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Abstract. If D is a bounded and strictly convex domain in a complex Banach space and

f : D → D is holomorphic, condensing with respect to the Kuratowski measure of noncompactness

and fixed-point-free, then there exists ξ ∈ ∂D such that the sequence {fn} of the iterates of f

converges in the compact-open topology to the constant mapping taking the value ξ.

1. Introduction

The present paper is devoted the Denjoy–Wolff theorem in bounded and strictly
convex domains in complex Banach spaces. Recall that in 1926 Denjoy and Wolff
[23, 71, 72], see also [73, 18], proved the following theorem.

Theorem 1.1. Let ∆ be the open unit disc in the complex plane C. If an
analytic function f : ∆ → ∆ does not have a fixed point, then there is a unique point
ξ in ∂∆ such that the iterates fn of f converge to ξ, uniformly on compact subsets
of ∆.

Comparing the above Denjoy–Wolff theorem with the Riemann theorem and
the Osgood, Taylor and Carathéodory theorem [17] we get the following version of
the Denjoy–Wolff theorem for fixed-point-free self-mappings of bounded and convex
domains in the complex plane C.

Theorem 1.2. Let D be a bounded and convex domain in C. If an analytic
function f : D → D is fixed-point-free, then there exists ξ ∈ ∂D such that the
sequence {fn} of the iterates of f converges in the compact-open topology to the
constant mapping taking the value ξ.

The last theorem is not valid in C
n for n ≥ 2. But there are positive results

of this type. The most general one is due to the author, who used the horosphere
method, which was introduced by Abate [1, 2], to prove the following theorem for
bounded and strongly convex domains in C

n (for earlier results in C
n, see [1, 2, 21,

35, 45, 47, 56, 68]).

Theorem 1.3. ([12], see also [3]) If D is a bounded and strictly convex domain
in C

n and f : D → D is holomorphic and fixed-point-free, then there exists ξ ∈ ∂D
such that the sequence {fn} of iterates of f converges in the compact-open topology
to the constant mapping taking the value ξ.

Recall here that a bounded and convex domain D in a complex Banach space
(X, ‖ · ‖) is strictly convex if for each x, y ∈ D, the open segment
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(x, y) = {z ∈ X : z = sx+ (1− s) y for some 0 < s < 1}

lies in D ([31])
But in a complex infinite dimensional Banach space the Denjoy–Wolff theorem

in the above form is false. Namely, Stachura shows that in the complex infinite
dimensional Hilbert space H = l2 the convergence result fails even for biholomorphic
self-maps in the open unit ball BH ([69], see also [28]). So, in order to obtain a
generalization of the Denjoy–Wolff theorem we have to impose some restrictions on
the holomorphic self-mapping f : D → D. Then, using the methods similar to those
which were applied in [12], the following Denjoy–Wolff theorem for compact mappings
was proved in [16] (in case of the open and strictly convex unit ball B in a complex
Banach space (X, ‖ · ‖), see [22, 37, 44, 65]).

Theorem 1.4. ([16], see also [15]) If D is a bounded and strictly convex domain
in a complex Banach space (X, ‖ · ‖), and f : D 7→ D is compact, holomorphic and
fixed-point-free, then there exists a point ξ ∈ ∂D such that the sequence {fn} of the
iterates of f converges in the bounded-open topology to the constant map taking the
value ξ, i.e., on each kD-bounded subset C of D, the sequence {fn} tends uniformly
to ξ.

The main result of our paper is the Denjoy–Wolff theorem for condensing kD-
nonexpansive mapping (kD denotes the Kobayashi distance in D) in the bounded
and strictly convex domain D (in case of the open and strictly convex unit ball
B in (X, ‖ · ‖), see [38, 48] and Remark 3.1 in [15]). Note that the class of all
condensing mappings contains the class of all compact mappings. Observe also that
in the infinitely dimensional complex Banach space (X, ‖·‖) the assumption, that the
kD-nonexpansive mapping f : D → D is condensing, is very natural for our purposes
since this assumption guarantees us that for each x ∈ D the set of all elements of the
sequence {fn(x)} is relatively compact in (X, ‖ · ‖) ([67]).

