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Abstract. We establish the existence in H
3(R5) of stationary solutions of certain nonlinear

heat equations using the Fixed Point Technique. The equation for the perturbed solution involves

the second order differential operator without Fredholm property.

1. Introduction

Let us consider the problem

(1.1) −∆u + V (x)u− au = f,

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the scalar
potential function V (x) either vanishes or converges to 0 at infinity. In the case of
a ≥ 0, the essential spectrum of the operator A : E → F correspondent to the left-
hand side of equation (1.1) contains the origin. Consequently, this operator fails to
satisfy the Fredholm property. Its image is not closed, for d > 1 the dimensions of its
kernel and the codimension of its image are not finite. The present work is devoted to
the studies of certain properties of such operators. Let us note that elliptic problems
involving operators without Fredholm property were studied extensively in recent
years. Solvability conditions in weighted Sobolev and Hölder spaces were obtained
in [2, 3, 4, 5, 6]. The Schrödinger type operators without Fredholm property were
treated via the methods of the spectral and the scattering theory in [12, 13, 15, 16, 17].
The Laplacian operator with drift from the point of view of non Fredholm operators
was studied in [20] and linearized Cahn–Hilliard equations in [18] and [21]. Nonlinear
non Fredholm elliptic problems were treated in [19] and [22]. Potential applications
to the theory of reaction-diffusion equations were explored in [9, 10]. Non Fredholm
operators arise also when studying wave systems with an infinite number of localized
traveling waves (see [1]).

One of the important questions about problems with non-Fredholm operators
concerns their solvability. We will consider the nonlinear heat equation

(1.2)
∂u

∂t
= ∆u+ εg(u) + f(x), x ∈ R
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with the parameter ε ≥ 0. Seeking the stationary solutions of problem (1.2) yields
the nonlinear Poisson equation

(1.3) −∆u = f(x) + εg(u).

Let us make the following technical assumption about the source term of problem
(1.3).

Assumption 1. Let f(x) : R5 → R be nontrivial, f(x) ∈ L1(R5) and ∇f(x) ∈
L2(R5).

Note that by means of the Sobolev inequality (see e.g. p. 183 of [11]) under the
assumption above we have

f(x) ∈ L2(R5).

We will be using the Sobolev space

H3(R5) = {u(x) : R5 → C | u(x) ∈ L2(R5), (−∆)
3

2u ∈ L2(R5)}

equipped with the norm

(1.4) ‖u‖2H3(R5) = ‖u‖2L2(R5) + ‖(−∆)
3

2u‖2L2(R5).

The operator (−∆)
3

2 is defined via the spectral calculus. By means of the Sobolev
embedding we have

(1.5) ‖u‖L∞(R5) ≤ ce‖u‖H3(R5),

where ce > 0 is the constant of the embedding. The hat symbol will stand for the
standard Fourier transform, such that

(1.6) û(p) =
1

(2π)
5

2

ˆ

R5

u(x)e−ipx dx.

This enables us to express the Sobolev norm as

(1.7) ‖u‖2H3(R5) =

ˆ

R5

(1 + |p|6)|û(p)|2 dp.

When the parameter ε vanishes, we arrive at the standard Poisson equation

(1.8) −∆u = f(x).

Under Assumption 1 by means of Lemma 7 of [22] problem (1.8) admits a unique
solution u0(x) ∈ H2(R5) and no orthogonality relations are required. As discussed in
Lemmas 5 and 6 of [22], in dimensions d < 5 we need certain orthogonality conditions
for the solvability of equation (1.8) in H2(Rd). We do not discuss the problem in
dimensions d > 5 to avoid extra technicalities since the argument will rely on similar
ideas (see Lemma 7 of [22]). Due to our Assumption 1

∇(−∆u) = ∇f(x) ∈ L2(R5).

Therefore, for the unique solution of the linear Poisson equation (1.8) we have u0(x) ∈
H3(R5). By seeking the resulting solution of the nonlinear Poisson equation (1.3) as

(1.9) u(x) = u0(x) + up(x)

we clearly arrive at the perturbative equation

(1.10) −∆up = εg(u0 + up).
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Let us introduce a closed ball in our Sobolev space

(1.11) Bρ := {u(x) ∈ H3(R5) | ‖u‖H3(R5) ≤ ρ}, 0 < ρ ≤ 1.

