
Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 40, 2015, 3–15

ABSOLUTE CONTINUITY OF MAPPINGS

WITH FINITE GEOMETRIC DISTORTION

Ville Tengvall

University of Jyväskylä, Department of Mathematics and Statistics
P. O. Box 35 (MaD), FI-40014 University of Jyväskylä, Finland; ville.tengvall@jyu.fi

Abstract. Suppose that Ω ⊂ R
n is a domain with n ≥ 2. We show that a continuous,

sense-preserving, open and discrete mapping of finite geometric outer distortion with KO(·, f) ∈

L
1/(n−1)
loc (Ω) is absolutely continuous on almost every line parallel to the coordinate axes. Moreover,

if U ⊂ Ω is an open set with N(f, U) < ∞, then f satisfies the distortion inequality

|Df(x)|n ≤ C |J(x, f)| KO(x, f)

for almost every x ∈ U , where the constant C > 0 depends only on n and on the maximum

multiplicity N(f, U).

1. Introduction

Suppose that Ω ⊂ R
n, n ≥ 2, is a domain. We recall that if ω : Ω → [0,∞] is a

measurable function, then the ω-weighted (conformal) modulus of a family Γ of paths
in Ω is defined as

Mω(Γ) = inf
ρ∈AdmΓ

ˆ

Ω

ρn(x)ω(x) dx.

Above, a Borel function ρ : Rn → [0,∞] is admissible for Γ, abbr. ρ ∈ AdmΓ, if for
the line integral of ρ along every path γ ∈ Γ we have

ˆ

γ

ρ(x) |dx| ≥ 1.

Furthermore, when ω ≡ 1, we write M(Γ) instead of M1(Γ).
We call a mapping f : Ω → R

n

(i) open if it takes open sets in Ω to open sets in R
n,

(ii) discrete if the set f−1(y) of preimages is a discrete set for every poin y ∈ R
n,

and
(iii) if f is continuous, we say that it is sense-preserving if for the local degree of

a mapping f we have deg(y, f,D) > 0 for every subdomain D ⊂⊂ Ω and for
all points y ∈ f(D)\f(∂D). For more details we refer the reader to [18, I.4].

Mapping f : Ω → Ω′ between two domains Ω,Ω′ ⊂ R
n, n ≥ 2, is called quasicon-

formal if

(QC-1) f is a sense-preserving homeomorphism, and
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(QC-2) there exists constants KO(f) ∈ [1,∞) and KI(f) ∈ [1,∞) such that the
two-sided moduli inequality

M1/KO(f)(Γ) ≤ M(f(Γ)) ≤ MKI(f)(Γ)(1)

holds for all path families Γ in Ω.

Similarly, we call a mapping f : Ω → R
n quasiregular if

(QR-1) f is a continuous, sense-preserving, discrete and open mapping, and
(QR-2) there exists constants KO(f) ∈ [1,∞) and KI(f) ∈ [1,∞) such that the

two-sided moduli inequality

N(f, A)−1M1/KO(f)(Γ) ≤ M(f(Γ)) ≤ MKI(f)(Γ)(2)

holds for all path families Γ in A and for every Borel set A ⊂ Ω with
N(f, A) := supy∈Rn card f−1(y) ∩ A <∞.

These two definitions are called geometric definitions of quasiconformal and
quasiregular mappings. Even though quasiconformal mappings are not always as-
sumed to be sense-preserving in the geometric definition, it is convenient to require
this, if we want to consider quasiregular mappings as generalized quasiconformal
mappings. For more details about quasiconformal and quasiregular mappings we
refer to [17, 18, 23].

In order to study a larger class of mappings we may relax the topological and geo-
metrical assumptions in the definitions of quasiconformal and quasiregular mappings.
This leads us to define mappings with finite geometric distortion.

Definition 1.1. Let f : Ω → R
n be a continuous mapping.

(i) Mapping f is called a mapping of finite geometric outer distortion if there
exists a measurable function KO(·, f) : Ω → [1,∞] taking finite values almost
everywhere and satisfying

M1/KO(·,f)(Γ) ≤ CO(A) M(f(Γ))(3)

for every Borel set A ⊂ Ω for which N(f, A) < ∞, for every family of paths
Γ in A, and for some positive and finite constant CO(A) depending only on n
and N(f, A). A function KO(·, f) which satisfies (3) is called outer geometric
distortion function of f .