Unfortunately, in case of condensing and holomorphic mappings we are not able
to use the horosphere method since it is not known whether all horospheres are
nonempty. Therefore in this paper we present a new approach in the proof of the
Denjoy–Wolff theorem for condensing and holomorphic mappings f : D → D. To
get a contradiction we use a method of a minimal f -invariant set C ⊂ D and a new
intrinsic metric kD,C in C.

The paper is organized in the following way. In Section 2 we provide the nec-
essary prerequisities for our results. These concern the Kobayashi distance kD, kD-
nonexpansive and condensing mappings, and we also introduce an intrinsic metric
kD,C in a kD-closed and convex subset C of a domain D. But for the better reading
we give, in the last section of our paper, the proofs of the properties of this intrinsic
metric kD,C, since these proofs have a very technical character. In the section 3 we
state and prove our main theorem and in the next section we present the Denjoy–
Wolff theorem for semigroups. As we mentioned earlier in the Section 5 we investigate
an intrinsic metric kD,C in a kD-closed and convex subset C of a domain D and we
establish Theorem 5.9 which is crucial in the proof of our main theorem.

Finally, note that there are many papers on the Denjoy–Wolff theorem, the
Denjoy–Wolff type theorem and their applications, see e.g. [2, 8, 9, 13, 14, 32, 33, 39,
46, 53, 54, 55, 57, 60, 61, 62, 63, 64, 65, 66, 70].
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2. The Kobayashi distance and its properties

Since in the proofs of the Denjoy–Wolff theorem the Kobayashi distance ([41]
and for more information, see [2, 24, 25, 26, 30, 33, 34, 36, 42, 43, 46, 52]) plays the
main role we recall a few important properties of the Kobayashi distance, which will
be used in the proof of our main theorem.

We begin with the definition of the Poincaré distance. Let ∆ be the open unit
disc in the complex plane C. Recall that the Poincaré distance ρ∆ on ∆ is given by

k∆(z, w) = ρ∆(z, w) := arg tanh

∣

∣

∣

∣

z − w

1− zw

∣

∣

∣

∣

= arg tanh (1− σ (z, w))
1

2 ,

where

σ(z, w) :=

(

1− |z|2
) (

1− |w|2
)

|1− zw|2
, z, w ∈ ∆.

Now let D be a bounded and convex domain in a complex Banach space (X, ‖·‖).
We use the following definition of the Kobayashi distance on D. This definition is,
in fact, the definition of the Lempert function δ [52, 26], i.e.,

kD(x, y) = δD(x, y) := inf{ρ∆(0, λ) : λ ∈ [0, 1) and there exists f ∈ H(∆, D)

so that f(0) = x, f(λ) = y},

where H(∆, D) denotes the family of all holomorphic mappings f : ∆ → D.
Here, we present a few basic properties of the Kobayashi distance.

Lemma 2.1. [34] Let (X, ‖·‖) be a complex Banach space, D ⊂ X be a bounded
and convex domain and let kD be the Kobayashi distance. The Kobayashi distance
kD is locally equivalent to the norm ‖·‖ in X, i.e., the following inequalities are valid:

(i)

arg tanh

(

‖x− y‖

diamD

)

≤ kD(x, y)

for all x, y ∈ D, where diamD := sup{‖w − z‖ : w, z ∈ D};
(ii)

kD(x, y) ≤ arg tanh

(

‖x− y‖

dist(x, ∂D)

)

whenever ‖x− y‖ < dist(x, ∂D), where dist(x, ∂D) := inf{‖x−y‖ : y ∈ ∂D}.

Lemma 2.2. [51, 38, 48] Let D be a convex and bounded domain in a complex
Banach space (X, ‖·‖).

(i) If x, y, w, z ∈ D and s ∈ [0, 1], then

kD(sx+ (1− s)y, sw + (1− s)z) ≤ max [kD(x, w), kD (y, z)] ;

(ii) if x, y ∈ D and s, t ∈ [0, 1], then

kD(sx+ (1− s)y, tx+ (1− t)y) ≤ kD(x, y).