We will seek the solution of (1.10) as the fixed point of the auxiliary nonlinear problem

(1.12) −∆u = εg(u0 + v).

in the ball (1.11). Note that the left side of (1.12) involves the operator −∆ :
H2(R5) → L2(R5), which has no Fredholm property, since its essential spectrum fills
the nonnegative semi-axis [0,+∞) and therefore, a bounded inverse of this operator
does not exist. The similar situation arised in [19] and [22] but as distinct from the
present work, the problems treated there were nonlocal. The fixed point technique
was used in [14] to estimate the perturbation to the standing solitary wave of the
Nonlinear Schrödinger (NLS) equation when either the external potential or the
nonlinear term in the NLS were perturbed but the Schrödinger type operator involved
in such nonlinear problem possessed the Fredholm property (see Assumption 1 of [14],
also [7]). Let us define the interval on the real line

(1.13) I := [−ce‖u0‖H3(R5) − ce, ce‖u0‖H3(R5) + ce].

We make the following assumption about the nonlinear part of problem (1.3).

Assumption 2. Let g(s) : R → R, such that g(0) = 0 and g′(0) = 0. We also
assume that g(s) ∈ C2(R), such that

a2 := sup
s∈I

|g′′(s)| > 0.

Note that a1 := sups∈I |g
′(s)| > 0 as well, otherwise the function g(s) will be

constant on the interval I and a2 will vanish. For instance, g(s) = s2 clearly satisfies
the assumption above. Our main statement is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then equation (1.12) defines the
map Tg : Bρ → Bρ, which is a strict contraction for all 0 < ε < ε∗ for a certain
ε∗ > 0. The unique fixed point up(x) of the map Tg is the only solution of problem
(1.10) in Bρ.

Note that the resulting solution of problem (1.3) given by (1.9) will be non-
trivial since the source term f(x) is nontrivial and g(0) vanishes according to our
assumptions. We will make use of the following elementary technical lemma.

Lemma 4. Consider the function ϕ(R) := αR + β

R4 on the positive semi-axis

(0,+∞) with the constants α, β > 0. It attains the minimal value at R∗ =
(
4β
α

) 1

5 ,

which is given by ϕ(R∗) = 5

4
4
5

α
4

5β
1

5 .

Let us proceed to the proof of our main result.

2. The existence of the perturbed solution

Proof of Theorem 3. Let us choose arbitrarily v(x) ∈ Bρ and denote the right side
of equation (1.12) as G(x) := g(u0+ v). By applying the standard Fourier transform
(1.6) to both sides of problem (1.12), we arrive at

û(p) = ε
Ĝ(p)

p2
,
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such that for the norm we have

(2.1) ‖u‖2L2(R5) = ε2
ˆ

R5

|Ĝ(p)|2

|p|4
dp.

Clearly,

(2.2) ‖Ĝ(p)‖L∞(R5) ≤
1

(2π)
5

2

‖G(x)‖L1(R5).

Let us estimate the right side of (2.1) using (2.2) with R > 0 as

ε2
ˆ

|p|≤R

|Ĝ(p)|2

|p|4
dp+ ε2

ˆ

|p|>R

|Ĝ(p)|2

|p|4
dp

≤ ε2
1

(2π)5
‖G(x)‖2L1(R5)|S5|R+ ε2

1

R4
‖G(x)‖2L2(R5).

(2.3)

Here and below S5 stands for the unit sphere in the space of five dimensions centered
at the origin and |S5| for its Lebesgue measure (see e.g. p. 6 of [11]). Since v(x) ∈ Bρ,
we have

‖u0 + v‖L2(R5) ≤ ‖u0‖H3(R5) + 1.

Also, the Sobolev embedding (1.5) yields

|u0 + v| ≤ ce‖u0‖H3(R5) + ce.

