forallz € G,0<r <ry, =g <o <o0yand 0 <e < g
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Proof. By (k2) and (k3),
Ko(z,7) < Q2Q3min(1, dg)_6r6+" < Q2Q3 min(1, dg)_6T6_60

forz € G, 0 <r <min(l,dg) and —6y < o < 0y. Hence, there is ' € (0, min(1,d¢))
such that k,(xz,r) < 1forxz € G, 0 <r <7 and —§y < 0 < 0g9. By (2.1), we see
that

O (2, ko (2, 7)) = C Ry, r)~Ve > oy (6=d0)/w
whenever t € G, 0<r <71, -y <o <0y and 0 < € < gy with constants C, C' > 0
independent of z, r, o, €. Hence the assertion of the lemma holds if we take ry € (0, 7]
satisfying 7“0_(6_60)/“ > (. O

Proposition 3.2. Assume that ®(x,t) satisfies (95). If 0 < g1 < g9 < &y,
—50§0'j SO’o,jzl,Q and

d—do d—

o1+ 81§O’2+

€2,
then L1571 (G) C L% (G) and
||f“‘13527"402§G S CHfH(I)slyHJl;G
for all f € L*151(G) with C > 0 independent of €1, €5, 01, 09. In particular,
L*"(G) C L% (Q)
if0<e<ey =0 <o<ogyand o+ ((§ —d)/w)e > 0.
Proof. Let || f]le., ;¢ < 1. Then

|B(x, )| /Bu,r) ®e, (v £ (v)]) dy < 1

forx e Gand 0 <r < dg.
Forx € Gand 0 <r < dg, let

k(x,r) = <I>€_11 (:c, Koy (T, 7")_1)
and

Ia,r) = / L aln @)y

We write I(z,r) = I (z,r) + Ir(x,r), where

I(a,r) = / Do, (4,1 (1)) dy
B(z,r)n{y:|f(y)|<k(z,m)}
and
Lo(a,r) = / Doy (4,17 (9)]) dy.
B(z,r)n{y:| f(y)|>k(z,r)}
I£ |£(y)] < k(z,7), then

(I)€2 (yv |f(y)‘) < A2(I)€2(y7 ]f(.flf, T)) = Agl{?(l‘, T)EI_EQ(I)sl (y7 ]f(.flf, T))
Let 7o € (0, min(1,d¢g)) be the number given in Lemma 3.1. Then, (3.2) implies
k(x,1) < COkg, (z,7) "t < Or N
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for 0 < r < ry with constants independent of x, o1, 1. Hence, by (®5), there is a
constant B > 0 independent of x, o1, €1, such that
O (y, k(x, 1)) < BO, (z, k(x,7))
whenever |z — y| < r <. Therefore,
Li(x,7) < C|B(x,r)|k(x, )20, (2, k(x,7)) = C|B(x,7)|k(z,7) kg, (x,7)

for 0 < r < rp.
On the other hand, if |f(y)| > k(z,r), then

e, (y, |FW)]) = [F(W)|7 2P, (y, [f(Y)]) < k(@ r)7 7=, (v, [ f(W))),
so that

Iy(x,r) < k(z,r)= /( )%(y, [fW)]) dy < |B(w, 7)|k(z, 1) kg, (x,7) "
B(z,r

for 0 <r <.

Therefore,
I(x,r) < C|B(z,7)|k(x, 7)) 2k, (z,7) 7,

which implies

fﬂaz(:v,r)/ _ N
TB(r I O, (y, [fW)]) dy < Cr7= k()™ 7=
Ble.r)] Sy, 2 W) (27)

for 0 < r < rq. Since
k(z,r)~' < Crl0-o0)/e
and o9 — o1 + ((0 — dp)/w)(e2 — &1) > 0 by assumption,

Kag(l',”f’) / —o14((6—80) /w)(e2—e1)
[B(w, )| O, (y, |f(y)]) dy < Croz-or+ =0/ < ¢
B, Sy 72 )
for 0 < r <y with positive constants C’s independent of z, ¢;, ¢; (j = 1,2).
In case 1o < r < dg, we see

I(z.r) < A, / Boy(y, 1) dy + / B, (. £ (9)]) dy

B(,r) B(z,r)
< A A|B(z,7)| + | B, 7) kg, (z,7) 7,
so that
Koo (X, 1)
| B(z,7)|
with C independent of r, x, o1 0.
Therefore, || f|ls., ky,:¢ < C with C' > 0 independent of &1, €3, 01, 72. O

K)o—2,

Let n(e) be an increasing positive function on (0, 00) such that n(0+) = 0. Let
&(e) be a function on (0,e;] with some e; € (0,£¢/2] such that —dy < £(e) < oy for
0<e<e,&0+)=0and e &(e) + ((6§ — dp)/w)e is non-decreasing; in particular,
£(e) 4+ ((0 — dp) /w)e > 0 for 0 < e < ey.

Given ®(z,t), x(z,7), () and £(g), the associated (generalized) grand Musielak—
Orlicz-Morrey space is defined by (cf. [17] for generalized grand Morrey space)

/ D, (y, \f(y)|) dy < AjAskg,(z,r) + 17277 < C
B(x,r)

Ei’{"(G):{fe () LP"(G); ||f!|<1>,nm,s;c<00},

0<e<er
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where
||f||<1>nn§G = sup 77( )||f||<1>5,n§(5);G'

0<e<er

Z:;(G) is a Banach space with the norm || f{|¢ s e.c. Note that, in view of Propo-
sition 3.2, this space is determined independent of the choice of ¢;.