Next, recall that a nonempty subset C of D lies strictly inside D if

dist(C, ∂D) := inf{‖x− y‖ : x ∈ C, y ∈ ∂D} > 0.

Observe that a nonempty subset C of a bounded and convex domain D is kD-
bounded if and only if C lies strictly inside D ([34]).

The next property of kD is the following.
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Lemma 2.3. [15, 38, 46] Let D be a bounded and strictly convex domain in a
complex Banach space (X, ‖ · ‖). Let {xj}j∈J and {yj}j∈J be two nets in D which

converge in norm to ξ ∈ ∂D and to η ∈ D, respectively. If

sup {kD (xj , yj) : j ∈ J} = c < ∞,

then ξ = η.

Now we recall a few results showing basic connections between holomorphic map-
pings and the Kobayashi distance. Let D1 and D2 be bounded convex domains
in complex Banach spaces (X1, ‖ · ‖1) and (X2, ‖ · ‖2), respectively. A mapping
f : D1 → D2 is nonexpansive with respect to the Kobayashi distance if

kD2
(f(x), f(y)) ≤ kD1

(x, y)

for all x, y ∈ D. Note that each holomorphic mapping f : D1 → D2 is nonexpansive
with respect to the Kobayashi distance. Next, if D1 = D2 = D, then we say that f is
kD-nonexpansive. So, if D is a bounded domain in a complex Banach space (X, ‖ · ‖),
then each holomorphic f : D 7→ D is kD-nonexpansive [2, 24, 30, 33, 34, 36, 41, 66].

Let D be a bounded domain in a complex Banach space (X, ‖ · ‖). A mapping
f : D → D is said to map D strictly inside D if f (D) lies strictly inside D. Such a
mapping is a kD-contraction according to the following Earle–Hamilton theorem.

Theorem 2.4. [27] Let D be a bounded domain in a complex Banach space
(X, ‖·‖). If a holomorphic f : D → D maps D strictly inside itself, then there exists
0 ≤ t < 1 such that

kD(f(x), f(y)) ≤ tkD(x, y)

for all x and y in D.

Hence, if D is a bounded and convex domain in a Banach space (X, ‖·‖), then
by the Earle–Hamilton theorem the mapping gs,z := (1 − s)z + s · I : D → D is a
kD-contraction for each z ∈ D and 0 ≤ s < 1 (here I denotes the identity mapping).
Thus for each kD-nonexpansive mapping f : D → D the mapping fs,z := gs,z ◦ f =
(1− s) z + sf : D → D is a kD-contraction and has exactly one fixed point which we
denote by hf (s, z). Fix 0 ≤ s < 1 and x0 ∈ D. Then the mapping hf (s, ·) : D → D
is kD-nonexpansive (holomorphic if f is holomorphic) as a limit of the sequence
{

fn
s,· (x0)

}

.
We will also use the notions of total boundedness, finite total boundedness and

finite compactness of a metric space. Recall that a metric space (Y, d) is said to be
totally bounded if for each ε > 0, it can be decomposed into a finite number of sets
of diameter < ε ([49], see also [29, 50]). We also say that a metric space (Y, d) is
finitely totally bounded (finitely compact) if each nonempty and bounded subset of
Y (each nonempty, bounded and closed subset of Y ) is totally bounded (compact).
Now we are able to recall Całka’s theorem regarding the behavior of the sequence of
iterates of a nonexpansive mapping on a finitely totally bounded metric space (Y, d).

Theorem 2.5. [20] Let f be a nonexpansive mapping of a finitely totally bounded
metric space (Y, d) into itself. If for some y0 ∈ Y , the sequence {fn (y0)} contains a
bounded subsequence, then for each y ∈ Y , the sequence {fn (y)} is bounded.