(ii) Mapping f is called a mapping of finite geometric inner distortion if there
exists a measurable function KI(·, f) : Ω → [1,∞] taking finite values almost
everywhere and satisfying

M(f(Γ)) ≤ CI(A) MKI(·,f)(Γ)(4)

for every Borel set A ⊂ Ω for which N(f, A) < ∞, for every family of paths
Γ in A, and for some positive and finite constant CI(A) depending only on n
and N(f, A). A function KI(·, f) which satisfies (4) is called inner geometric
distortion function of f .

The motivation for our study of mappings of finite geometric distortion comes
from the study of mappings of finite distortion. We say that a mapping f : Ω → R

n

is a mapping of finite (analytic) distortion if

(FD-1) f ∈ W 1,1
loc (Ω,R

n),
(FD-2) J(·, f) is locally integrable, and
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(FD-3) there is a measurable functionKO(·, f) : Ω → [1,∞], finite almost everywhere,
such that f satisfies the classical distortion inequality

|Df(x)|n ≤ KO(x, f) J(x, f)(5)

for almost every x ∈ Ω.

Above, |Df(x)| is the operator norm of the differential matrix Df(x) and J(x, f)
= detDf(x) is the pointwise Jacobian determinant of f .

From the analytical point of view mappings of finite distortion can be considered
as generalizations of quasiconformal and quasiregular mappings. Moreover, by re-
quiring some integrability for the distortion function KO(·, f) we may conclude that
in several occasions these mappings still satisfy many of the good properties of qua-
siconformal and quasiregular mappings, see [4, 6]. Our interest is to see how closely
mappings of finite (analytic) distortion and mappings of finite geometric distortion
are related.

Sense-preserving mappings of finite geometric inner distortion with CI ≡ 1 are
usually called Q-mappings and they have been studied by several authors. To men-
tion some of the basic properties of these mappings we remark that Salimov and
Sevost’yanov [21, 22], see also [20], have shown that every continuous, open and
discrete Q-mapping f with KI(·, f) ∈ L1

loc(Ω)

(i) is differentiable almost everywhere,
(ii) belongs to the Sobolev space W 1,1

loc (Ω,R
n), and

(iii) satisfy the distortion inequality

|Df(x)|n ≤ C(n)Kn−1
I (x, f) |J(x, f)|(6)

for almost every x ∈ Ω, where the constant C(n) > 0 depends only on the
dimension.

In addition, by applying [18, Lemma I.4.11] we see that these mappings are ac-
tually mappings of finite distortion. Similar kind of properties can be easily obtained
also for sense-preserving mappings of finite geometric inner distortion with an arbi-
trary constant CI > 0. For more details about Q-mappings we refer to the works by
Martio, Ryazanov, Srebro and Yakubov [13]–[17], and their references.

The less studied class out of these two geometric mapping classes is mappings
with finite geometric outer distortion. It is important to note that lower moduli esti-
mates similar to (3) have found signifigant applications to the theory of the Beltrami
equations [8, 11] and the mappings of Orlicz–Sobolev classes [9, 10].

To give some examples of these mappings, we see that every quasiconformal and
quasiregular mapping is a mapping of finite geometric outer distortion. Also every
continuous, open and discrete mapping f ∈ W 1,n

loc (Ω,R
n) of finite distortion is a

mapping of finite geometric outer distortion. One can see this by using Väisälä’s
differentiability result [24], see also [17, Lemma 2.6], and then use same kind of
argumentation as in [18, Theorem II.2.4].

In this paper we focus on studying under which conditions mappings of geometric
outer distortion are mappings of finite distortion. The main result of this paper is
the following theorem.

Theorem 1.2. Suppose that Ω ⊂ R
n is a domain with n ≥ 2. Let f : Ω → R

n

be a continuous, sense-preserving, discrete and open mapping with finite geometric
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outer distortion KO(·, f) ∈ L
1/(n−1)
loc (Ω). Then f ∈ W 1,1

loc (Ω,R
n). Moreover, if U ⊂ Ω

is an open set with N(f, U) <∞, then f satisfies the distortion inequality

|Df(x)|n ≤ C |J(x, f)| KO(x, f)(7)

for almost every x ∈ U , where C := CO(U)N(f, U).