Using the representation G(x) =
´ u0+v

0
g′(s) ds, with the interval I given by

(1.13), we easily obtain

|G(x)| ≤ sup
s∈I

|g′(s)||u0 + v| = a1|u0 + v|,

such that
‖G(x)‖L2(R5) ≤ a1‖u0 + v‖L2(R5) ≤ a1(‖u0‖H3(R5) + 1).

Similarly, G(x) =
´ u0+v

0
ds

[´ s

0
g′′(t) dt

]
. Therefore, we estimate

|G(x)| ≤
1

2
sup
t∈I

|g′′(t)||u0 + v|2 =
a2

2
|u0 + v|2,

‖G(x)‖L1(R5) ≤
a2

2
‖u0 + v‖2L2(R5) ≤

a2

2
(‖u0‖H3(R5) + 1)2.

Thus we arrive at the upper bound for the right side of (2.3) as

ε2

(2π)5
|S5|

a22
4
(‖u0‖H3(R5) + 1)4R + ε2a21(‖u0‖H3(R5) + 1)2

1

R4

with R ∈ (0,+∞). By means of Lemma 4 we obtain the minimal value of the
expression above. Hence

(2.4) ‖u‖2L2(R5) ≤ ε2
|S5|

4

5

(2π)4
a

8

5

2 (‖u0‖H3(R5) + 1)3
3

5a
2

5

1

5

4
8

5

.

Clearly, (1.12) implies that

∇(−∆u) = εg′(u0 + v)(∇u0 +∇v).

We will make use of the identity

g′(u0 + v) =

ˆ u0+v

0

g′′(s) ds
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along with the Sobolev embedding (1.5), such that

|g′(u0 + v)| ≤ sup
s∈I

|g′′(s)||u0 + v| ≤ a2ce(‖u0‖H3(R5) + 1)

and

|∇(−∆u)| ≤ εa2ce(‖u0‖H3(R5) + 1)|∇u0 +∇v|.

Using the inequality, which can be trivially derived via the standard Fourier trans-
form, namely

(2.5) ‖∇u‖L2(R5) ≤ ‖u‖H3(R5),

we easily arrive at

(2.6) ‖(−∆)
3

2u‖2L2(R5) ≤ ε2a22c
2
e(‖u0‖H3(R5) + 1)4.

By virtue of the definition of the norm (1.4) along with estimates (2.4) and (2.6)
we derive

‖u‖H3(R5) ≤ ε(‖u0‖H3(R5) + 1)2a
4

5

2

√
|S5|

4

5

(2π)4
a

2

5

1

5

4
8

5

+ a
2

5

2 c
2
e ≤ ρ

for all positive values of the parameter ε small enough, such that u(x) ∈ Bρ as well.
Suppose for some v(x) ∈ Bρ there are two solutions u1,2(x) ∈ Bρ of problem (1.12).
Then their difference u(x) := u1(x)− u2(x) ∈ L2(R5) satisfies the Laplace equation.
Since there are no nontrivial square integrable harmonic functions, u(x) = 0 a.e. in
R

5. Therefore, equation (1.12) defines a map Tg : Bρ → Bρ when ε > 0 is sufficiently
small.

Let us show that this map is a strict contraction. We choose arbitrarily v1,2(x) ∈
Bρ, such that by virtue of the argument above u1,2 = Tgv1,2 ∈ Bρ as well. Explicitly,
via (1.12) we have

(2.7) −∆u1 = εg(u0 + v1), −∆u2 = εg(u0 + v2).

Let us introduce

G1(x) := g(u0 + v1), G2(x) := g(u0 + v2).

Then by applying the standard Fourier transform (1.6) to both sides of each of the
equations (2.7), we obtain

û1(p) = ε
Ĝ1(p)

p2
, û2(p) = ε

Ĝ2(p)

p2
.

