Annales Academiæ Scientiarum Fennicæ
Mathematica
Volumen 40, 2015, 215-226
Universitat Autònoma de Barcelona,
Departament de Matemàtiques
08193, Bellaterra, Barcelona, Catalonia; annaboschcamos 'at' gmail.com
Universitat Autònoma de Barcelona,
Departament de Matemàtiques
08193, Bellaterra, Barcelona, Catalonia; mateu 'at' mat.uab.cat
Universitat Autònoma de Barcelona,
Departament de Matemàtiques
08193, Bellaterra, Barcelona, Catalonia; orobitg 'at' mat.uab.cat
Abstract. It is known that the improved Cotlar's inequality B∗f(z) ≤ CM(Bf)(z), z ∈ C, holds for the Beurling transform B, the maximal Beurling transform B∗f(z) = supε>0 |∫|w|>εf(z - w) 1/w2 dw|, z ∈ C, and the Hardy–Littlewood maximal operator M. In this note we consider the maximal Beurling transform associated with squares, namely, B∗Sf(z) = supε>0 |∫w∉Q(0,ε)f(z - w) 1/w2 dw|, z ∈ C, Q(0,ε) being the square with sides parallel to the coordinate axis of side length ε. We prove that B∗Sf(z) ≤ CM2(Bf)(z), z ∈ C, where M2 = M o M is the iteration of the Hardy–Littlewood maximal operator, and that M2 cannot be replaced by M.
2010 Mathematics Subject Classification: Primary 42B20, 42B25.
Key words: Cotlar's inequality, maximal Beurling transform, Calderón–Zygmund operators.
Reference to this article: A. Bosch-Camós, J. Mateu and J. Orobitg: The maximal Beurling transform associated with squares. Ann. Acad. Sci. Fenn. Math. 40 (2015), 215-226.
doi:10.5186/aasfm.2015.4016
Copyright © 2015 by Academia Scientiarum Fennica