Some of the arguments in the proof of Theorem 1.2 go back to the papers by
Koskela and Rogovin [7], and Martio, Rickman and Väisälä [12]. Similar kind of
techiques are also used in [1].

One should notice that under the assumptions of Theorem 1.2 we do not know
if f is differentiable almost everywhere, which causes some difficulties. For instance,
the non-negativity of the Jacobian is not known in all cases. However, if n ∈ {2, 3}
then it follows from [5, Theorem 1.1] that every sense-preserving homeomorphism
f ∈ W 1,1

loc (Ω,R
n) has non-negative Jacobian at almost every point. On the other

hand, it follows from [4, Theorem A. 35] that under the assumptions of Theorem 1.2
we always have J(·, f) ∈ L1

loc(Ω). These two facts gives us the following corollary of
Theorem 1.2.

Corollary 1.3. Suppose that Ω,Ω′ ⊂ R
n are domains with, and n ∈ {2, 3}. Let

f : Ω → Ω′ be a sense-preserving homomorphism of finite geomeric outer distortion

with KO(·, f) ∈ L
1/(n−1)
loc (Ω). Then f is a mapping of finite distortion.

2. Absolute continuity on lines

In this section we will show that if f : Ω → R
n is a mapping of finite geometric

distortion with KO(·, f) ∈ L
1/(n−1)
loc (Ω), then it is absolutely continuous on almost

every line segment parallel to the coordinate axes in Ω, abbr. f ∈ ACL(Ω,Rn).
Especially, we will show that f ∈ W 1,1

loc (Ω,R
n). However, before going to proofs of

these results, let us recall the definition and some basic properties of quasiadditive
set functions.

Suppose that U ⊂ R
n is an open set, and denote by Bor(U) the set of all Borel

subsets of U . A mapping ψ : Bor(U) → [0,∞] is called m-quasiadditive set function,
m ≥ 1, if the following conditions are satisfied for all Borel sets in U :

(i) A ⊂ B implies ψ(A) ≤ ψ(B).
(ii) ψ(A) <∞ if A is a compact set.
(iii) If A1, . . . , Ak are disjoint and if Ai ⊂ A, then

k
∑

i=1

ψ(Ak) ≤ mψ(A).

We define upper and lower derivatives of a m-quasiadditive set function ψ at a
point x ∈ U as

ψ
′
(x) = lim sup

r→0

ψ(Bn(x, r))

mn(Bn(x, r))
and ψ′(x) = lim inf

r→0

ψ(Bn(x, r))

mn(Bn(x, r))
,

where mk(A) denotes the k-dimensional Lebesgue measure of a set A, and Bk(x, r)
is the open ball {y ∈ R

k : |x− y| < r}.
It is well-known that m-quasiadditive set function ψ : Bor(U) → [0,∞] satisfies

the following properties:

(qa1) ψ
′
and ψ′ are Borel functions,
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(qa2) ψ
′
(x) ≤ mψ′(x) <∞ for almost every x ∈ U , and

(qa3) for each open set V ⊂ U we have
ˆ

V

ψ′(x) dx ≤ mψ(V ).

One can proof the conditions (qa1)–(qa2) similarly as the corresponding results are
proved for Borel measures in [2]. Henceforth we will refer to these properties by
(qa1), (qa2) and (qa3). For more details we refer the reader to [12].

In the proof of following proposition we will use the idea of Koskela and Rogovin
[7, Theorem 1.1].

Proposition 2.1. Let Ω ⊂ R
n be a domain with n ≥ 2. Let f : Ω → R

n

be a continuous, sense-preserving, discrete and open mapping with finite geometric

distortion KO(·, f) ∈ L
1/(n−1)
loc (Ω). Then f ∈ ACL(Ω,Rn).

Proof. Pick a closed cubeQ ⊂⊂ Ω the sides of which are parallel to the coordinate
axes. Then by [18, Proposition 4.10] we have m := N(f,Q) <∞.

Assume that Q = Q0×J0, where Q0 is (n−1)-interval in R
n−1, and J0 = [a, b] ⊂

R. By symmetry it suffices to show that f is absolutely continuous on almost every
line segment in Q parallel to the xn-axis.

