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Abstract. We investigate whether the approximation numbers of operators behave well un-

der the two-sided complex interpolation of Hilbert spaces. We study geometric interpolation of

the approximation numbers as well as the entropy moduli. We also study geometric properties of

the entropy and approximation numbers of operators between Hilbert spaces. In particular, we

provide the quantitative estimates of approximation numbers as well as the interpolation results on

normal operators.

1. Introduction

The theory of s-numbers plays a fundamental role in the study of operators
and the local theory of Banach spaces. The axiomatic approach to s-numbers
was developed by Pietsch in [19]. Particularly important s-numbers of an opera-
tor T ∈ L(E, F ) are the following:

– approximation numbers an(T ) := inf{‖T − S‖ : S ∈ L(E, F ), rank(S) < n},
– Gelfand numbers cn(T ) := inf{‖T |G‖ : G ⊂ E, codim(G) < n},
– Kolmogorov numbers dn(T ) := inf{ε > 0: G ⊂ F, dim(G) < n,
T (UE) ⊂ G + εUF},

– Weyl numbers xn(T ) := sup{an(TS) : S ∈ L(ℓ2, X), ‖S‖ 6 1}.

If we denote by T ′ the dual operator of T , then cn(T ) = dn(T
′) for an arbitrary

operator, while the analogous equalities an(T ) = dn(T
′), dn(T ) = cn(T

′) are true, in
general, for compact operators only. In the context of eigenvalues a central role is
played by the Weyl numbers, which were introduced also by Pietsch. For operators
acting between Hilbert spaces the various s-numbers are known to coincide.

Let ~A = (A0, A1) and ~B = (B0, B1) be Banach couples and θ ∈ (0, 1). In the

case where a Banach space X belongs to the class CK(θ; ~A) and B := B0 = B1 or

A := A0 = A1 and a Banach space Y belongs to the class CJ (θ; ~B), the following
inequalities (see, e.g. [21, 6.6.5.3]) hold

dn+m−1(T : X → B) 6 C dn(T : A0 → B)1−θ dm(T : A1 → B)θ ,

cn+m−1(T : A → Y ) 6 C cn(T : A → B0)
1−θ cm(T : A → B1)

θ .

We refer to these as “one-sided” interpolation results. It has long been known that
these s-numbers (as well as the others), in general, do not behave well under complex
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interpolation even for identity maps between finite dimensional spaces, as the follow-
ing observation of Carl shows (see, e.g. [8]). Consider A0 = A1 = B0 := ℓ3n1 , B1 := ℓ3n∞
and θ = 1/2. Then X := [A0, A1]θ ∼= ℓ3n1 and Y := [B0, B1]θ ∼= ℓ3n2 . Because of the
duality relation cn(T ) = dn(T

′), it is enough to consider the Kolmogorov numbers
only. Therefore

dn(I : A0 → B0)
1−θ dn(I : A1 → B1)

θ ≍ n−1/4 and

d2n−1(I : X → Y ) ≍ 3−1/2.

For an extensive survey of results concerning the asymptotic behaviour of s-numbers
of such operators we refer to [15].

The problem on the “two-sided” interpolation of s-numbers is the problem of
finding conditions on the Banach couples ~A, ~B and the interpolation functor F of
exponent θ ∈ (0, 1) under which there exists a constant C > 0 such that for every

operator T : ~A → ~B and each n,m ∈ N the following inequality

(1.1) wn+m−1(T : X → Y ) 6 C wn(T : A0 → B0)
1−θ wm(T : A1 → B1)

θ

is valid, where w is one of s-numbers, X := F( ~A) and Y := F( ~B).
It is still not completely clear under which conditions this “two-sided” interpola-

tion problem has a positive answer. In connection with this, it seems important to
investigate concrete nontrivial cases. In this paper we deliver a variant of (1.1) in
the case of Hilbert spaces. We show that the s-numbers of an operator behave well
under complex interpolation between Hilbert spaces. We actually prove that there
exists a constant C > 0, such that for all Hilbert couples ~H = (H0, H1), ~K = (K0, K1)

and every operator T : ~H → ~K, the estimate

An

(
T : [ ~H]θ → [ ~K]θ

)
6 C An

(
T : H0 → K0

)1−θ
An

(
T : H1 → K1

)θ

holds for all θ ∈ (0, 1) and n ∈ N, where An(T ) denotes
(∏n

i=1 ai(T )
)1/n

.
Let us remark that the “spectral” heart of our proof is inspired by the elegant

idea of Halmos [10] and McCarthy [6]. We also stress that these results are obtained
using the “geometric interpolation” methods, employing related ideas from [6, 7, 10].
It should be mentioned, too, that there is a lack of positive answers of this “two-sided”
interpolation problem in the available literature and our result may be a unique
finding.

Let us mention that it was Allakhverdiev [1] who discovered the coincidence of
the approximation numbers an(T ) with the eigenvalues λn(|T |), which are commonly
referred to as the singular numbers sn(T ). It is well known that in the case where
T is a self-adjoint operator on a Hilbert space, we also have an(T ) = |λn(T )| (see,
e.g. [4]). In this paper we extend this result to normal operators.

We also deliver estimates of inner entropy numbers ϕn(T ), entropy numbers
εn(T ) and entropy moduli gn(T ) of operators between Hilbert spaces, inspired by
the celebrated Gordon, König and Schütt [9] inequality, namely

ϕn(T ) 6 4 sup
m∈N

n−1/2mAm(T ) , εn(T ) 6 6 sup
m∈N

n−1/2mAm(T ) and gn(T ) 6 6An(T )

as well as

ϕn2k (T ) 6 21/2
k−1

sup
m∈N

n−1/2mAm(T )



Interpolation of approximation numbers between Hilbert spaces 345

and

εn2k (T ) 6 21+1/2k−1

sup
m∈N

n−1/2mAm(T ) ,

for all k, n ∈ N. The asymptotic behaviour of εn(T ) ≍ supm∈N n−1/2mAm(T ) and
gn(T ) ≍ An

(
T
)

is already known (see, [4, Theorems 3.4.1 and 3.4.2]). We improve
the equivalence constants.

We prove an interpolation theorem on normal operators, which seems to be of in-
dependent interest. It turns out that whenever T on a regular Hilbert couple ~H is nor-
mal on both “endpoints” H0 and H1, the approximation numbers ak

(
T : [ ~H]θ → [ ~H]θ

)

coincide for all θ ∈ [0, 1], namely

ak(T : H0 → H0) = ak
(
T : [ ~H]θ → [ ~H]θ

)
= ak(T : H1 → H1) , k ∈ N.