In case () = 0, the symbol ¢ may be omitted. If k(z,r) = r™ and £(e) =
then the symbol s will be also omitted; namely

ZS<G>={f6 (N L) Iflleme = sup n(e >r|f||¢5;g<oo}.

0<e<eo <e<eo
This space may be called a grand Musielak—Orlicz space.

Remark 3.3. The grand Musielak—Orlicz space Z$(G) include the following
spaces:

e generalized grand Lebesgue spaces introduced in [4];
e grand Orlicz spaces introduced in [18] where ®(x,t) = ®(¢) satisfying

> dt
sup 17(5)/ VD (t) — < o0
0<e<eq 1 t

(see also [8]).

The (generalized) grand Musielak-Orlicz—Morrey space z:;(G) include also the
following spaces:

e grand Morrey spaces introduced in [21] where £(¢) = 0;
e grand grand Morrey spaces introduced in [28] and generalized grand Morrey

spaces introduced in [17] where £(¢) is an increasing positive function on
(0, 00).

4. Boundedness of the maximal operator

Hereafter, we shall always assume that ®(z,t) satisfies ($5). For a nonnegative
fell (G),reG 0<r<dgande >0, set

1
(o) = 150 /B(M)OG fy) dy

1
J(fim,r) = m /B(m)nG . (ya f(?/)) dy

We show a Jensen type inequality for functions in L®="(G).

and

Lemma 4.1. There exists a constant C' > 0 (independent of € and o) such that
O (z, I(f;x,7)) <CJAf;2,7)
forallz € G,0 < r <dg, 0 <e < g and for all nonnegative f € L{ .(G) such that
f(y) >1or f( ) =0 for each y € G and || f||¢. x,.c <1 with =5y < o < 0.

Proof. Let f be as in the statement of the lemma and let I = I(f;x,r) and
J. = J(fyx,r) forz € G, 0 <r <dgand 0 < e < ¢;. Note that ||f|le.x,.c <1
implies J. < 2A3k,(x,7)~! by (3.1).
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By (92) and (3.2), ®c(y, f(y)) > (A1A2)~" f(y), since f(y) > 1 or f(y) = 0.
Hence I < A;AsJ.. Thus, if J. <1, then

o (r,I) < (A1AzJ.)Agp(r, A1 Ay) < CU.

Next, suppose J. > 1. Since ®.(z,t) — oo as t — oo, there exists K. > 1 such

that
O (2, K.) = D.(x,1) ..

Then K. < AsJ. by (3.2). With this K., we have

fy) Ez(y, W) .

/B(x,r)nc fy)dy < Kel Bz, )l + 4, /B(x,r)ﬂG /) Keo(y, K.)
Since Kk, (z,1)J. < 243,
1 < K. < AyJ. <2A5A3k4(x,r) P < Or™Y
with a constant C' > 0 independent of £ and o. Hence, by (®5) there is § > 1,
independent of f, x, r, € and o such that
¢(x, K:) < Boly, Ke)
for all y € B(x,r). Thus, we have

Aap
dy < K. Bla,r)| + —20 3. (y. f(y)) d
[ A0 KB s gt [ e )y

Je
= K.|B(x,r)| + A25|B(93,7“)|W~

Since
K ¢(z, K.) = K. '@ (x, K.) = K" J.@.(x,1) > AT KV,
it follows that
I <(1+A4A4P)K,,
so that by (#2), ($3) and (P4)
S (z,1) < CO(z,K.) < CJ.
with constants C' > 0 independent of f, x, r, € and o as required. U

For a locally integrable function f on G, the Hardy—Littlewood maximal function
M f is defined by

1
Mf(x) =sup ————
( ) r>0 |B(ZL’,7’)‘ B(z,r)NG

The following lemma can be proved in a way similar to the proof of [25, Theo-
rem 1:

[f ()l dy.

Lemma 4.2. Let pg > 1 and —dy < 0 < 0g. Then there exists a constant C' > 0
independent of ¢ for which the following holds: If f is a measurable function such
that

/ )P dy < |Bla, )|k (@)
B(z,r)NG

forallz € G and 0 < r < dg, then

[ s dy < 1B ing ()
B(z,r)NG
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forallz € G and 0 < r < dg.
Lemma 4.3. There is a constant C' > 0 (independent of € and o) such that

IM fllo.rpic < Cllf oo
for all f € L*"*(G) whenever 0 < € < &/2 and —6y < 0 < 0.
Proof. Set pg =1+ £¢/2 and consider the function
D(x,t) = D(x, 1)/,

Then ®(z,t) also satisfies all the conditions (®5), j = 1,2,..., 5 with g, replaced by
g0 = €0/(2+€p). In fact, it trivially satisfies (®j) for j = 1,2,4,5. Since

20t D (x, t) = [0 (x, 1)),

condition (®3) implies that ®(z,t) satisfies (®3) with £, replaced by &}

Let 0 < € < g0/2, =0y < 0 < og and f > 0 and || f|e. k. < 1. Let fi =
IX(zf)>1y and fo = f — f1, where xp is the characteristic function of E.