For A ∈ Bor(Q0) write

Φ(A) := mn(f(A× [a− d, b+ d])) ≤ mn(f(Qd)) <∞,

where d = 1
10
dist(Q, ∂Ω) and Qd := {x ∈ Ω: dist(x,Q) ≤ d}. Then Φ is a m-

quasiadditive set funtion on Q0 and thus by (qa2) we have

Φ
′
(x) := lim sup

r→0

Φ(Bn−1(x, r))

mn−1(Bn−1(x, r))
<∞

for almost every x ∈ Q0. Denote E0 := {x ∈ Q0 : Φ
′
(x) is not finite}.

Next, consider the set

A := {I ⊂ J0 : I is a finite union of closed intervals, whose interiors

are mutually disjoint and whose end points are rational}.

Observe that this set is countable.
Now, for almost every y ∈ Q0 we know by Fubini’s theorem that

ˆ

{ y }×[a−d,b+d]

K
1

n−1

O (y, z; f) dz <∞.(8)

Denote by E1 the set where (8) fails. Let us define for every I ∈ A a function
gI : Q0 → R by

gI(y) :=

ˆ

{ y }×I

K
1

n−1

O (y, z; f) dz.

By Fubini’s theorem gI ∈ L1(Q0) and thus for almost every y ∈ Q0

lim
r→0

 

Bn−1(y,r)

gI(x) dx = gI(y).
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Denote by EI the set where this is not true. Now the set

E = E0 ∪ E1 ∪

(

⋃

I∈A

EI

)

has measure zero, because it is a countable union of sets of measure zero.
Fix y ∈ Q0\E. It suffices to show that f is absolutely continuous on the segment

{y}×J0. Let {Ii}li=1, Ii = [ai, bi], be a union of closed intervals on J0 whose interiors
are mutually disjoint, and whose endpoints are rational numbers. Because our goal
is to estimate the sum

∑l
i=1|f(y, ai)− f(y, bi)| from above, we may assume that

|f(y, ai)− f(y, bi)| 6= 0 for every i = 1, . . . , l.

Since f is continuous, for every i = 1, . . . , l there is δi > 0 such that

|f(y, ai)− f(x)| <
|f(y, ai)− f(y, bi)|

4
, when |(y, ai)− x| < δi

and

|f(y, bi)− f(x)| <
|f(y, ai)− f(y, bi)|

4
, when |(y, bi)− x| < δi.

Denote δ = mini δi. Let 0 < r < 1
10
min{δ, |ai − bi|, d}. We cover the set {y} ×

(
⋃l

i=1 Ii
)

by cylinders Ci = B(y, r)× (ai − ǫ, bi + ǫ). We may choose ǫ > 0 to be so
small that

Bn−1(y, r/2)×

(

⋃

i

Ii

)

⊂
⋃

i

Ci ⊂ Bn−1(y, 2r)× [a− d, b+ d].

Define

ρ̃i(y) = 2 |f(y, ai)− f(y, bi)|
−1 χf(Ci)(y), i = 1, . . . , l,

and denote Gi := |f(y, ai)− f(y, bi)|. We define the path family Γi by

Γi = {γix : x ∈ Bn−1(y, r/2)},

where γix : [ai, bi] → R
n is defined as γix(t) = (x, t).

Suppose that γ ∈ Γi, for some i = 1, . . . , l, and f ◦ γ is rectifiable. Then for the
line integral over path f ◦ γ we have

ˆ

f◦γ

ρ̃i ds = 2G−1
i

ˆ

f◦γ

χf(Ci) ds ≥ G−1
i |f(y, ai)− f(y, bi)| = 1.

This implies that ρ̃i is an admissible test function for the modulus M(f(Γi)). By
calculating, we have

ˆ

Rn

ρ̃ni (y) dy = 2nG−n
i

ˆ

Rn

χf(Ci)(y)
n dy ≤ 2nG−n

i mn(f(Ci)).