2. Preliminaries

We recall some basic concepts and results from the spectral theory of operators
we will use later on. Given an operator T ∈ L(X) on a complex Banach space X, T is
said to be a Fredholm operator provided that its kernel, N(T ), is finite dimensional
and the R(T ) has a finite codimension. This last condition implies that R(T ) is
closed. It is well known that T is a Fredholm operator if and only if its equivalence
class is invertible in the Calkin algebra L(X)/K(X).

Let σ(T ) denote the spectrum of T . The essential spectrum σ
ess

(T ) is the set of
all λ ∈ C such that λIX − T is not Fredholm. The essential spectral radius is given
by

r
ess

(T ) := sup{|λ|; λ ∈ σ
ess

(T )}.

An operator T ∈ L(X) with r
ess

(T ) = 0 is called a Riesz operator. Examples of
Riesz operators are power compact operators.

The classical Fredholm theory gives that the set

Λ(T ) = {λ ∈ σ(T ) : |λ| > r
ess

(T )} .

is at most countable and consists of isolated eigenvalues of finite algebraic multiplic-
ity. Following the Riesz theory of operators (see [4] and [22] for more details), for
an operator T ∈ L(X) acting on a complex Banach space X, we can assign an eigen-
value sequence {λn(T )}

∞

n=1 from the elements of the set Λ(T ) ∪ {r
ess

(T )} as follows:
The eigenvalues are arranged in an order of non-increasing absolute values and each
eigenvalue is counted according to its algebraic multiplicity. If T possesses less than n
eigenvalues λ with |λ| > r

ess
(T ), we let λn(T ) = λn+1(T ) = . . . = r

ess
(T ). The order

could be non-uniquely determined; we choose a fixed order of this form.
Let us recall that in this framework we also have the following equalites

λn(T
m) = λn(T )

m , m, n ∈ N(2.1)

and

λn(RS) = λn(SR) , n ∈ N,(2.2)

where R ∈ L(E, F ), S ∈ L(F,E) are operators acting between complex Banach
spaces.
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3. Geometric properties of entropy moduli and entropy numbers

In this section we prove the main results of the paper. First, we recall some
important definitions. Let T : E → F be an operator between Banach spaces and let
n ∈ N. The n-th entropy number εn(T ) = εn(T : E → F ) is defined to be the infimum
of all ε > 0 such that there exist y1, . . . , yn ∈ Y for which

T (UE) ⊂
n⋃

j=1

{yj + εUF} ,

where UE denotes the closed unit ball of E. We notice here that these numbers and
their speed of convergence provide a quantitative way to measure the “degree of com-
pactness” of an operator between Banach spaces. The measure of non-compactness
β(T ) is defined by β(T ) := limn→∞ εn(T ).

The entropy numbers of operators are useful in the analysis of the asymptotic
behaviour of eigenvalues. The celebrated inequality due to Carl and Triebel [5] gives
an estimate of eigenvalues of T ∈ L(X) acting on a complex Banach space X, by
single entropy numbers

( n∏

i=1

|λi(T )|

)1/n

6 inf
k∈N

k1/2nεk(T ) , n ∈ N,

where {λn(T )} is an eigenvalue sequence of T .
This motivated the following notion; given an operator T ∈ L(E, F ) between

Banach spaces, we define the n-th entropy modulus gn(T ) = gn(T : E → F ) by

gn(T ) := inf
k∈N

k1/2nεk(T ) , n ∈ N.

It is also well known that for every operator T : X → X on a complex Banach space
X,

Gn(T : X → X) := lim
m→∞

gn(T
m)1/m =

( n∏

i=1

|λi(T )|

)1/n

, n ∈ N.(3.1)

This formula was proved by Makai–Zemánek (see, e.g. [4, 17]). By the Carl–Triebel
inequality, Gn(T ) 6 gn(T ) for each n ∈ N.

Until now, we considered entropy moduli gn(T ) as a function of any operator T
acting between arbitrary Banach spaces. Here and subsequently, we will sometimes
drop the assumption that these spaces are complete.

Proposition 3.1. Let E and F be arbitrary Banach spaces, and T ∈ L(E, F ).
Assume that there exist subspaces E0 ⊂ E and F 0 ⊂ F which are dense in E and

F , respectively such that T
(
E0

)
⊂ F 0. Then

gn
(
T : E → F

)
= gn

(
T : E0 → F 0

)
, n ∈ N.

Proof. Fix k ∈ N. It suffices to show that εk
(
T : E → F

)
= εk

(
T : E0 → F 0

)
.

Indeed, given ε > εk
(
T : E0 → F 0

)
, we can find y0i ∈ F 0, 1 6 i 6 k, such that

T (UE0) ⊂
k⋃

i=1

{
y0i + εUF 0

}
.
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This implies

T (UE) ⊂ T (UE0) ⊂

k⋃

i=1

{
y0i + εUF

}

and so εk
(
T : E → F

)
6 εk

(
T : E0 → F 0

)
. For the opposite inequality, suppose that

ε > εk
(
T : E → F

)
and δ > 0. Likewise, there exists a covering such that

T (UE) ⊂
k⋃

i=1

{yi + εUF} , where yi ∈ F, 1 6 i 6 k.

Choose y0i ∈ F 0 which satisfy ‖y0i − yi‖F < δ, 1 6 i 6 k. Hence

T (UE0) ⊂

k⋃

i=1

{yi + εUF} ∩ F 0 ⊂

k⋃

i=1

{
y0i + (ε+ δ)UF 0

}
.

This gives εk
(
T : E0 → F 0

)
6 εk

(
T : E → F

)
. �

The next two results come from [18, Theorem 3.2 and Proposition 3.4].

Theorem 3.2. Let X be a complex Banach space and T ∈ L(X). If {λn(T )} is

an eigenvalue sequence of T , then

lim
m→∞

εkm(T
m)1/m = sup

n∈N
k−1/2n

( n∏

i=1

|λi(T )|

)1/n

, k ∈ N.

Following [18], we define for every operator T on a complex Banach space X
the n-th spectral entropy number

En(T ) := lim
m→∞

εnm(Tm)1/m .

Clearly, En(T ) 6 εn(T ) for each n ∈ N.

Proposition 3.3. Let X be a complex Banach space and T ∈ L(X). Then

r
ess

(T ) 6 . . . 6 E2(T ) 6 E1(T ) = r(T ) and lim
n→∞

En(T ) = r
ess

(T ).