Since ®.(x,t) > 1/(A1A,) for t > 1, we see that

(1)8/1?0 (ZE’ t) = (I)a(ipa t)l/po < (AlAZ)l_l/p()@a(xa t)
if t > 1, so that

/ B o (s F1(4)) dy < 2(A1As) =117 Ag | Bl 1)y (2, 7)
B(z,m)NG

for every z € G and 0 < r < dg. Hence || fi||3 o < ¢y with ¢g > 0 independent

s/pow“fav
of € and o.

Let F.(x) = ®.(z, f(z)). Then s (z, f(z)) = F.(x)"/*. Applying Lemma 4.1
to ée/po and f1/co, we have

.(a, M fi(2)) = [®eppy (2, Mf1(2))]" < CIM(FIP) ().
On the other hand, since M f, < 1, we have by ($2) and ($3)
(I)a(l’, Mfg([lj’)) S A1A2.
Thus, we obtain
@. (v, M (@) < C{[MEm)@)]" +1}

for x € G with a constant C' > 0 independent of f and . Hence

/B — D (y, Mf(y))dy < C { /B i [M (F p°)(y)r0 dy + | B(x, r)|}

for v € G and 0 < r < dg. Since ||fllo.n,.c < 1 and O (y, f(y)) = F.(y) =
(FA/P(y)), Lemma 4.2 implies

[ )] dy < i)
B(z,r)NG
with a constant C' > 0 independent of z, r, €, 0. Hence,

/ & (y, Mf () dy < C|B(x, ) o, 7) ",
B(z,r)NG
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which shows

||Mf||CI>5,/iU;G S C||f||¢s7HU§G
with a constant C' > 0 independent of € and o. O

From this lemma we obtain the boundedness of the maximal operator on Zg’;(G)

Theorem 4.4. The maximal operator M is bounded from Ef;(e) into itself;
namely there exists a constant C' > 0 such that

||Mf||<1>7n;n7£;G < C||f||<1>7n;n7£;G
for all f € Lyt (G).
Corollary 4.5. If () (4, ()} (2, 1) satisfies the conditions in Example 2.1, then

~®,0) fa:(.
the maximal operator M is bounded from L,"""**(G) into itself.

5. Sobolev type inequality
Lemma 5.1. [19, Lemma 5.1] Let F'(x,t) be a positive function on G x (0, 00)
satisfying the following conditions:
(F1) F(z, -) is continuous on (0,00) for each x € G;
(F2) there exists a constant K; > 1 such that
K{'<F(x,1)< K, forallx € G;

(F3) t st~ F(x,t) is uniformly almost increasing for €' > 0; namely there exists
a constant Ko > 1 such that

t= F(x,t) < Kys = F(x,s) forallz € G whenever 0 <t < s.
Set
F~Y(z,s) =sup{t > 0; F(x,t) < s}

for x € G and s > 0. Then:

(1) F‘l(a: -) is non-decreasing;

(2) F (x )\s) (KoY F~Yw,s) forall z € G, s >0 and A > 1;
(3) F(z, F~Y(x,t)) =t forallz € G and t > 0;
1) K. —1/% < FNa, F(x,t)) < Kt forall z € G and t > 0;

1/e
(5) min . < F7Y(z,s) < max{1, (K, K5s)/¢'} for all z € G and
KK,

5> 0.

Remark 5.2. F(z,t) = . (z,t) (0 < e < gq) satisfies (F1), (F2) and (F3) with
g =1 K, =4, and Ky = Ay and F(x,t) = k,(x,t) (—0p < 0 < 0y) satisfies (F1),
(F2) and (FS) with 8/ =0 — (50, K1 = Ql and K2 = Qg.

Lemma 5.3. There exists a constant C' > 0 such that
y)dy < Cd- oz, )
Bl o Ty < OO i )

forallx € G, 0 <r < dg, 0 < e < ¢ and nonnegative functions f on G such that
||f||<1>,n;n,€;G <L
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Proof. Let f be a nonnegative function on G such that || f|¢ e < 1. Then
we have by (3.1)

Fee) (@)
| B(x,7)] /B(m,r)ﬂG . (y,m(e)f(y)) dy < 243

forallz € G,0 <r <dgand 0 <e < ¢e;. Fix e and let fi = fX{a(e)f@)>1y and
fo=f—fi. By Lemma 4.1,

1 _
o < B, /B@,Tm”“’f 1) dy) < Creo (1)

forallz € G, 0 <r < dg and 0 < e < g7/2 with a constant C' > 0 independent of x,
r, €. Since

1
(I)e Y RY] ngfydy)SAq)sxul SAAv
( |B(.§L’,7’)‘ B(z,r)NnG ( ) 2( ) ? ( ) e

we have
1
b, |z, ——— nefydy)gCﬂaax,r_l
< |B(.§L’,7’)‘ B(z,r)NG () ( ) o )( )

with a constant C; > 1 independent of x, r, . Hence, we find by Lemma 5.1 with
F=®&,and e =1
m B(m)mcﬁ(g)f(y) dy < Ay®" (z, Cikig(e) (2, 7))
< CLAZR (z, hge) (7))
as required. O]
As a potential kernel, we consider a function
J(z,r): G x (0,dg) — [0, 00)
satisfying the following conditions:
(J1) J(-,r) is measurable on G for each r € (0,dg);
(J2) J(x,-) is non-increasing on (0, dg) for each z € G;
(J3) OdG J(x,r)r¥=tdr < Jy < oo for every z € G.
Example 5.4. Let a(-) be a measurable function on G such that

0<a :=inf a(z) <supa(r) =:a” < N.
zelG zeG

Then, J(z,7) = r*@~=N satisfies (J1), (J2) and (J3).

