Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 40, 2015, 645-658
Università di Bologna, Dipartimento di Matematica
Piazza di Porta S. Donato 5, 40126 Bologna, Italy; giovanni.cupini 'at' unibo.it
Università di L'Aquila,
Dipartimento di Ingegneria e Scienze dell'Informazione, Matematica
67100 L'Aquila, Italy; leonetti 'at' univaq.it
Università di Firenze, Dipartimento di Matematica e Informatica
"U. Dini"
Viale Morgagni 67/A, 50134 Firenze, Italy; mascolo 'at' math.unifi.it
Abstract. We consider a non-linear system of m equations in divergence form and a boundary condition:
∑ni=1
∂/∂xi(Aαi(x,Du(x))) = 0, 1 ≤ α ≤ m,
in Ω
u = \tilde u on ∂Ω.
The functions Aαi(x,z) are Hölder continuous with respect to x and
|z|p - c1 ≤ ∑mα=1 ∑ni=1Aαi(x,z)ziα ≤ c2 (1 + |z|)q, 2 ≤ p ≤ q.
We prove the existence of a weak solution u in (\tilde u + W01,p(Ω;Rm)) ∩ Wloc1,q(Ω;Rm), provided p and q are close enough and under suitable summability assumptions on the boundary datum \tilde u.
2010 Mathematics Subject Classification: Primary 35J25; Secondary 35J47, 49N60.
Key words: Existence, regularity, weak, solution, elliptic, system, growth.
Reference to this article: G. Cupini, F. Leonetti and E. Mascolo: Existence of weak solutions for elliptic systems with p,q-growth. Ann. Acad. Sci. Fenn. Math. 40 (2015), 645-658.
doi:10.5186/aasfm.2015.4035
Copyright © 2015 by Academia Scientiarum Fennica