Therefore, we express the norm

‖u1 − u2‖
2
L2(R5) = ε2

ˆ

R5

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp,

which can be estimated via (2.2) as

ε2
ˆ

|p|≤R

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp+ ε2

ˆ

|p|>R

|Ĝ1(p)− Ĝ2(p)|
2

|p|4
dp

≤
ε2

(2π)5
‖G1(x)−G2(x)‖

2
L1(R5)|S5|R +

ε2

R4
‖G1(x)−G2(x)‖

2
L2(R5)
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with R ∈ (0,+∞). Let us make use of the representation

G1(x)−G2(x) =

ˆ u0+v1

u0+v2

g′(s) ds,

such that
|G1(x)−G2(x)| ≤ sup

s∈I
|g′(s)||v1 − v2| = a1|v1 − v2|

and therefore

‖G1(x)−G2(x)‖L2(R5) ≤ a1‖v1 − v2‖L2(R5) ≤ a1‖v1 − v2‖H3(R5).

We can also express

G1(x)−G2(x) =

ˆ u0+v1

u0+v2

ds

[
ˆ s

0

g′′(t) dt

]
.

This enables us to estimate G1(x)−G2(x) in the absolute value from above by

1

2
sup
t∈I

|g′′(t)||(v1 − v2)(2u0 + v1 + v2)| =
a2

2
|(v1 − v2)(2u0 + v1 + v2)|.

Via the Schwarz inequality we derive the upper bound for the norm ‖G1(x) −
G2(x)‖L1(R5) as

a2

2
‖v1 − v2‖L2(R5)‖2u0 + v1 + v2‖L2(R5) ≤ a2‖v1 − v2‖H3(R5)(‖u0‖H3(R5) + 1).

Thus we arrive at

‖u1(x)− u2(x)‖
2
L2(R5) ≤ ε2‖v1 − v2‖

2
H3(R5)

{ a2
2

(2π)5
(‖u0‖H3(R5) + 1)2|S5|R+

a1
2

R4

}
.

Lemma 4 enables us to minimize the right side of the inequality above over R > 0,
such that we obtain

(2.8) ‖u1(x)− u2(x)‖
2
L2(R5) ≤ ε2‖v1 − v2‖

2
H3(R5)

5

4
4

5

a
8

5

2

(2π)4
(‖u0‖H3(R5) + 1)2|S5|

4

5a
2

5

1 .

Using (2.7) we express ∇(−∆)(u1 − u2) as

ε[g′(u0 + v1)(∇u0 +∇v1)− g′(u0 + v2)(∇u0 +∇v2)]

= ε

[
(∇u0 +∇v1)

ˆ u0+v1

u0+v2

g′′(s) ds+ (∇v1 −∇v2)

ˆ u0+v2

0

g′′(s) ds

]
.

This yields the upper bound for |∇(−∆)(u1 − u2)| as

ε sup
s∈I

|g′′(s)||v1 − v2||∇u0 +∇v1|+ ε sup
s∈I

|g′′(s)||u0 + v2||∇v1 −∇v2|,

which can be easily estimated from above by virtue of the Sobolev embedding (1.5)
by

εa2ce‖v1 − v2‖H3(R5)|∇u0 +∇v1|+ εa2ce‖u0 + v2‖H3(R5)|∇v1 −∇v2|,

such that

‖∇(−∆)(u1 − u2)‖L2(R5) ≤ εa2ce‖v1 − v2‖H3(R5)‖∇u0 +∇v1‖L2(R5)

+ εa2ce(‖u0‖H3(R5) + 1)‖∇v1 −∇v2‖L2(R5).

By virtue of (2.5) using that v1 ∈ Bρ we arrive at

(2.9) ‖∇(−∆)(u1 − u2)‖
2
L2(R5) ≤ 4ε2a22c

2
e(‖u0‖H3(R5) + 1)2‖v1 − v2‖

2
H3(R5).
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Inequalities (2.8) and (2.9) imply that

‖u1 − u2‖H3(R5) ≤ ε(‖u0‖H3(R5) + 1)a
4

5

2

[ 5

4
4

5

a
2

5

1

(2π)4
|S5|

4

5 + 4a
2

5

2 c
2
e

] 1

2

‖v1 − v2‖H3(R5).

Therefore, the map Tg : Bρ → Bρ defined by equation (1.12) is a strict contraction for
all values of ε > 0 sufficiently small. Its unique fixed point up(x) is the only solution
of problem (1.10) in Bρ, such that the resulting u(x) ∈ H3(R5) given by (1.9) is the
stationary solution of our nonlinear heat equation (1.2). �
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