For a nonnegative measurable function f on G, its J-potential Jf is defined by

Jf(z) = / J(ole—yDfw)dy (xeG).
Set

N [T .
J(w,r) = T_N/o J(z, p)p" " tdp

for v € G and 0 < r < dg. Then J(x,r) < J(x,r). Further, J(x,-) is non-increasing
and continuous on (0, dg) for each z € G. Also, set

Yi(z,7) =rNJ(z,r)
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forx € Gand 0 <r < dg.
We consider the following condition:

(Pr.J) there exist constants 6’ > 0 and A, > 1 such that
Y (x,8) 07 (x, ki, 8) ™) < Agt® Yy(z, )N, ko (2, 1))

for all z € G whenever 0 < t < s < dg, 0 < & < g9/2, =6y < 0 < 0 and
o+ ((0 —dp)/w)e > 0.

Lemma 5.5. Assume (®x.J). Then there exists a constant C' > 0 such that
da B
/ PN (@, (@, p) ") d(=T(x,))(p) < CYy(2, 1) (2, Ko (,7) )

forallz € G,0<r <dg/2,0 < e <¢gp/2 and —min(dy, ((§ — dp)/w)e) < o < 0.

Proof. We follow the proof of [19, Lemma 6.2, noting that the constants are
independent of € and o. O

Lemma 5.6. Assume (Pr.J). Then there exists a constant C' > 0 such that
06 [ el =) Sy < OO o )
G\B(z,r

forallz € G,0<r <dg/2,0<e <ey and f > 0 satistying || || xmec < 1.
Proof. By the integration by parts, we have

[ e yhrw)dy
G\B(z,r)

<sdc-0) [ s+ [ (f W) i) d(~1(2. ),

where J(z,dg — 0) = lim, 4,0 J(z, p). Hence, by Lemma 5.3, we have

0 [ Tl iw)dy < c{w, 06)®: (1, oy () ™)
G\B(z,r)

= [ B )@ ) (=T ->><p>}.

Hence by (®x.J) and the previous lemma we obtain the required result. U

Lemma 5.7. Assume (PrJ). Then there exists a constant C' > 0 such that

1T f () < C {n(e)MF (@)Y (2, 55 (o, @l m(@ M F(2)) 7)) + 1}
forallz € G,0 < e <ey and f > 0 satisfying || f|loxmec < 1.

Proof. Let f be a nonnegative function on G such that || f|¢xmyec < 1. For
0 <r <dg/2, we write

Tf(z) = / i) dy / J(a, v — y) f(y) dy

G\B(z,r)

First note that
Ji(x) < CYy(x,r)M f(x)
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(see, e.g., [30, p. 63, (16)]). By Lemma 5.6, we have
n(e)Ja(x) < CYy(x,r)®  (x, mg(e)(aj,r)_l).
Hence
(5.1) n(e)Jf(x) < CYy(w,7) {n(e) M f(z) + @7 (2, gy (w,7) 1) }

forz e G,0<r <dg/2and 0 <e <ey.
We consider two cases.
Case 1: dg/2 < "{g_(i) (z, ®.(x,n(e)M f(x))™"). In this case, let r = dg/2. Since
D (z,n(e)M f(2)) < Qakiee) (2, de/2) ™" < Q2Q3 max(1, (dg/2)™"),

it follows that n(e)M f(z) < C) with a constant C; > 0 independent of z and e.
Also,
O (@, hg(e) (w,1) 1) = O (@, kg (2, d/2) 1) < Oy
with a constant Cy > 0 independent of x and €. Hence, by (5.1) and (J3),
n(e)Jf(x) <C
with a constant C' > 0 independent of x and .
Case 2: dg/2 > /@gé) (z,®-(z,n(e)M f(x))~"). In this case, take
r = g (o, B ()M F(2))).
Then ke (@, 7)™ = @ (x,n(e)M f(z)), so that by Lemma 5.1(4)
@ (2, kg(e) (w,7) ) < Cle) M f ()
with a constant C' > 0 independent of z and €. Hence, by (5.1)
n(e)J f(x) < CYy(a,r)n(e) M f(x)
— C(e)M (@)Y (2, 5l (2. @c (o, ()M f () )
with a constant C' > 0 independent of x and . O

_ The following theorem gives a Sobolev type inequality for potentials Jf of f €
Li’;(G). Example 5.9 below shows that this theorem includes known Sobolev type
inequalities as special cases.