Let us recall that the approximation numbers an(T ) admit the geometrical rep-
resentation (see [20], as well as [4, Propositions 2.4.2 and 2.4.5])

an(T : H → K) = inf{‖T − TP‖ : P ∈ L(H) is an orthogonal

projection with rankP < n}

where H,K are arbitrary Hilbert spaces and T ∈ L(H,K). In what follows

An(T : H → K) denotes
(∏n

i=1 ai(T : H → K)
)1/n

. Since

‖T (I − P )‖2 = ‖(I − P )T ∗T (I − P )‖ 6 ‖T ∗T − T ∗TP‖ ,

we also have

an(T : H → K)2 6 an(T
∗T : H → H) .(3.2)

We also recall that

an(T : H → K) = an(|T | : H → H) = an(T
∗ : K → H) , n ∈ N,
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by the polar decomposition of T where |T | := (T ∗T )1/2, T = U |T |, |T | = U∗T and
U : H → K is a partial isometry with ‖U‖ = 1. Similarly, for each n ∈ N, we have

ϕn(T : H → K) = ϕn(|T | : H → H) = ϕn

(
T ∗ : K → H

)
,

εn(T : H → K) = εn(|T | : H → H) = εn
(
T ∗ : K → H

)
.

(3.3)

Let us remark that Allakhverdiev [1] proved the following formula

an(T : H → K) = λn(|T | : H → H) , n ∈ N.

It is well known that in the case where T ∈ L(H) is a self-adjoint operator acting in
a Hilbert space H , we have the following equality (see [4, Proposition 4.4.1])

an(T ) = |λn(T )| , n ∈ N.

Now we can strengthen this result. In the proof we use König’s result (see [11, 12]
or [4, Theorem 4.3.1]) which states that for every operator T ∈ L(X) on a complex
Banach space the following formula holds:

|λn(T )| = lim
m→∞

an(T
m)1/m , n ∈ N.

Proposition 3.4. Let H be a complex Hilbert space and T ∈ L(H) be a normal

operator. Then

an(T ) = |λn (T )| , n ∈ N.

Proof. Let n ∈ N. Let P ∈ L(H) be an orthogonal projection with rankP < n.
Since T ∗T = TT ∗,

∥∥T 2(I − P )
∥∥2

=
∥∥(I − P )(T 2)∗(T 2)(I − P )

∥∥

= ‖(I − P )T ∗TT ∗T (I − P )‖ = ‖(T ∗T )(I − P )‖2

shows that an(T
2) = an(T

∗T ). We check by induction that

an
(
T 2m

)
= an

(
(T ∗T )2

m−1)

for each m ∈ N. Since T ∗T is self-adjoint, [4, Proposition 4.4.1]) shows that

an
(
(T ∗T )2

m−1)
= λn

(
(T ∗T )2

m−1)
= λn(|T |)

2m = an(|T |)
2m .

Therefore

|λn(T )| = lim
m→∞

an
(
T 2m

)1/2m
= an(T ) ,

by the mentioned König formula. �

Theorem 3.2 and Proposition 3.4 now yields

Gn(T ) = An(T ) as well as En(T ) = sup
m∈N

n−1/2mAm(T ) , n ∈ N,(3.4)

where T ∈ L(H) is a normal operator on a complex Hilbert space H .
Given n ∈ N, the n-th inner entropy number ϕn(T ) = ϕn(T : E → F ) is defined

to be the supremum of all ρ > 0 such that there exist x1, . . . , xp ∈ UE , p > n such
that

‖T (xi − xj)‖ > 2ρ, 1 6 i < j 6 p.

There is a close relation between entropy and inner entropy numbers, namely
ϕn(T ) 6 εn(T ) 6 2ϕn(T ). The inner entropy numbers ϕn(T ) are additive with
a constant equals 2 because their additivity results from the additivity of the entropy
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numbers εn(T ) (see, e.g., [4]). However, the following variant of this property is also
true:

Proposition 3.5. Let E, F be arbitrary Banach spaces and T1, T2 ∈ L(E, F ).
Then

ϕn(T1 + T2) 6 ‖T1‖+ ϕn(T2) , n ∈ N.

Proof. Fix ρ < ϕn(T1 + T2). There exist elements x1, . . . , xp ∈ UE , p > n such
that

2ρ < ‖(T1 + T2)(xi − xj)‖ 6 2 ‖T1‖+ ‖T2(xi − xj)‖ , 1 6 i < j 6 p.

It is easily seen that

min
16i<j6p

‖T2(xi − xj)‖ 6 2σ, σ > ϕn(T2) .

Therefore ρ < ‖T1‖+ σ, and ϕn(T1 + T2) 6 ‖T1‖+ ϕn(T2) as required. �

We next state two auxiliary results, all of which have geometrical character. First,
we prove an analogue of (3.2) in terms of the inner entropy numbers:

Proposition 3.6. Let H,K be Hilbert spaces and T ∈ L(H,K). Then

ϕn(T : H → K)2 6 ϕn(T
∗T : H → H) , n ∈ N.

Proof. Let ρ < ϕn(T ). There exist elements x1, . . . , xp ∈ UE , p > n such that

(2ρ)2 < ‖T (xi − xj)‖
2 = 〈T (xi − xj), T (xi − xj)〉

= 〈T ∗T (xi − xj), xi − xj〉 6 2 ‖T ∗T (xi − xj)‖ , 1 6 i < j 6 p,

the last inequality being a consequence of the Cauchy–Schwarz inequality. This gives
ρ2 < ϕn(T

∗T ), and ϕn(T )
2
6 ϕn(T

∗T ) as claimed. �

Let E, F be arbitrary Banach spaces. It is known that the entropy moduli
{gn(T )}n∈N are injective in a weaker sense, namely gn(T ) 6 2gn(JT ) for any

T ∈ L(E, F ) and any metric injection J : F → F̃ , where F̃ is a Banach space.
The factor 2 cannot be reduced in general (see, e.g., [4, (3.5.17)]). Nevertheless, in
the case of Hilbert spaces, we have the following equality:

Proposition 3.7. Let E be an arbitrary Banach space. Assume that H is

a Hilbert space such that K is a closed subspace of H and let J : K → H denote

the isometric embedding of K into H . If T ∈ L(E,K), then

gn(T : E → K) = gn(JT : E → H) , n ∈ N,

i.e., the entropy numbers {εn(T )}n∈N are injective.

Proof. We start with the observation that H = K ⊕K⊥, so there exists an or-

thogonal projection P : H → H of H onto K. Let P̃ : H → K denote the operator of

H onto K induced by P . We obviously have P = JP̃ and P̃ J = I, where I : K → K
stands for the identity operator, thus

gn(T ) = gn
(
P̃ JT

)
6 ‖P̃‖gn(JT ) 6 ‖J‖ gn(T ) , n ∈ N,

and this completes the proof. �

We now state and prove the following result which is inspired by the celebrated
inequality due to Gordon, König and Schütt [9] (see also [4, Theorems 1.3.2 and
1.4.1]).
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Theorem 3.8. Let H be a complex Hilbert space and T ∈ L(H) be a normal

operator. Then

ϕn(T ) 6 4 En(T ) , εn(T ) 6 6 En(T ) and gn(T ) 6 6Gn(T ) , n ∈ N.(3.5)

In particular,

ϕ
n2k (T ) 6 21/2

k−1

En(T ) and ε
n2k (T ) 6 21+1/2k−1

En(T ) , k, n ∈ N.(3.6)

Proof. Suppose for the moment that T is a positive operator. Clearly T is self-
adjoint with nonnegative eigenvalues. Fix n ∈ N. Let {λm(T )}

∞

m=1 be an eigenvalue
sequence of T . By Proposition 3.3, there exists an index r ∈ N with |λr(T )| 6

2 En(T ). In order to prove the first two inequalities, we need consider two cases:

(i) λ1(T ) 6 2 En(T ).
(ii) There exists k ∈ N such that λk+1(T ) 6 2 En(T ) < λk(T ).