Now we recall the definition of a condensing mapping.
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Definition 2.1. [4, 6, 7, 31] Let (Y, d) be a metric space and let ∅ 6= D ⊂ Y .
We say that a mapping f : D → D is αd-condensing with respect to Kuratowski’s
measure of noncompactness αd ([49]) if

αd(f(C)) < αd(C)

for each bounded C ⊂ D with αd (C) > 0.

Observe that condensing mappings have the following properties.

Lemma 2.6. Let D be a convex bounded domain in a Banach space (X, ‖·‖)
and let f : D → D be kD-nonexpansive and condensing with respect to α‖·‖.

(i) [67] For each x ∈ D we have

α‖·‖ ({f
n(x) : n = 1, 2, . . .}) = 0

and therefore the set of iterates {fn(x) : n = 1, 2, . . .} of x is finitely totally
bounded in (D, kD) and the closure in (X, ‖ · ‖) of this set is compact in
(X, ‖ · ‖).

(ii) [38] If C is a nonempty, kD-closed and f -invariant subset of D, {sn} is a
sequence such that limn→∞ sn = 1, 0 < sn < 1 and {zn} is a sequence of ele-
ments of C, then the sequence {xn}, given by xn = hf (sn, zn) = fsn,zn(xn) =
(1−sn)zn+snf(xn) for each n ∈ N, contains a norm-convergent subsequence.

Directly from the above lemma, the Earle–Hamilton theorem and the Całka the-
orem we get the following theorem which is basic for our next considerations.

Theorem 2.7. [38] Let D be a convex bounded domain in a complex Banach
space (X, ‖·‖) and let kD denote its Kobayashi distance. If f : D → D is kD-
nonexpansive and condensing with respect to α‖·‖, then the following conditions are
equivalent:

(i) f has a fixed point;
(ii) there exist x ∈ D and a kD-bounded subsequence of its iterates {fni (x)};
(iii) there exists x ∈ D with a kD-bounded sequence of its iterates {fn (x)};
(iv) for each x ∈ D the sequence of its iterates {fn (x)} is kD-bounded;
(v) there exists a nonempty, kD-closed, convex, kD-bounded and f -invariant sub-

set C of D;
(vi) there exists a nonempty, kD-bounded and f -invariant subset C of D;
(vii) there exists a kD-bounded and norm convergent sequence {xn} such that

(f(xn)− xn) → 0;
(viii) there exists a kD-bounded sequence {xn} such that (f(xn)− xn) → 0.

Using Theorem 2.7, Lemma 2.3 and Lemma 2.6 we obtain two important the-
orems about kD-nonexpansive, fixed-point-free and condensing mappings. To make
the paper self-contained we give them with their proofs.

Theorem 2.8. Let D be a strictly convex bounded domain in a complex Ba-
nach space (X, ‖·‖) and let kD denote its Kobayashi distance. If f : D → D is
kD-nonexpansive, fixed-point-free and condensing with respect to α‖·‖, then for each
x ∈ D the set A of all accumulation points of the sequence {fn(x)} has the following
properties:

(i) A 6= ∅,
(ii) A ⊂ ∂D,
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(iii) the set A is independent of the choice x ∈ D.

Proof. Since f is fixed-point-free, Theorem 2.7 (ii) implies that for each x ∈ D
we have

lim
n→∞

kD(f
n(x), x) = ∞.

By Lemma 2.6 (i) the closure in (X, ‖ · ‖) of the set of iterates {fn(x)} is compact in
(X, ‖ · ‖). Let A denote the set of all accumulation points of the sequence {fn (x)}.
Then we have ∅ 6= A ⊂ ∂D. Observe that

kD(f
n(x), fn(x)) ≤ kD(x, y)

for n = 1, 2, . . . and each x, y ∈ D and therefore, by Lemma 2.3, the set A is
independent of the choice of x ∈ D. �

Theorem 2.9. Let D be a strictly convex bounded domain in a complex Banach
space (X, ‖·‖) and let kD denote its Kobayashi distance. Let f : D → D be kD-
nonexpansive, fixed-point-free and condensing with respect to α‖·‖ and for each z ∈ D
let B denote the set of all accumulation points, for s → 1−, of the approximating
curve

{hf(s, z)}0≤s<1 := {(1− s)z + sf(hf(s, z))}0≤s<1,

i.e.,

B = {x ∈ D : there exists a sequence {sn} with 0 ≤ sn → 1− and hf (sn, z) → x}.