Theorem 5.8. Assume (®x.J). Suppose a function
U(x,t): G x [0,00) = [0,00)
satisfies (®1)—(P4) with ey replaced by some ¢}, in ($3) and
(W) there exist a constant A’ > 1 and a strictly increasing continuous function ((¢)
on [0,e1] such that ((0) =0, € — £(e) + ((0 — do)/w*)((€) is non-decreasing
with w* > 1 such that ¥(x,t) < Ct" fort > 1, and
Weo) (:B,tYJ (x, ’{g_(i) ([L’, @a(x,t)—l))) < A (z,t)
forallz € G,t>1and 0 < e < ¢&;.
Then there exists a constant C' > 0 such that
1T 1w mimoc—1.60c-136 < Cllf llommec
for all f € Eg’;(G)
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Proof. Let f be a nonnegative function on G such that || f||¢ ke < 1. Choose
gl € (0,e1] such that ((¢}) < ¢ep. Let 2 € G, 0 <r < dg and 0 < ¢ < €]. By
Lemma 5.7 and (U®) we have

Ueio) (2, m(e) I f(2))
< o (w1 @)Y (o0l o0l me @) ) ) 1}

< C{Pe(w,n(e)M f(x)) +1} .

Note that || f||o xmec < 1 implies || M f||o unec < C by Theorem 4.4. Hence there is
a constant C] > 0 such that

Kee) (7. 7) o N dy < O
«m%m|émmgawm@>f@»yé 1

forallz € G, 0 < r < dg and 0 < € < ¢]. Therefore, there is another constant
CY% > 0 such that

Ke(e) (2, 7) / /
TB(r v € ,nie J d < C
|B($’ T)| B(z,r)NG ¢ )(y 7]( ) f(y)) Yy 2

forallz € G, 0 <r <dgand 0 < e < ¢}, so that

Rgoc—1)(en (2, 7) Ul (1m0 DT Fa) dy < CF
BT g 0 1€ NI < C

forallz € G, 0 <r <dgand 0 < & < ((g}), which implies the required result. O

Example 5.9. Let ®(x,t) = @, (4;()(z,t) be as in Example 2.1, x(z,r) =
') (log(e+1/r))?®@ be as in Example 2.2 and J(x,7) = r*®~N be as in Example 5.4.

Note that 0g = 0 if v+ :=sup,cqv(r) = Nand 0 < og < N —vT if vt < N. We
may take 0 < dg < 6 < v~ and w > p*. Then,

d — do v v(x)
e<o+ —e <o+ —=¢.
w pt p(x)
Hence, if o 4 ((6 — dp)/w)e > 0, then
v(z)+o S v(x)

p(x) —e ~ plx)

o+

(5.2)

Since

Y (, r)®7 (@, g, 7)) @@= B [Q 0,1 /1) (log(e+1 /) P 71O,

where Q(x,t) = H?Zl (L(j)(t))qj(x), we see that condition (®x.J) holds if
inf (@ — a(m)) > 0.

U(z,t) = [®p0) 10,03 (@ 0)]7 7 (log e + 1)P @@s@/v@)
where 1/p*(z) = 1/p(z) — a(z)/v(z). We see

Set

—a(z)/(v(z)+o)

)

£y, (SL’, K;I(SL’, O.(z, t)_l)) ~ #P(@)/P5 (@) +ea(z)/(v(@)+o) [Q(% t) (log(e+t))ﬁ(w)
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where 1/p(z) = 1/p(x) — a(x)/(v(z) + o). Hence
v <:B, Yy (z, 5, (2, Do (x, t)_l)))
~ PER @ @)t @@/ @10 [ 1) (log (e + 1)) P®)] —Pr(@)al@)/(v(z)+0)

L Qa, 1) /P (log e + 1)) (PR /v(e)
= (I)6 (:(;’ t)t”(p* (z)—p(x))/(v(z)+0o)+elp* (z)a(z)/(v(z)+0o)+1]
- Q(w, t)U(p*(x)—p(x))/[p(x)(V(x)JrU)] (log(e + t))ap*(x)a(x)ﬁ(x)/[y(x)(y(x)+g)].
Here, note that &(¢) + (v~ /p*)e > 0 implies v(z) + &(e) > v(x)/2if 0 < e < 1/2.
Let 0 < e <min(1/2,&1). Let 6 = (0 — &p)/w. Since
£(e) < £(e) + be N
v(e) +&() = v(x) v(z)+&(e) T plr)’

0 (. 1) (gl (2, 2. 1) 7))

< B, (1, )HEOHIE @ @)@ 4260 @)/p@) [og (e 4 £)]m EE)+09)

for t > 1 with a constant m; > 0. In view of (5.2), we also see that
tY (2, gl (@, @ (2, 4) 7)) Z 7O O log(e + 1))
with a constant my > 0, which implies
qj((a) <ZI§', tYJ (ZIZ’, K’g_é) (l’, (I)a(l', t)_1)>)
S o (x,t) {tp(x)/p*(x) log(e + )] 7™}
2@/ (0@ @)@ [og (e 4 £)]™ }<5<€>+9€>

—((e)

for t > 1.
Now, let () = ae + b(&(g) + 0g) (a,b > 0). If a > 2sup,c(p*(x)/p(x))?, then

sup {1 @ log(e 4 £)]7m ) 2P @6 < o
zeG, t>1

and if b > sup,eq p*(z)(p*(z) — p(x))/ (p(z)v(2)), then

sup {tp(x)/p*(x) [log(e + t)]_mz}_b {t(”* —p(@))/v(@) [log(e +1)] ml} < 00,
zeG, t>1

so that W(z,t) satisfies condition (¥®) with () = ae + b(€(e) + 6e) (0 < ¢ <
min(1/2,e1)).
6. Trudinger type inequality

In this section, we consider Trudinger type inequality on Zf;(G)
Lemma 6.1. Let ty, t > 0. If