This implies

M1/KO
(Γi) ≤ CO M(f(Γi)) ≤ 2nCOG

−n
i mn(f(Ci)),(9)

where the finite constants CO > 0 depends only on n and m.
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On the other hand, if γix ∈ Γi, x ∈ Bn−1(y, r), and ρi is an arbitrary test function
for the modulus M1/KO

(Γi), we have

αn−1 r
n−1 ≤

ˆ

Bn−1(y,r)

ˆ

γi
x

ρi(x, z) |dz| dmn−1(x)

≤

ˆ

Bn−1(y,r)

(
ˆ

γi
x

ρni (x, z)
1

KO(x, z; f)
|dz|

)
1

n
(
ˆ

γi
x

K
1

n−1

O (x, z; f) |dz|

)
n−1

n

dmn−1(x)

≤

(
ˆ

Bn−1(y,r)

ˆ

γi
x

ρni (x, z)
1

KO(x, z; f)
|dz| dmn−1(x)

)
1

n

·

(
ˆ

Bn−1(y,r)

ˆ

γi
x

K
1

n−1

O (x, z; f) |dz| dmn−1(x)

)
n−1

n

,

where αn−1 is the volume of an (n − 1)-dimensional unit ball. Combining this with
(9), we see that

|f(y, ai)− f(y, bi)|

≤ C

(

mn(f(Ci))

rn−1αn−1

)
1

n
(
 

Bn−1(y,r)

ˆ

γi
x

K
1

n−1

O (x, z; f) |dz| dmn−1(x)

)
n−1

n

= C

(

mn(f(Ci))

rn−1αn−1

)
1

n
(
 

Bn−1(y,r)

ˆ

Ii

K
1

n−1

O (x, t; f) dt dmn−1(x)

)
n−1

n

,

where C := 2C
1/n
O . Here on the third line we have used [23, Theorem 4.1] and the

fact that |(γix)
′(t)| = 1.

By summing over i = 1, . . . , l and using Hölder’s inequality, we get

l
∑

i=1

|f(y, ai)− f(y, bi)|(10)

≤ C

l
∑

i=1

[(

mn(f(Ci))

rn−1αn−1

)
1

n
(
 

Bn−1(y,r)

ˆ

Ii

K
1

n−1

O (x, t; f) dt dmn−1(x)

)
n−1

n
]

= C

( l
∑

i=1

mn(f(Ci))

rn−1αn−1

)
1

n
( l
∑

i=1

 

Bn−1(y,r)

ˆ

Ii

K
1

n−1

O (x, t; f) dt dmn−1(x)

)
n−1

n

≤ C

(

Φ(Bn−1(y, 2r))

rn−1αn−1

) 1

n
(
 

Bn−1(y,r)

ˆ

∪l
i=1

Ii

K
1

n−1

O (x, t; f) dt dmn−1(x)

)
n−1

n

,

with C = 2C
1/n
O . Taking upper limit with respect to r on both sides, we arrive at

l
∑

i=1

|f(y, ai)− f(y, bi)| ≤ C Φ
′
(y)

1

n

(
ˆ

∪l
i=1

Ii

K
1

n−1

O (y, t; f) dt

)
n−1

n

,(11)

with C = 2C
1/n
O . This holds for rational ai, bi. By continuity, it then holds for all

ai, bi ∈ R. Thus f is absolutely continuous on {y} × J0. �

The proof of the following lemma is originally from [12, Lemma 2.17] with only
small technical changes. However, to convince a reader we will go trough the proof.
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Lemma 2.2. Suppose that Ω ⊂ R
n is a domain with n ≥ 2. Let f : Ω → R

n

be a continuous, sense-preserving, discrete and open mapping of finite geometric

distortion with KO(·, f) ∈ L
1/(n−1)
loc (Ω). Then f ∈ W 1,1

loc (Ω,R
n).

Proof. To prove that f ∈ W 1,1
loc (Ω,R

n) it is enough to show the local integrability
of the partial derivatives, whose existence is guaranteed by the ACL-property given
by Proposition 2.1.

Let Q ⊂⊂ Ω be an open n-interval. Then by [18, Proposition 4.10] we have
m := N(f,Q) < ∞. Choose an integer k0 such that 0 < 1/k0 < dist(Q, ∂Ω). We
define

h(x) = |∂nf(x)| and hk(x) =
k

2

ˆ
1

k

− 1

k

h(x+ ten) dt,

where en stands for the nth standard basis vector of Rn. Then hk(x) is defined for
almost every x ∈ Q and for all k ≥ k0.