Then the set B has the following properties:

(i) B 6= ∅,
(ii) B ⊂ ∂D,
(iii) the set B is independent of the choice of z ∈ D.

Proof. By Lemma 2.6 (ii), if {sn} is a sequence such that limn→∞ sn = 1, 0 <
sn < 1 and z ∈ D, then the sequence {xn,z}, given by xn,z := hf (sn, z) = fsn,z(xn,z) =
(1− sn)z+ snf(xn,z) for each n, contains a norm-convergent subsequence. Since f is
fixed-point-free, Theorem 2.7 (vii) implies that for each z ∈ D we have

lim
n→∞

kD(xn,z, z) = ∞.

Hence we have ∅ 6= B ⊂ ∂D. Finally, note that

kD(hf (s, z), hf(s, y)) ≤ kD(z, y)

for 0 ≤ s < 1 and each x, z ∈ D and therefore, by Lemma 2.3, the set B is indepen-
dent of the choice of z ∈ D. �

Directly from Theorems 2.8 and 2.9 we get the following corollary.

Corollary 2.10. Let D be a strictly convex bounded domain in a complex Ba-
nach space (X, ‖·‖) and let kD denote its Kobayashi distance. Assume that f : D → D
is kD-nonexpansive, fixed-point-free and condensing with respect to α‖·‖ and that C
is a nonempty, kD-closed, convex and f -invariant subset of a domain D. If the set A
is a set of all accumulation points of the sequence {fn(x)} , where x ∈ D, and B de-
note the set of all accumulation points, for s → 1− and z ∈ D, of the approximating
curve

{hf (s, z)}0≤s<1 = {(1− s)z + sf(hf(s, z))}0≤s<1,

then we have:
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(1) A ⊂ C ∩ ∂D,
(2) B ⊂ C ∩ ∂D.

Now observe that kD-metric segments and compactness of suitable subsets of D
are generally used in proofs of the fact that each horosphere is nonempty. Unfor-
tunately, in case of a minimal and f -invariant subset C of D, which appears in our
paper, we are not able to apply the Kobayashi distance kD on C, since a nonempty,
convex, and kD-closed subset from C̃ of D does not have to contain kD-metric seg-
ments which join points x, y ∈ C̃. Therefore in our minimal set C we have to
introduce the following definition of an intrinsic metric kD,C , which is suitable for
our aims.

Definition 2.2. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let kD denote its Kobayashi distance. Assume that C is a nonempty,
kD-closed and convex subset of a domain D. For x, y ∈ C an intrinsic metric kD,C,
which is generated by the Kobayashi distance kD, is given by the following formula

kD,C(x, y) := limη→0+ inf{Σn
j=1kD(wj−1, wj) : {w0, w1, . . . , wn} ∈ PC,x,y,η},

= sup
η>0

inf{Σn
j=1kD(wj−1, wj) : {w0, w1, . . . , wn} ∈ PC,x,y,η},

where PC,x,y,η is a set of all finite sequences {w0, w1, . . . , wn} such that wj ∈ C for
j = 0, 1, 2, . . . , n, n ≥ 1, w0 = x, wn = y and kD(wj−1, wj) ≤ η for j = 1, 2, . . . , n.

Finally, we state a definition of a horosphere GD,C(x, ξ, R, {xn}) in C ⊂ D.

Definition 2.3. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let C be a nonempty, kD-closed and convex subset of a domain D.
Assume additionally that C is relatively compact in (X, ‖·‖). Let {xn} be a sequence
in C with lim xn = ξ ∈ ∂D such that all limits

lim
n→∞

[kD,C(w, xn)− kD,C(z, xn)]

exist, where w, z ∈ C. A horosphere GD,C(x, ξ, R, {xn}) in C is introduced in the
following way

GD,C (x, ξ, R, {xn}) :=
{

y ∈ C : lim
n→∞

[kD,C(y, xn)− kD,C(x, xn)] <
1
2
logR

}

.