If λ1(T ) 6 2 En(T ), then ϕn(T ) 6 εn(T ) 6 ‖T‖ = λ1(T ) 6 2 En(T ). In
the latter case, there exists k ∈ N such that λk+1(T ) 6 2 En(T ) < λk(T ) where
λ1(T ) , . . . , λk(T ) ∈ Λ(T ). Therefore, there exists a k-dimensional subspace K of H
(see, e.g., [4, Lemma 4.2.1]), invariant under T such that TK possesses λ1(T ) , . . . ,
λk(T ) as its eigenvalues, where TK : K → K denotes the restriction of T to K. By
the spectral theorem for normal operators, there also exists an orthonormal basis
{fi}

k
i=1 of K consisting only of eigenvectors of TK , ordered the same way as eigen-

values (i.e., Tfi = λi(T ) fi, 1 6 i 6 k). Hence, S : K → ℓk2 and R : ℓk2 → K given
by

S

( k∑

i=1

αifi

)
=

k∑

i=1

αiei and R

( k∑

i=1

αiei

)
=

k∑

i=1

αifi, αi ∈ C, 1 6 i 6 k,

are isometries. Since H = K ⊕ K⊥, there exists an orthogonal projection P of H

onto K, which commutes with T . Denote by P̃ : H → K the operator of H onto K
induced by P and let J : K → H be the isometric embedding of K into H . We have

TK = P̃ TPJ and TP = JTKP̃ , because TK = P̃TJ , PJ = J and P = JP̃ . Hence

ϕm(TP ) = ϕm

(
JTK P̃

)
6 ϕm(TK) = ϕm

(
P̃TPJ

)
6 ϕm(TP )

and εm(TP ) = εm(TK). Therefore εm(TP ) = εm(D) and ϕm(TP ) = ϕm(D), where
D denotes the operator STKR from ℓk2 into itself and m ∈ N. D turns out to be
a diagonal operator generated by the sequence λ1(T ) , . . . , λk(T ), namely

D (α1, . . . , αk) = (λ1(T )α1, . . . , λk(T )αk) , αi ∈ C, 1 6 i 6 k.

Since the image D (U) of the closed unit ball U of ℓk2 is compact,
limm→∞ ϕm(D) = 0. Suppose that there exists a set {y1, . . . , yN} of elements in
D (U) with

‖yi − yj‖ > 4 En(T ) , 1 6 i < j 6 N,

and that N is maximal in this respect. Therefore ϕN(D) 6 2 En(T ) and εN(D) 6

4 En(T ).
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We now give an estimate for N . Since the sets {yi + 2 En(T )U}, 1 6 i 6 N are
pairwise disjoint and 2 En(T ) < λk(T ) 6 · · · 6 λ1(T ), it follows that

N⋃

j=1

{yj + 2 En(T )U} ⊆ D (U) + 2 En(T )U ⊆ 2D (U) .

This yields

N (2 En(T ))
2k

6 22k
k∏

i=1

λi(T )
2 ,

which follows by the fact that the comparison of volumes takes place in a real eu-
clidean space of dimension 2k. Thus

N 6 En(T )
−2k

k∏

i=1

λi(T )
2
6 n,

the last inequality being a consequence of the definition of En(T ).
It remains to estimate ϕn(T ) and εn(T ). Proposition 3.5 now leads to

ϕn(T ) 6 ϕN(T ) 6 ‖T (I − P )‖+ ϕN(TP ) = λk+1(T ) + ϕn(D) 6 4 En(T ) .

In a similar fashion, we obtain εn(T ) 6 6 En(T ).
We now prove the third inequality. Fix k ∈ N. If λk(T ) = 0 then rankT < k

(see e.g., Proposition 3.4) and hence gk(T ) = 0. Suppose that λk(T ) > 0. We can
now proceed analogously to the first part of the proof. Since λk(T ) 6 ‖D‖, there
exists a maximal set {y1, . . . , yN} of elements in D (U) with

‖yi − yj‖ > 2 λk(T ) , 1 6 i < j 6 N.

This clearly forces εN(TP ) = εN(D) 6 2 λk(T ) and thus εN(T ) 6 ‖T (I − P )‖ +
εN(TP ) 6 3 λk(T ). To estimate N , we note that the sets {yi + λk(T )U}, 1 6 i 6 N
are pairwise disjoint and therefore

N⋃

j=1

{yj + λk(T )U} ⊆ D (U) + λk(T )U ⊆ 2D (U) .

Now we carry out a comparison of volumes and conclude that

N λk(T )
2k

6 22k
k∏

i=1

λi(T )
2 .

Hence

N1/2k 6 2 λk(T )
−1

( k∏

i=1

λi(T )

)1/k

and so

gk(T ) 6 N1/2kεN(T ) 6 6

( k∏

i=1

λi(T )

)1/k

= 6Gk(T ) .
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We are now in a position to show the last two estimates. Fix k ∈ N. Repeated
application of Proposition 3.6 enables us to write

ϕn2k (T )
2k

6 . . . 6 ϕn2k

(
T 2k

)
6 4 En2k

(
T 2k

)
= 4 En(T )

2k ,

where the last equality is a consequence of Proposition 3.3. By the above,

ε
n2k (T )

2k
6 22

k

ϕ
n2k (T )

2k
6 4 · 22

k

En(T )
2k .

The proof is completed by showing that the result will remain unaffected if we
assume merely that T is normal. Using Proposition 3.4, Theorem 3.2 and (3.3) we
obtain

ϕn(T ) = ϕn(|T |) 6 4 En(|T |) = 4 sup
n∈N

k−1/2n

( n∏

i=1

|λi(T )|

)1/n

= 4 En(T ) .