(I)(l',tl) S K@(l’,tg)
for some v € G with K > A;l, then t; < Ay Kt,.
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Proof. Assume t; > Ay Kt,. Note that t; > to. Using ($3), we have
D(z,t1) = ip(z,t1) > Ktad(z,t2) = KP(x,ta),
which contradicts the assumption. U
In this section, we assume:
(2) &(e) < ae for 0 < € < ¢y with some a > 0.
Recall that £(¢) > —((6 — do)/w)e by assumption. Let
e(r) = (log(e + 1/7))~"
for r > 0 and let r € (0, min(1,dg)) be such that e(r) < e, for 0 <r <.
Lemma 6.2. There exists a constant C' > 1 such that
Cro Y a, k(z,r)™) < (136_(1,)(1', Keery (@, 7)) < CO (2, k(x,r)™h)
forallz € Gand 0 <r <ry.
Proof. Fix x € G and set
to(r) = @}z, i(z,r)™") and  t(r) = O, (2, K (,7) )
for 0 < r <ry. Then
O(z,to(r)) = Kz, r) ' = T’g(a(r))l*{,g(g(r))(l',’f’)_l
= T&(é(r))q)a(r) (z,t(r)) = T&(e(r))t(r)—s(r)q)(% t(r)).

Thus, in view of Lemma 6.1, it is enough to show that there exists a constant K > 1
independent of x such that

(6.1)

(6.2) K1 < Té(E(r))t(r)—a(r) <K
forall 0 <7 < ry.
Note that
(6.3) e~ < pas(n) < pEEM) < = ((0=00)/w)e(r) < p(6=00)/w

for 0 < r <7y and that

r

Ny
ot <wan <14 ])
by (k3).
If t(r) <1, then by (6.1) and (6.3)
Q5" < w(ayr) " = ) D a 1(r)
< 6(6—60)/wt(r)1—6(r)¢(93’ t(r)) < 6(5‘50)/WA1A2t(r)1‘5(dG),
so that t(r) > C;* with a constant C; > 1 independent of x. Thus
C;E(dc) < t(,r.)e(r) <1
if t(r) < 1.
If t(r) > 1, then by (6.1) and (6.3) again

N
@3 <1 + 1) > k(x, )t > e () =W (x, t(r) > e (A Ay) i (r)Ee)

r
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so that t(r) < Cyf(1 + 1/r)N]V/(1=2de)) with C, > 1 independent of . Since (1 +
1/r)¥0) is bounded for r > 0, it follows that

1 N e/ (1—e(da))
1< t(r) 0 < 051 (1 " _) <
r
if ¢(r) > 1, with a constant C3 > 1 independent of z.
Therefore, (6.2) holds with K = max{e®@-%0)/«Ce6) gacy) O

Lemma 6.3. There exists a constant C' > 0 such that

! £(y) dy < CO(w, s(z, 7)) ((logle + 1/r)) 1)

6.4 —_—
( ) |B(.§L’,7’)‘ B(z,r)NG

for all x € G, 0 < r < dg and nonnegative [ € Zi’;(G) with || fllexmnec < 1.

Proof. Let f be a nonnegative measurable function on G such that || f||¢ xmn.ec <
1.
If 0 <r <rq, then by Lemma 5.3

1
- - duy < C(I)_l (r -1 -1
|B(.§L’, 7’)‘ Blar)nG f(y) Y= e(r) (.flf, Ke(e(r)) (LU, T) )U(E(T))
for all € G. Hence, using the above lemma we obtain (6.4).
In case ry < r < dg, note that

O (2, ke (1)) < COHa, ki(z,r) ™)

e(r1)

by (k3) and Lemma 5.1(5). Hence, by Lemma 5.3 with ¢ = £(r;), we obtain (6.4) in
this case, too. O

In this section, we also assume that

(J3') J(x,r) < Cyr= for x € G and 0 < r < dg with constants 0 < ¢ < N and
Cy> 0;
(J4) there is rg € (0,dg) such that
7(1’,7’0)

inf J(x, >0 and inf = > 1.
e (, o) v€G J(z,dg)

Here note that (J3') implies (J3).

Example 6.4. Let a(-) and J(z,7) be as in Example 5.4. Then, J(x,r) satisfies
(J3") and (J4) (with ¢ = N —a™). In particular, it satisfies (J4) with any r € (0, dg).

We consider the function

F(x 8) ) /1 a pN(b—l(g:, Ii(l’, p)—l)n ((log(e + 1//)>)_1)_1d(—7($7 ))(p) if s > l7

/s To
F(l’,l/’f’o)ros 1f0§8§1/7‘0
for every x € G, where r is the number given in (J4). I'(z,-) is strictly increasing
and continuous for each x € G.
Lemma 6.5. There exist positive constants C' and C" such that

(a) D(z,s) < C'sn((ogle+s)™) " for all v € G and s > 1/ry with < in
condition (J3');
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(b) I'(z,1/r9) > C" > 0 for all x € G.

Proof. First note from (x3) and Lemma 5.1(5) that
(6.5) C' <o Mo, m(x,r) ) < Cr .
By (6.5) and (J3'),

da

P(z,s) < Cn ((log(e +5))™) " / d(~T(z,)(p)

s

< Cn ((log(e + s))_l)_l J(x,1/8) < C's°n ((log(e + s))_l)_l

for all z € G and s > 1/r¢; and

dg dg
D(z,1/rg) > O~ / PN d(~T(a,)(p) = O / A(~T(z,))(p)

70 o

=C 'l (J(z,r0) — J(z,dg)) > C" >0,
where we used (J4) to obtain the inequalities in the last line.