As we mentioned in Introduction, we give the properties of the intrinsic metric
kD,C and the horospheres GD,C (x, ξ, R, {xn}) in the last section of this paper. We
also show the proofs of these properties there.

3. The Denjoy–Wolff theorem for condensing mappings

In this section we state and prove our main result on condensing mappings

Theorem 3.1. Let D be a strictly convex bounded domain in an infinite dimen-
sional complex Banach space (X, ‖·‖) and let kD denote its Kobayashi distance. If
f : D → D is kD-nonexpansive, fixed-point-free and condensing with respect to α‖·‖,
then there exists a point ξ ∈ ∂D such that the sequence {fn} of the iterates of f con-
verges in the compact-open topology to the constant map taking the value ξ, i.e. on
each compact subset C of D, the sequence {fn} tends uniformly to ξ. Additionally,
an approximating curve {x(s, z)} given by the formula

x(s, z) := hf(s, z) = fs,z(x(s, z)) = (1− s)z + sf(x(s, z)),
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where 0 < s < 1 and z ∈ D, is also convergent to ξ, when s → 1−, and a family of
approximating curves {x(s, ·)} tends in the compact-open topology to the constant
map taking the value ξ, i.e. on each compact subset C of D, the family {x(s, ·)}
converges uniformly to ξ for s → 1−.

Proof. The proof is divided into a few steps.
Step 1. Since f is a kD-nonexpansive, fixed-point-free and α‖·‖-condensing map-

ping, by Lemma 2.6 for each x ∈ D the set of all elements of a sequence of iterates
{fn(x)} is relatively compact in (X, ‖ · ‖). Moreover, for each z ∈ D and for each
sequence {sn} such that limn→∞ sn = 1 and 0 < sn < 1 the set of all elements of the
approximating sequence given by

xn := hf(sn, z) = fsn,z(xn) = (1− sn)z + snf(xn)

for n = 1, 2, 3, . . ., is also relatively compact in (X, ‖ · ‖).
Next, let for each x ∈ D a set A be the set of all accumulation points of the

sequence {fn(x)}, and for each z ∈ D let a set B be the set of all accumulation
points, for s → 1−, of the approximating curve

{x(s, z)}0≤s<1 = {hf(s, z)}0≤s<1 = {(1− s)z + sf(hf (s, z))}0≤s<1.

Recall that by Theorems 2.8 and 2.9 these sets A and B have the following properties:

(i) A 6= ∅ and B 6= ∅,
(ii) the set A is independent of the choice of x ∈ D and the set B is independent

of the choice of z ∈ D,
(iii) A ⊂ ∂D and B ⊂ ∂D, and if C̃ is a nonempty, convex and f -invariant subset

of D, then A ∪ B ⊂ C̃ ∩ ∂D.

Step 2. Suppose the set A ∪ B has two different elements ξ1 and ξ2. Under
this assumption it is easy to observe that each nonempty, convex, kD-closed and
f -invariant set C̃ ⊂ D contains the whole open linear segment (ξ1, ξ2). Hence in D
there exists a unique, nonempty, minimal with respect to inclusion, convex, kD-closed
and f -invariant set C. It is obvious that (ξ1, ξ2) ⊂ C and A ∪B ⊂ C ∩ ∂D.

Since the set C is nonempty, minimal with respect to inclusion, convex, kD-closed,
f -invariant and unique, we have

conv(f(C)) ∩D = C.

Therefore we get

α‖·‖(f(C)) = α‖·‖(conv(f(C)) ∩D) = α‖·‖(C)

and since the mapping f is α‖·‖-condensing, we obtain that the set C is compact
in (X, ‖ · ‖). This means that the metric space (C, kD|C×C) is complete and finitely
compact.