The same conclusion can be drawn for the remaining estimates. �

Let H be Hilbert space and T ∈ L(H) be a normal operator. Note that by
Propositions 3.3 and 3.4 we also have ε1(T ) = E1(T ) and β(T ) = ress(T ). Neverthe-
less, one may check that εn(T ) 6 En(T ), n > 2 does not hold even for self-adjoint
operators T acting in a finite dimensional Hilbert space. Unfortunately, we do not
know whether or not the constant appearing in εn(T ) 6 6 En(T ), n ∈ N is opti-
mal. The corresponding part of our proof of Theorem 3.8 is based upon ideas found
in [9], [4, Theorem 1.3.2]. We also note that the first (resp., the second) formula
of (3.6) which is a generalization of the first inequality of (3.5), shows that at the ex-

pense of replacing n by n2k on the left hand side of (3.5) we may replace the factor

4 (resp., 6) on the right hand side of (3.5) by 21/2
k−1

(resp., 21+1/2k−1

), k ∈ N.
Let us remark, that with Theorem 3.8 at hand, we can obtain the following

estimates, which are interesting results in their own right (cf. Proposition 3.6):

Corollary 3.9. Let H,K be complex Hilbert spaces and T ∈ L(H,K). Then

ϕn(T : H → K) 6 4 εn2(T ∗T : H → H)1/2 and

εn(T : H → K) 6 6 εn2(T ∗T : H → H)1/2 and

gn(T : H → K) 6 6 gn(T
∗T : H → H)1/2 , n ∈ N.

Proof. Let n ∈ N. By (3.3) and Theorem 3.8 we have

ϕn(T ) = ϕn(|T |) 6 4 En(|T |) = 4 En2

(
|T |2

)1/2
6 4 εn2

(
T ∗T

)1/2
,

and the first estimate follow. The remaining assertion can be verified in a similar
way. �

It is easy to check, that the following inequality stated in Theorem 3.8, εn(T ) 6
6 En(T ), (resp., gn(T ) 6 6Gn(T )), n ∈ N, can be recovered using Corollary 3.9 and
Theorem 3.2 (resp., the Makai–Zemánek formula (3.1). Note that the last inequality
stated in Corollary 3.9 can also be regarded as a variant of (3.2).

The next result is clearly motivated by [4, Theorems 3.4.1 and 3.4.2], where
the constant appearing at the right-hand side of the inequality is equal to 14 and 10,
respectively. The proof is analogous in spirit to that of Corollary 3.9, thus it will
only be indicated briefly.
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Theorem 3.10. Let H,K be complex Hilbert spaces and T ∈ L(H,K). Then,

for each n ∈ N, we have

An(T ) 6 gn(T ) 6 6An(T ) ,

sup
m∈N

n−1/2mAm(T ) 6 εn(T ) 6 6 sup
m∈N

n−1/2mAm(T ) ,

1/2 sup
m∈N

n−1/2mAm(T ) 6 ϕn(T ) 6 4 sup
m∈N

n−1/2mAm(T ) .

In particular,

ϕn2k (T ) 6 21/2
k−1

sup
m∈N

n−1/2mAm(T ) and

ε
n2k (T ) 6 21+1/2k−1

sup
m∈N

n−1/2mAm(T ), k, n ∈ N.

Proof. We only show the first three inequalities. Fix n ∈ N. That En(|T |) 6

εn(|T |) follows from Theorem 3.2. Thus gn(T : H → K) = gn(|T | : H → H). By
the Carl–Triebel inequality (cf. [4, 5]), Gn(|T |) 6 gn(|T |). Theorem 3.8 now shows
that ϕn(|T |) 6 4 En(|T |), εn(|T |) 6 6 En(|T |) and gn(|T |) 6 4Gn(|T |), and the proof
is completed by (3.3) and (3.4). �

In the sequel we use the following lemma.

Lemma 3.11. Let H,K be arbitrary Hilbert spaces and T ∈ L(H,K). Suppose

that there exist operators {Pn}n∈N and {Qn}n∈N which which have norm less or equal

to 1 and approximate identity on finite subsets of H and K, respectively. If

Pn = Pn+1Pn and Qn = QnQn+1, n ∈ N,

then

gk(T : H → K) 6 6 lim
n→∞

gk(QnTPn : H → K)

and

Ak(T : H → K) 6 12 lim
n→∞

Ak(QnTPn : H → K) , k ∈ N.

Proof. We first show that

ϕk(T : H → K) = lim
n→∞

ϕk(QnTPn : H → K) , k ∈ N.(3.7)

Note that lim supn→∞ ϕk(QnTPn : H → K) 6 ϕk(T : H → K) holds trivially.
Since the operators Pn and Qn approximate identity on finite subsets of H and
K, respectively, it follows that

‖(T −QnTPn)x‖K 6 ‖(I −Qn)Tx‖K + ‖QnT (I − Pn)x‖K
6 ‖(I −Qn)Tx‖K + ‖T‖H→K ‖(I − Pn)x‖ → 0

(3.8)

as n → ∞ and hence ‖Tx‖K = limn→∞ ‖QnTPnx‖K for all x ∈ H . Fix ε > 0. By
the definition of ϕk(T ), there exists a set of elements x1, . . . , xn+1 ∈ UH such that

2ϕk(T : H → K)− ε < ‖T (xi − xj)‖K , 1 6 i < j 6 n+ 1,

and an integer N such that

‖T (xi − xj)‖K − ε < ‖QnTPn(xi − xj)‖K , n > N, 1 6 i < j 6 n+ 1.
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Hence, by definition again, we have

min
16i<j6n+1

‖QnTPn(xi − xj)‖K < 2ϕk(QnTPn) + ε, n > N,

and thus the inequality ϕk(T : H → K) 6 lim infn→∞ ϕk(QnTPn : H → K) follows.
Let us observe that PnUH ⊂ UH and PnUH ⊂ Pn+1UH . We claim that

gk(QnTPn) 6 gk(Qn+1TPn+1) .(3.9)

Indeed, QnTPnUH ⊂ QnTPn+1UH and gk(QnQn+1TPn+1) 6 gk(Qn+1TPn+1). Since
gk(QnTPn) 6 ‖T‖, the sequence {gk(QnTPn)}n∈N converges. In this way one can
also check that {Ak(QnTPn)}n∈N converges.

Without loss of generality we can assume that gk(T ) > 0. Hence, rankT > k.
Fix ε > 0. There exists a sequence {mn}n∈N such that

m1/2k
n εmn

(QnTPn) < gk(QnTPn) + ε/2.(3.10)

In order to prove the remaining inequality, we need consider two cases:

(i) There exists a constant subsequence {Nn}n∈N of {mn}n∈N.
(ii) There exists a strictly increasing subsequence {Nn}n∈N of {mn}n∈N.