Lemma 6.6. There exists a constant C' > 0 such that

[ sl ahswarscr (o)
G\B(x,5)

for all x € G, 0 < § < ry and nonnegative f € E:;(G) with || fllexmec < 1.

Proof. By integration by parts, Lemma 6.3, (6.5), (J3') and Lemma 6.5(b), we

have
[ ale—ahidys [ Tl i) dy
G\B(z,5) G\B(z,5)

< {3, o) o wtr. do) ) (oste + 1))~

+ /5 ¢ PNl (:c, K(z, p)_l)n ((log(e + 1/p))_1)_1 d(—J(x, ))(P)}

< C{T'(z,1/ro) + I'(2,1/8)} < CI(x,1/9).
Lemma 6.7. Let 0 < A < N and define
L) = [ Jo = yP V) dy
G

for a nonnegative measurable function f on G and
1

wi(z,r) = =
1+ / P (2, k(2 p) ((log(e + 1/p))_1)_1 d_pp

for z € G. Then there exists a constant C; , > 0 such that

wy(z, 1)

‘B(Z7 T)| B(z,r)NG

],\f(x) dx S C[,)\

for all z € G, 0 < r < dg and nonnegative [ € zi’;(G) with || flle smec < 1.

O
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Proof. Let z € G. Let f(x) =0 for x € RY \ G and write

I (x) = / & — N f () dy + / 2=y i) dy
B(z,2r) G\B(z,2r)

= I(z) + Ir(x)
for x € G. By Fubini’s theorem,

[ nwa= [ (/ |x—y|A‘Ndz)f(y)dy
B(z,r)NG B(z,2r) B(z,r)NG
<[ ([ eeapvas) sy
B(z,2r) B(y,3r)

odt C
scf ([P rwasS [ swa
B(z,2r) 0 B(z,2r)
Now, by Lemma 6.3, (k2) and Lemma 5.1(2), we have

g /B( 2r) fly) dy < Cr|B(z,20)|@7 (=, (=, 2r) ) ((log(e +1/(2r))) )

< CIBG) [ 907 o) i ((oge +1/0) ) L

if 0 <r < dg/2 and, by Lemma 6.3 and (6.5), we have

P / Fly) dy = r / F(y) dy
B(z,2r) B(z,dc)

< Cd*|B(z, de)| @7 (=, 5(2,dg) ™) ((log(e + 1/dg)) ™) ™" < C|B(z, 7))
if dg/2 < r < dg. Therefore
/ I () dz < C|B(z,1)|
B(z,r)NG A WA(’Z7 T)
for all 0 < r < dg.

For I,, first note that Io(z) = 0if € G and r > dg/2. Let 0 < r < dg/2. Since

L(z) <C |z — y\)‘_Nf(y) dy for z € B(z,r)NG,
G\B(z,2r)

by integration by parts and Lemma 6.3, we have

Lyx) < C’{dGAéD_l(z, k(z,dg) " )n ((log(e + 1/alc;))_1)_1

dg
+ [P0 (e (hoste + 1)) d—pp}

T

C
~wa(z, )
for all x € B(z,r) NG. Hence

/ bx)ds < 0 2E]
B(z,r)NG w,\(z, T)

Thus this lemma is proved. O
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From now on, we deal with the case I'(x, r) satisfies the uniform log-type condi-
tion:
(Iog) there exists a constant cr > 0 such that
[(z,5%) < crl(z, s)
for all x € G and s > 1.
By (I'og), together with Lemma 6.5, we see that I'(z, s) satisfies the uniform doubling
condition in s:

Lemma 6.8. |20, Lemma 4.2| For every a > 1, there exists b > 0 such that
['(x,as) < bI'(z,s) for all x € G and s > 0.

Now we consider the following condition (J5):
(J5) there exists 0 < A\ < N — ¢ such that r — r¥=*J(x,r) is uniformly almost
increasing on (0, d¢) for ¢ in condition (J3').
Example 6.9. Let J be as in Example 5.4. It satisfies (J5) with 0 < A < a™.
Theorem 6.10. Assume that I' satisfies (I'\og) and J satisfies (J5). For each
r € G, let y(x) = sup,-o ['(x,s). Suppose A(z,t): G x [0,00) — [0, 00] satisfies the
following conditions:

(A1) A(-,t) is measurable on G for each t € [0,00); A(x,-) is continuous on [0, c0)
for each x € G;

(A2) there is a constant A} > 1 such that A(z,t) < A(z,A}s) for all z € G
whenever 0 <t < s;

(A3) A(z,I'(x,s)/AL) < Als for all x € G and s > 0 with constants A, A > 1
independent of x.

Then, for X given in (J5), there exists a constant C* > 0 such that Jf(x)/C* < y(x)

for a.e. x € G and
wx(2,7) ( Jf(fﬁ))
A Az, de <1
|B(Z’ ’l“)| B(z,r)NG Cx

for all z € G, 0 < r < dg and nonnegative f € Zi’;(G) with || fllexmec < 1.

By (I'iog) and (A3), the assertion of this theorem can be considered as exponential
integrability of Jf; cf. Corollary 6.12 below.