First we show that hk → h almost everywhere in Q as k → ∞. It is well known
that h is measurable. In fact, h is a Borel function, see [19, p. 170]. Hence the
function (x, t) 7→ h(x+ ten) is measurable in Q× (−1/k, 1/k). By Fubini’s theorem,
this implies that hk is measurable.

Write Q = Q0×J0, where Q0 is an open (n−1)-interval and J0 = (a, b). Then for
almost every z ∈ Q0 the mapping t 7→ f(z, t) is absolutely continuous with respect
to t ∈ (a − 1/k0, b + 1/k0). For such z Lebesgue’s differentiation theorem implies
that hk(z, t) → h(z, t) for almost every t ∈ J0 as k → ∞. Thus by Fubini’s theorem
it follows that lim infk→∞ hk(x) = h(x) = lim supk→∞ hk(x) a.e. in Q. Therefore
hk → h almost everywhere in Q as k → ∞.

Next, by Fubini’s theorem almost every α ∈ J0 has the property that hk(z, α) →
h(z, α) for almost every z ∈ Q0. Consider α with this property, and set

Fk(A) := mn(f(A× (α− 1/k, α+ 1/k)))

for all Borel sets A ⊂ Q0 and each k ≥ k0. Then the set functions Fk are m-
quasiadditive set functions on Q0. By similar argument than in the Proposition 2.1
we see that for almost every z ∈ Q0 the function t 7→ f(z, t) is absolutely continuous
on [α− 1/k, α+ 1/k] and that its total variation is not greater than

C (F
′

k(z))
1

n

(

ˆ α+1/k

α−1/k

K
1

n−1

O (z, t) dt

)
n−1

n

,

where C > 0 is some finite constant depending only on n and m. Consequently

hk(z, α) =
k

2

ˆ α+1/k

α−1/k

|∂nf(z, t)| dt ≤ C
k

2

(

F
′

k(z)

)
1

n
(
ˆ α+1/k

α−1/k

K
1

n−1

O (z, t) dt

)
n−1

n

,

with a finite constant C > 0 depending only on n and m. By integrating over z ∈ Q0,
using Hölder’s inequality, and applying (qa2) and (qa3), we get

ˆ

Q0

hk(z, α) dmn−1 ≤ C m
2

n
k

2
Fk(Q0)

1

n

(
ˆ

Q0

ˆ α+1/k

α−1/k

K
1

n−1

O (z, t) dt dmn−1(z)

)
n−1

n
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= C m
2

n
k

2
mn(f(Q0 × (α− 1/k, α+ 1/k)) )

1

n(12)

·

(
ˆ

Q0

ˆ α+1/k

α−1/k

K
1

n−1

O (z, t) dt dmn−1(z)

)
n−1

n

,

where the finite constant C > 0 depends only on n and m. For each Borel set A ⊂ J0
define

ψ(A) = mn(f(Q0 × A)).

Then ψ is a m-quasiadditive set function on J0. As k → ∞, (12) together with
Fatou’s lemma implies that

ˆ

Q0

h(z, α) dmn−1(z) ≤ C m
2

n

(

ψ
′
(α)
)

1

n

(
ˆ

Q0

K
1

n−1

O (z, α) dmn−1(z)

)
n−1

n

,(13)

for almost every α. By integrating over α ∈ J0, using Hölder’s inequality, and
applying (qa2) and (qa3), it follows from (13) that

ˆ

Q

h dmn ≤ C m
4

n mn(f(Q))
1

n

(
ˆ

Q

K
1

n−1

O (z, α) dmn−1(z)

)
n−1

n

,(14)

where the constant C > 0 is finite and depends only on n and m. Thus h is integrable
over Q. �

3. Proof of the distortion inequality

Our main result, Theorem 1.2, will follow directly from Lemma 2.2, Theorem 3.1
and Lemma 3.2. Therefore we give proofs only for Theorem 3.1 and Lemma 3.2, and
leave rest of the proof for a reader.