Assume that Nn = N , n ∈ N. Since gk(T ) 6 2N1/2kϕN(T ), (3.7) shows that

Ak(T ) 6 gk(T ) 6 2 lim
n→∞

gk(QnTPn) + ε 6 12 lim
n→∞

Ak(QnTPn) + ε,

by Theorem 3.10, (3.3) and (3.4). Now we turn to case (ii). Fix m ∈ N. We conclude
from (3.9) and (3.10) that there exists C such that

εNn
(QmTPm) 6 C N−1/2k

n , n ∈ N,

hence that rankQmTPm 6 k (see, e.g. [4, Lemma 1.3.1 and (1.3.14)’]). We next
prove that rankT = k. Conversely, suppose that rankT > k. Then we find d-
dimensional subspaces Hd ⊂ H and Kd ⊂ K with d > k, which satisfy T (Hd) = Kd.
We will denote by S : Hd → Kd the operator of Hd onto Kd induced by T . There

exists an orthogonal projection P : H → H of H onto Hd. Here P̃ : H → Hd denote
the operator of H onto Hd induced by P . The isometric embedding of Kd into K

will be denoted by J . We conclude from (3.8) that
∥∥JSP̃ −QnTPn

∥∥
H→K

→ 0, hence

that ad
(
JSP̃

)
= 0, and finally that rank JSP̃ < d (see, e.g. [4, Rank property (A4),

p.42]), which is impossible. The result is rankT = k.
In the same manner we can see that

∣∣ai(T )− ai(QnTPn)
∣∣ 6

∥∥T −QnTPn

∥∥
H→K

→ 0, 1 6 i 6 k.

Theorem 3.10 now yields

gk(T ) 6 6Ak(T ) = 6 lim
n→∞

Ak(QnTPn) 6 6 lim
n→∞

gk(QnTPn) ,

the last inequality being a consequence of (3.3) and (3.4). �
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4. Interpolation of entropy moduli and approximation numbers

In this section we look at some specific techniques from interpolation theory which
can be briefly described as “geometric interpolation” methods. We also develop tools
which will be essential in geometric interpolation of the entropy moduli of operators.
We start with some definitions from the interpolation theory of operators. We will
generally use the same notation as in [2, 3, 14].

The Banach space X will be called an intermediate space between A0 and A1 (or

with respect to a Banach couple ~A := (A0, A1)) provided A0 ∩ A1 ⊂ X ⊂ A0 + A1.
A Banach couple (A0, A1), is called regular if A◦

j = Aj , where A◦
j denote the closure of

A0 ∩A1 in Aj for j = 0, 1. An couple (A0, A1) is ordered if A0 ⊂ A1. If ~A = (A0, A1)

and ~B = (B0, B1) are Banach couples and T : A0+A1 → B0+B1 is a linear map such

that T |Aj
∈ L(Aj , Bj) for j = 0, 1, then we write T : ~A → ~B. The space L( ~A, ~B) of

all operators T : ~A → ~B is a Banach space equipped with the norm

‖T‖ := max
j=0,1

‖T |Aj
‖L(Aj ,Bj).

We recall that a mapping F from the category of all couples of Banach spaces
into the category of all Banach spaces is said to be an interpolation functor (or

a method of interpolation) if for any couple ~A, F( ~A) is a Banach space intermediate

with respect to ~A, and T maps F( ~A) into F( ~B) for all T : ~A → ~B. If additionally
there is a constant C > 0 such that

‖T : F( ~A) → F( ~B)‖ 6 C ‖T‖L( ~A, ~B)

for every T : ~A → ~B, then F is called bounded (and exact if C = 1).

Banach spaces X and Y are said to be interpolation spaces with respect to ~A
and ~B if X and Y are intermediate with respect to ~A and ~B, and if T maps X into
Y for every T ∈ L( ~A, ~B). If in addition there exists C > 0 and θ ∈ (0, 1) such that

‖T : X → Y ‖ 6 C ‖T : A0 → B0‖
1−θ ‖T : A1 → B1‖

θ

for every T ∈ L( ~A, ~B), then X and Y are said to be of exponent θ (and exact of

exponent θ if C = 1). Similarly, we say that F is (exact) of exponent θ if F( ~A) and

F( ~B) are (exact) of exponent θ. It is well known that the complex interpolation

space [ ~A]θ is exact of exponent θ for every θ ∈ (0, 1).
We now turn to geometric interpolation between Hilbert spaces. The best general

reference here is Donoghue [7] and McCarthy [6], where more details are given. Let
~H = (H0, H1) be a regular couple of Hilbert spaces. Let H be a Hilbert space which
is intermediate between H0 and H1, and let θ ∈ (0, 1). Following [6], we say that H
is a geometric interpolation space of exponent θ between H0 and H1 if it satisfies the
following three conditions:

• H is an interpolation space exact of exponent s with respect to ~H .
• Given any Hilbert space K; H and K are interpolation spaces exact of expo-

nent s with respect to ~H and (K,K).
• Given any Hilbert space G; G and H are interpolation spaces exact of expo-

nent s with respect to (G,G) and ~H.
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By means of an operator approach, it is showed in [6, Theorem 1.1] that there exists
a unique geometric interpolation space of exponent θ between H0 and H1. In the
language of category theory, this result says that for each θ ∈ (0, 1) there exists
a unique functor Fθ mapping the category of all regular couples of Hilbert spaces to
the category of all Hilbert spaces such that Fθ is exact of exponent θ.

Now we define interpolation spaces using powers of a positive operator (see [6] and

also [13, 14, 16]). The inner product for H1 is a Hermitian form on ∆( ~H) := H0∩H1,
so there exists a densely defined (not necessarily bounded), positive injective operator
A on H0 satisfying

〈
ξ, η

〉
H1

=
〈
A1/2ξ, A1/2η

〉
H0

, ξ, η ∈ ∆( ~H).

∆( ~H) is a subset of both DomA1/2 and RanA1/2. Note that A is bounded if and
only if H0 is embedded in H1. For fixed θ ∈ (0, 1), we define a new inner product on

∆( ~H) by
〈
ξ, η

〉
=

〈
Aθ/2ξ, Aθ/2η

〉
H0

.

∆( ~H) is contained in both DomAθ/2 and RanAθ/2. The closure of ∆( ~H), with respect
to the norm given by the inner product 〈·, ·〉, we will call Hθ. We remark that Hθ is a
geometric interpolating space of exponent θ. Since the complex interpolation space
is also a geometric interpolation space of exponent θ, Hθ coincides with [H0, H1]θ.

We start with a key lemma, crucial in the sequel.

Lemma 4.1. Let ~H and ~K be regular couples of Hilbert spaces. Assume that

A and B are positive operators on H0 and K0 that generate the H1 and K1 inner

product, respectively. If T ∈ L( ~H, ~K), then

gn(T : Hθ → Kθ) = gn
(
Bθ/2TA−θ/2 : H0 → K0

)
, θ ∈ [0, 1], n ∈ N.