Proof. Let f be a nonnegative measurable function on G such that || f||¢ xmn.ec <
1. Fix 2 € G. For 0 < 0 < rg, Lemma 6.6, (J5) and (J3') imply

1@< [ sty or (o)
= [ o=l ke = ke = P dy ()
B(z,0)

<c {6N‘*J<x, O)hf )+ T (‘”’“‘ %) }

<C {5N‘<‘A1Af(:c) +T (x %) }

with constants C' > 0 independent of x.
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If I f(x) < 1/rg, then we take 0 = rg. Then, by Lemma 6.5(b)

Jf(z) < CT <:c rio) |

By Lemma 6.8, there exists C} > 0 independent of = such that

(6.6) Jf(z) < CIT (x L) if I, f(x) < 1/ro.
oA

Next, suppose 1/ry < I)f(x) < oco. Let m = supsy/yy sec (%, 8)/5. By (Tog),
m < oo. Define ¢ by
N—¢—A

6V = D L (@) (I ()
Since T'(z, Iy f(z))(Inf(z))™ <m, 0 < § < rg. Then by Lemma 6.5(b)
%SCF(IJAJ”( )) I f () VY
< O (e 1) V1 (2)) 0 < O f() /N,
Hence, using (I'joz) and Lemma 6.8, we obtain
r (g: %) < T, Iy f(2)) /N ~N) < OT (&, 1 f(2).

By Lemma 6.8 again, we see that there exists a constant C'; > 0 independent of z
such that

(6.7) Jf(x) < 3T (z,mhﬂx)) if 1/rg < I f(z) < o0,

where (7  is the constant given in Lemma 6.7.

Now, let C* = A A, max(Cy, C3). Then, by (6.6) and (6.7),

Jf(x) 1 1 1
O~ < AllAé maX{F (SL’,Q—%),F( 20[)\14, Af( ))}

whenever I, f(x) < co. Since I, f(z) < oo for a.e. x € G by Lemma 6.7, J f(x)/C* <
v(z) a.e. z € G, and by (A2) and (A3), we have

(ﬁ){ (o1 () 1) A (o (et )

<5t ~Lf(a)

for a.e. x € G. Thus, noting that wy(z,r

L 5

1 w,\zr
< = I

forallzeGand0<r<dg. O

1 and using Lemma 6.7, we have

l\DI»—t
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Remark 6.11. If I'(x, s) is bounded, that is,
da
_ _ 1y -1 -
sup [ 5707 (vl ) i (e + 1)) =Tl )(p) <
then by Lemma 6.6 we see that J|f| is bounded for every f € Zf;(G) In particular,
if wy_o(x,7)7! is bounded, that is,
“ N—c g1 -1 -1 dp
sup | pt @ (aar p) ) ((log(e +1/p) ) R < o,
z€G Jo

then I'(z, s) is bounded by (J3'), and hence J|f| is bounded for every f € Eg);(G)

If we further assume a continuity of the potential kernel J like condition (J5)
in our paper [20], then we can show a continuity of Jf for f € Zi’;(G), as in |20,
Theorem 5.3].

Applying Theorem 6.10 to special ®, x and J, we obtain the following corollary:

Corollary 6.12. Let k(x,r) and a(z) be as in Examples 2.2 and 5.4 and let p(x)
and q(x) be as in Examples 2.1. Set n(t) = t° for § > 0, ®(x,t) = t?@ (log(e +t))1®

and
0= [ o=y p dy
for a nonnegative locally integrable function f on GG. Assume that
a(r) —v(x)/p(x) =0 forallx € G.
(1) Suppose that
inf (—q(z)/p(z) — B(z)/p(x) + 0+ 1) > 0.

zeG
Then for 0 < A < o~ there exist constants C* > 0 and C** > 0 such that

v(2)/p(2)—=X I f(2) p(@)/(p(z)+0p(z)—B(z)—q(x))

o a() e
de < C

B /B@,ﬂnge’{p« &) c <

for all z € G, 0 < r < dg and nonnegative f € z:;(G) with || fl|ekmec < 1.
(2) If
SUg(-Q(SC)/p(x) — Blx)/p(x) +0+1) <0,
Te

then for 0 < A < o~ there exist constants C* > 0 and C** > 0 such that

z)/p(2)— 1
|B | exp (exp < a()cf( ))) dr < C*
zZ,r (2.7)

for all z € G, 0 < r < dg and nonnegative [ € Lf?(G) with || fllemmec < 1.
Proof. In the present situation, we see that

[o.s) (log(e + S))—q(x)/P(SC)—B(SU)/p(x)-i‘e-i‘l in case (1),
l” ~ .
log (log(e + s)) in case (2)

for all x € G and s > 1/ry = 2/dg. Hence, we may take

A exp (tp(:v)/(p(:v)—l—@p(:v)—q(m)—ﬁ(m))) in case (1)
x,t) = ’
(1) exp(expt) in case (2).
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On the other hand,
Wy (2,7) ~ PV EPE=X (og (e + l/r))—q(x)/p(:v)—ﬁ(:v)/p(x)w
forall z€ G,0< s <dgand 0 <\ < a~, so that
rYEPEN < Cun(z, 1)

if 0 < A< XN < a . Thus, given 0 < A < a~, Theorem 6.10 implies the required
results. ([l
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