Suppose that f : Ω → R
n is a sense-preserving, continuous, discrete and open

mapping, and consider an open subset U ⊂ Ω such that N(f, U) < ∞. Then we
define a m-quasiadditive set function µ(·, f) : Bor(U) → [0,∞] by setting

µ(A, f) = mn(f(A))

for each A ∈ Bor(U). Unlike in section 2, we will define upper and lower limits for
this specific quasiadditive set functions as

µ′(x, f) = lim sup
r→0

mn(f(Q(x, r)))

mn(Q(x, r))
and µ′(x, f) = lim inf

r→0

mn(f(Q(x, r)))

mn(Q(x, r))
,

where Q(x, r) := {y ∈ R
n : |xi − yi| < r for all i = 1, . . . , n}. Here zi stands for the

ith coordinate of a point z ∈ R
n.

One can check that conditions (qa1)–(qa3) remains the same for the derivatives
µ′(x, f) and µ′(x, f). This is because Vitali covering theorem holds also for the family
of all closed cubes.

Theorem 3.1. Let Ω ⊂ R
n be a domain with n ≥ 2. Suppose that f : Ω → R

n

is a continuous, sense-preserving, open and discrete mapping, and that there exists

a function KO(·, f) ∈ L
1/(n−1)
loc (Ω) such that

M1/KO(·,f)(Γ) ≤ CO(A) M(f(Γ))(15)
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for every Borel set A ⊂ Ω for which N(f, A) < ∞, for every family of paths Γ in A,

and for some positive and finite constant CO(A) depending only on n and N(f, A).
Then f ∈ W 1,1

loc (Ω,R
n). Moreover, if U ⊂ Ω is an open set with N(f, U) <∞, then

|Df(x)|n ≤ CO(U)KO(x, f)µ
′(x, f)

for almost every x ∈ U .

Proof. We have already shown that f ∈ W 1,1
loc (Ω,R

n). Thus, by [2, Theorem 1,
p. 228] f is L1-differentiable, i.e.

lim
r→0

1

r

 

B(x,r)

|f(y)− f(x)−Df(x)(y − x)| dy = 0 for a.e. x ∈ Ω.

Given ǫ > 0, denote

Sǫ
r(x) = {y ∈ Ω: |f(y)− f(x)−Df(x)(y − x)| ≥ ǫr}.

Then L1-differentiability gives that

lim
r→0

mn(S
ǫ
r(x))

mn(Q(x, r))
= 0(16)

for almost every x ∈ Ω.
Pick an open set U ⊂ Ω with m := N(f, U) < ∞, and fix a point x ∈ U such

that

(i) (16) holds at x,

(ii) x is a Lebesgue point of K
1

n−1

O (·, f), and
(iii) µ′(x, f) is finite.

We observe that almost every point in U satisfies the above criteria.
By applying translations we may assume that x = 0 = f(x). Moreover, because

every matrix A can be written as UDV T , where U and V are orthogonal and

D =









α1 0 · · · 0
0 α2 · · · 0
...

...
. . .

...
0 0 · · · αn









where α1 ≥ α2 ≥ · · · ≥ αn ≥ 0, we can assume that our Df(0) is as above.
We have to show that

αn
1 ≤ KO(0, f)µ

′(0, f).

We assume that α1 > 0 since otherwise the claim is trivial. Next, fix 0 < δ < 1
2

and 0 < ǫ ≤ min{α1/4, δ/2}. Choose rǫ > 0 such that mn(S
ǫ
r(x)) ≤ ǫ

2
mn(Q(x, r))

whenever r ≤ rǫ. Fix 0 < r ≤ rǫ, and set

E = [−r,−(1 − δ)r]× [−r, r]n−1, F = [(1− δ)r, r]× [−r, r]n−1 and Qr = [−r, r]n.

Denote GE = E\Sǫ
r(0) and GF = F\Sǫ

r(0). Let Γ be the family of all curves that
connects GE and GF in Qr. Define P : Rn → R

n−1 by setting

P (y1, . . . , yn) = (y2, . . . , yn).
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Notice that then mn−1(P (GE) ∩ P (GF )) ≥ (1 − ǫ
δ
)(2r)n−1. If ρ is admissible for Γ,

and if Jy = [−r, r]× {y}, where y ∈ P (GE) ∩ P (GF ), we have
ˆ

Jy

ρ(x) |dx| ≥ 1,

since a subcurve of Jy belongs to Γ. Thus by Fubini and Hölder’s inequality, we
obtain

(

1−
ǫ

δ

)

(2r)n−1 ≤

ˆ

P (GE)∩P (GF )

1 dmn−1 ≤

ˆ

Qr

ρ(z) dz

≤

(
ˆ

Qr

ρ(z)n

KO(z, f)
dz

)
1

n
(
ˆ

Qr

KO(z, f)
1

n−1 dz

)
n−1

n

.