Proof. Let us regard θ ∈ [0, 1] as fixed. Let us denote by H∆
θ :=

(
∆( ~H), ‖ · ‖Hθ

)
,

H∆
0 :=

(
RanAθ/2, ‖ · ‖H0

)
and K∆

θ :=
(
∆( ~K), ‖ · ‖Kθ

)
, K∆

0 :=
(
RanBθ/2, ‖ · ‖K0

)
. We

claim that S := Bθ/2TA−θ/2 : H∆
0 → K∆

0 gives rise to a bounded operator between
H0 and K0. To see this observe that

‖T x̃‖2Kθ
=

〈
T x̃, T x̃

〉
Kθ

=
〈
Bθ/2T x̃, Bθ/2T x̃

〉
K0

=
〈
Bθ/2TA−θ/2x,Bθ/2TA−θ/2x

〉
K0

=
∥∥Sx

∥∥2

K0

, and

‖x̃‖2Hθ
=

〈
x̃, x̃

〉
Hθ

=
〈
Aθ/2x̃, Aθ/2x̃

〉
K0

=
〈
x, x

〉
K0

= ‖x‖2H0
,

(4.1)

where x = Aθ/2x̃ and x ∈ H∆
0 , x̃ ∈ H∆

θ . In particular, this yield
∥∥T : H∆

θ → K∆
θ

∥∥ =
∥∥S : H∆

0 → K∆
0

∥∥ and
∥∥Aθ/2 : H∆

θ → H∆
0

∥∥ = 1.(4.2)

From the closed graph theorem, it suffices to show that there exists a closure of S,
whose domain is the whole space H0. Take an arbitrary sequence xn from H∆

0 such
that ‖xn‖H0

→ 0. Since ‖A−θ/2xn‖Hθ
→ 0, and since moreover ‖TA−θ/2xn‖Kθ

→ 0,

it follows that ‖Sxn‖K0
→ 0. Hence S is closable. Let us denote by S the closure of

S. We now show that D(S) = H0. If x ∈ H0, then there exists a sequence xn from

∆( ~H) such that ‖xn − x‖H0
→ 0. Since {xn} is Cauchy, so also is {Sxn}, by (4.2).

This gives ‖Sxn − y‖H0
→ 0 for some y ∈ K0, and consequently Sx = y. From what

has already been proved, it follows that ‖T : Hθ → Kθ‖ = ‖S : H0 → K0‖. Therefore,
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we can extend S to the whole H0 and denote by Bθ/2TA−θ/2 its closure S on H0.
Similarly,

∥∥Aθ/2 : Hθ → H0

∥∥ = 1 and
∥∥A−θ/2 : H0 → Hθ

∥∥ = 1,(4.3)

Fix k ∈ N; we proceed to show that εk
(
T : H∆

θ → K∆
θ

)
= εk

(
S : H∆

0 → K∆
0

)
. Indeed,

given ε > εk
(
S : H∆

0 → K∆
0

)
, we can find yi ∈ K∆

0 , 1 6 i 6 k such that

S
(
UH∆

0

)
⊂

k⋃

i=1

{
yi + εUK∆

0

}
.

In other words, min16i6k ‖Sx− yi‖H∆
0

6 ε for every x ∈ UH∆
0
. Hence, by (4.1) again,

if x̃ ∈ UH∆

θ
, then

min
16i6k

‖T x̃− ỹi‖H∆

θ
6 ε, where yi = Bθ/2ỹi, 1 6 i 6 k.

We thus get εk
(
T : H∆

θ → K∆
θ

)
6 εk

(
S : H∆

0 → K∆
0

)
. The opposite inequality can

be proved in a similar way.
Let n ∈ N. By definition, gn

(
T : H∆

θ → K∆
θ

)
= gn

(
S : H∆

0 → K∆
0

)
. Proposi-

tion 3.1 now shows that

gn
(
T : H∆

θ → K∆
θ

)
= gn

(
T : Hθ → Kθ

)
and gn

(
S : H∆

0 → K∆
0

)
= gn

(
S : H0 → K0

)
,

which completes the proof. �

We can now state our main result.

Theorem 4.2. Assume that ~H = (H0, H1) and ~K = (K0, K1) are arbitrary

couples of complex Hilbert spaces. For every operator T ∈ L( ~H, ~K), every θ ∈ (0, 1)
and each n ∈ N,

gn
(
T : [ ~H]θ → [ ~K]θ

)
6 64 gn(T : H0 → K0)

1−θ gn(T : H1 → K1)
θ

and

An

(
T : [ ~H ]θ → [ ~K]θ

)
6 26 35Ak(T : H0 → K0)

1−θ An(T : H1 → K1)
θ .

Proof. Let k, n ∈ N. The proof will be divided into 2 parts. First, suppose
that ~H and ~K are regular. Let A (resp., B) be the positive operator on H0 (resp.,
K0) that gives the H1 (resp., K1) inner product. Let θ ∈ [0, 1]. Lemma 4.1 now
shows that Bθ/2TA−θ/2 ∈ L(H0, K0). Let us introduce the temporary notation Rθ

for Bθ/2TA−θ/2. By Lemma 4.1 again, Theorem 3.10, (3.3) and (3.4)

6−1Ak(T : Hθ → Kθ) 6 Ak

(
Rθ : H0 → K0

)
6 6Ak(T : Hθ → Kθ) .(4.4)

We first prove a reduced form of the theorem for the family of operators Rθ. Suppose
for the moment that A−1 and B are bounded. From equalities (2.1), (2.2), (3.3)
and (3.4) we deduce that

Ak

(
R1/2 : H0 → K0

)
= Gk

(∣∣R1/2

∣∣ : H0 → H0

)
= Gk

(
R∗

1/2R1/2 : H0 → H0

)1/2

= Gk

(
A1/4R∗

1/2R1/2A
−1/4 : H0 → H0

)1/2

6 gk
(
A1/4R∗

1/2R1/2A
−1/4 : H0 → H0

)1/2

6 gk
(
T ∗ : K0 → H0

)1/2
gk
(
B1/2TA−1/2 : H0 → K0

)1/2

6 gk
(
R0 : K0 → H0

)1/2
gk
(
R1 : H0 → K0

)1/2
.
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Theorem 3.10 now shows that the assertion holds for θ = 1/2 with a constant 6,

(4.5) Ak

(
R1/2 : H0 → K0

)
6 6Ak(R0 : H0 → K0)

1/2 Ak(R1 : H0 → K0)
1/2 .

Now interpolating between R0 and R1/2 or R1/2 and R1 gives the result for θ = 1/4

or θ = 3/4, respectively. The constant here is equal to 63/2. Following the same
lines we find that the theorem holds for any dyadic rational in [0, 1] with a common
constant 62. Indeed, one may check

(4.6) Ak(Rθ : H0 → K0) 6 62Ak(R0 : H0 → K0)
1−θ Ak(R1 : H0 → K0)

θ

for any dyadic rational θ = m/2n ∈ (0, 1) by induction on n. That (4.6) is valid
for θ = 1/2 is already proved in (4.5). For the inductive step, suppose that (4.6)
holds for θ = m/2n, 0 < m < 2n with a constant equal to 62. It suffices to consider
θ = m/2n+1 where 0 < m < 2n+1 is odd. Now interpolating between R0 and R2θ or
R1−2θ and R1 gives (4.6) for θ < 1/2 or θ > 1/2, respectively.

Since the map [0, 1] → L(H0, K0) : α 7→ Rα is continuous, the statement remains
valid for any real θ ∈ [0, 1]. Indeed,

∣∣ak(Rα : H0 → K0)− ak(Rβ : H0 → K0)
∣∣ 6 ‖Rα − Rβ‖H0→K0

6
∥∥Bα/2T

(
A−α/2 − A−β/2

)∥∥
H0→K0

+
∥∥(Bα/2 −Bβ/2

)
TA−β/2

∥∥
H0→K0

6
∥∥Bα/2

n

∥∥
K0→K0

‖T‖H0→K0

∥∥A−α/2 −A−β/2
∥∥
H0→H0

+
∥∥Bα/2 − Bβ/2

∥∥
K0→K0

‖T‖H0→K0

∥∥A−β/2
∥∥
H0→K0

→ 0

as α → β, by the spectral theorem for normal operators and Proposition 3.5. By the
above,

∣∣Ak(Rα : H0 → K0)− Ak(Rβ : H0 → K0)
∣∣ → 0 as α → β.

Lemma 4.1, (4.4) and (4.6) now leads to

(4.7)
gk(T : Hθ → Kθ) 6 63 gk(T : H0 → K0)

1−θ gk(T : H1 → K1)
θ and

Ak(T : Hθ → Kθ) 6 64Ak(T : H0 → K0)
1−θ Ak(T : H1 → K1)

θ .

Suppose now that A−1 and B are not necessarily bounded. For each n ∈ N we
consider the operators Pn :=

´ n

0
dEA−1(λ) and Qn :=

´ n

0
dEB(λ), where EA−1 and

EB are the corresponding spectral projections. Since A−1 and B commutes with Pn

and Qn on H0 and K0, the operators Pn and Qn have bounded extensions on ~H
and ~K, which are norm 1 projections on Hθ and Kθ, respectively. Thus QnTPn ∈

L( ~H, ~K). Using B
θ/2
n TA

−θ/2
n = Bθ/2QnTPnA

−θ/2, where A−1
n :=

´ n

0
λdEA−1(λ) and

Bn :=
´ n

0
λdEB(λ) are both bounded, and following steps analogous to those above

(with A−1, B and Rθ replaced by A−1
n , Bn, and B

θ/2
n TA

−θ/2
n , respectively) we obtain

gk(T : Hθ → Kθ) 6 6 gk(QnTPn : Hθ → Kθ)

6 64gk(QnTPn : H0 → K0)
1−θ gk(QnTPn : H1 → K1)

θ

6 64gk(T : H0 → K0)
1−θ gk(T : H1 → K1)

θ

and

Ak(T : Hθ → Kθ) 6 2 · 65Ak(T : H0 → K0)
1−θ Ak(T : H1 → K1)

θ , θ ∈ [0, 1],

by Lemma 3.11. This finishes the first part of the proof.
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We now turn to the case where the couples ~H and ~K are not necessarily regular.
Let H◦

j (resp., K◦
j ) denote the closure of H0 ∩H1 (resp., K0 ∩K1) in Hj (resp., Kj),

j = 0, 1. Let us observe that (H◦
0 , H

◦
1 ) and (K◦

0 , K
◦
1) are already regular. By [2,

Theorem 4.2.2] we have

H◦

θ = [H◦

0 , H
◦

1 ]θ = [H0, H1]θ and K◦

θ = [K◦

0 , K
◦

1 ]θ = [K0, K1]θ.

Since Gelfand numbers {cn(T )}n∈N and entropy numbers are injective in
the sense of Proposition 3.7 and UH◦

j
⊂ UHj

, we have

an
(
T : H◦

j → H◦

j

)
= cn

(
T : H◦

j → H◦

j

)
= cn

(
T : H◦

j → Hj

)

6 cn(T : Hj → Hj) = an(T : Hj → Hj) and

gn
(
T : H◦

j → K◦

j

)
6 gn

(
T : H◦

j → Kj

)
6 gn(T : Hj → Kj) , n ∈ N.

This allows us to invoke theorem for the couples of Hilbert spaces (H◦
0 , H

◦
1) and

(K◦
0 , K

◦
1) to obtain

gk
(
T : [ ~H ]θ → [ ~K]θ

)
= gk(T : H◦

θ → K◦

θ )

6 64 gk(T : H◦

0 → K◦

0)
1−θ gk(T : H◦

1 → K◦

1 )
θ

6 64 gk(T : H0 → K0)
1−θ gk(T : H1 → K1)

θ

and

Ak

(
T : [ ~H ]θ → [ ~K]θ

)
6 2 · 65Ak(T : H0 → K0)

1−θ Ak(T : H1 → K1)
θ ,

where θ ∈ [0, 1], and this completes the proof. �

A similar interpolation result holds for the approximation numbers of normal
operators acting on Hilbert spaces.

Theorem 4.3. Assume that ~H = (H0, H1) is a regular couple of Hilbert spaces.

Let A be a positive operator on H0 that gives the H1 inner product and let T ∈ L( ~H).
If the operator T on H0 is normal and commutes with A, then

ak(T : H0 → H0) = ak
(
T : [ ~H ]θ → [ ~H]θ

)
= ak(T : H1 → H1)

for every θ ∈ [0, 1] and each k ∈ N.

Proof. Fix θ ∈ [0, 1] and n ∈ N. By Lemma 4.1, Aθ/2TA−θ/2 ∈ L(H0, K0) and

gn(T : Hθ → Kθ) = gn
(
Aθ/2TA−θ/2 : H0 → K0

)
.(4.8)

The operator T commutes with all powers of A on H0. Then T on Hθ is unitarily
equivalent to T on H0, hence normal on Hθ. Analysis similar to that in the proof of
Lemma 4.1 shows that

gn
(
Aθ/2TA−θ/2 : H0 → K0

)
= gn

(
T : H0 → K0

)
.(4.9)

From (4.8), (4.9), (3.1) and (3.4) it follows that

An

(
T : Hθ → Kθ

)
= Gn

(
T : Hθ → Kθ

)
= Gn(T : H0 → K0)

= An

(
T : H0 → K0

)
,

(4.10)

which completes the proof. �

We conclude the paper with the following remark that the proof of Theorem 4.3
strongly depends on the assumption that T commutes with A. We remark that
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McCarthy [6, Theorem 2.1] showed that whenever ~H is a regular and ordered (resp.,

not necessarily ordered) Hilbert couple and T ∈ L( ~H) is normal (resp., self-adjoint)
on both H0 and H1, then the operator T on each Hθ, θ ∈ (0, 1) is normal (resp.,
self-adjoint) and commutes with A.
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