Since ρ is an arbitrary test function, using our assumption (15) we have that

(

1−
ǫ

δ

)

(2r)n−1 ≤ CO(U)
1

n (M(f(Γ)))
1

n

(
ˆ

Qr

KO(z, f)
1

n−1 dz

)
n−1

n

.(17)

Next, suppose that γ ∈ Γ. Then it follows from

f(GE) ⊂ [−(α1 + ǫ)r,−(α1(1− δ)− ǫ)r]×R
n−1, and

f(GF ) ⊂ [(α1(1− δ)− ǫ)r, (α1 + ǫ)r]×R
n−1

that length(f(γ)) ≥ 2(α1(1− δ)− ǫ)r. Thus ρ̃(x) = (2(α1(1− δ)− ǫ)r)−1 χf(Qr)(x) is
admissible for M(f(Γ)), and we get

M(f(Γ)) ≤
mn(f(Qr))

(2(α1(1− δ)− ǫ)r)n
.(18)

Therefore, by combining (17) and (18) we have

(

1−
ǫ

δ

)

(α1(1− δ)− ǫ) ≤ CO(U)
1

n

(

mn(f(Qr))

mn(Qr)

)
1

n
(
 

Qr

KO(z, f)
1

n−1 dz

)
n−1

n

.

Taking lower limit r → 0, then letting ǫ→ 0, and finally δ → 0 we get

α1 ≤ CO(U)
1

n K
1

n

O(0, f)µ
′(0, f)

1

n ,

and the claim follows. �

Lemma 3.2. Let Ω ⊂ R
n be a domain with n ≥ 2, and let f ∈ W 1,1

loc (Ω,R
n)

be a continuous, discrete and open mapping. Let U ⊂⊂ Ω be an open set with

N(f, U) <∞. Then

µ′(x, f) ≤ N(f, U) |J(x, f)|(19)

for almost every x ∈ U .

Proof. Let us denote m := N(f, U) < ∞. By using (qa3) together with a
standard approximation argument, we conclude that

ˆ

A

µ′(x, f) dx ≤ mmn(f(A))(20)

for each Borel set A ⊂ U .
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For simplicity let us suppose that U = Ω. Because f ∈ W 1,1
loc (Ω,R

n), we have by
[4, Theorem A.31] that f is approximatively differentiable almost everywhere, and
by applying [4, Corollary A.27] we may decompose

Ω = N ∩
∞
⋃

k=1

Ωk,

where N is a Borel set with null measure, the sets Ωk are measurable and pairwise
disjoint, and the restriction map f |Ωk

to each set Ωk is Lipschitz. Then by the Area
formula for Lipschitz mappings we get

ˆ

Ωk

|J(x, f)| dx =

ˆ

Rn

N(y, f,Ωk) dy(21)

on each set Ωk, where N(y, f, A) := card f−1(y) ∩A is the multiplicity function of f
with respect to a set A ⊂ Ω. Therefore

ˆ

Rn

N(y, f,Ω\N) dy =

∞
∑

k=1

ˆ

Rn

N(y, f,Ωk) dy =

ˆ

Ω\N

|J(x, f)| dx.(22)

Let us denote N := Ω\N . Then N is a Borel set of full measure in Ω, and by
using (qa3), (20) and (22) we get

ˆ

Br

µ′(z, f) dz =

ˆ

Br∩N

µ′(z, f) dz ≤ mmn(f(Br ∩N )) = m

ˆ

Rn

χf(Br∩N )(y) dy

≤ m

ˆ

Rn

N(y, f, Br ∩ N ) dy = m

ˆ

Br∩N

|J(z, f)| dz = m

ˆ

Br

|J(z, f)| dz,

where Br := B(x, r). By using Lebesgue differentiation theorem we have

µ′(x, f) ≤ m |J(x, f)|

for almost every x ∈ Ω. �
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