Now we furnish the minimal set C with the intrinsic metric kD,C .
Step 3. The set C is f -invariant and the mapping f|C is kD,C-nonexpansive and

fixed-point-free. Hence, by the Earle–Hamiltona theorem, norm-compactness of the
closure C of the set C and by Theorem 2.7, we get the approximating sequence

{xn} = {hf(sn, zn)} = {fsn,zn(xn)} = {(1− sn)zn + snf(xn)}

(where zn ∈ C, 0 < sn < 1 for n = 1, 2, . . ., and limn→∞ sn = 1), which is convergent
to ξ ∈ ∂D. Now, eventually replacing {xn} by suitably chosen subsequence of this
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sequence, by separability of C we can assume that all limits

lim
n→∞

[kD,C(w, xn)− kD,C(z, xn)]

exist for all w, z ∈ C. Next, we fix x ∈ C. Our aim is to show that applying
the properties of horospheres GD,C(x, ξ, R, {xn}) we derive a contradiction with the
minimality of the f -invariant set C.

So, let y be an arbitrary point in C. Then we have

xn = fsn,zn(xn),

lim
n→∞

kD,C(f(y), fsn,zn(y)) = lim
n→∞

kD,C(f(y), (1− sn)zn + snf(y)) = 0,

and therefore we obtain

lim
n→∞

[kD,C(f(y), xn)− kD,C(x, xn)]

≤ lim sup
n→∞

[kD,C(f(y), fsn,zn(y)) + kD,C(fsn,zn(y), fsn,zn(xn))− kD,C(x, xn)]

≤ lim
n→∞

[kD,C(y, xn)− kD,C(x, xn)] .

By the above inequality we get

f
(

C ∩GC,D(x, ξ, R, {xn})
)

⊂ C ∩GD,C(x, ξ, R, {xn})

for each R > 0. This means that each set C ∩GD,C(x, ξ, R, {xn}) ⊂ C is nonempty,
convex, kD-closed and f -invariant. If we take an arbitrary 0 < R < 1 then by
Theorem 5.9 we see that C ∩ GD,C(x, ξ, R, {xn}) is a subset of C which is different
from C. This contradicts the minimality of C. Hence the set A ∪ B is a singleton
{ξ}, where ξ ∈ ∂D. This yields to the claimed convergence of the iterating sequences
and the approximating curves to ξ. Immediately, applying Lemma 2.3, we get the
convergence of them in the compact-open topology. �

4. The Denjoy–Wolff theorem for semigroups of

holomorphic or kD-nonexpansive mappings

Let D be a bounded and convex domain in a complex Banach space (X, ‖ · ‖).
Recall that a family S = {ft}t≥0 of holomorphic (kD-nonexpansive) self-mappings of
D is called a one-parameter continuous semigroup of holomorphic (kD-nonexpansive)
mappings if it satisfies the semigroup property:

ft ◦ fs = ft+s,

for all s, t ≥ 0 and for each x ∈ D there exists the strong limit limt→0+ ft(x) =
f0(x) = I(x) = x.

Now we state the following version of the Denjoy–Wolff theorem for semigroups.

Theorem 4.1. Let D be a bounded and strictly convex domain in a complex
Banach space (X, ‖·‖) and let S = {ft}t≥0 be a one-parameter continuous semigroup
of holomorphic (kD-nonexpansive) mappings in D. If S = {ft}t≥0 contains a fixed-
point-free and condensing with respect to α‖·‖ mapping ft0 , where t0 > 0, then the
semigroup S = {ft}t≥0 has no common fixed point in D and there exists ξ ∈ ∂D such
that S converges to ξ, as t tends to infinity, uniformly on each compact subset of D.
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Proof. The proof is based on the ideas given in [2] and [14]. For the convenience of
the reader we present it. Let C be a compact subset of D. The semigroup S = {ft}t≥0

is continuous and each ft is kD-nonexpansive. Therefore the set K = {fs(x) : 0 ≤
s ≤ t0, x ∈ C} ⊂ D is compact and hence the set K lies strictly inside D. This
implies that the set K is kD-bounded. Next, ft0 is fixed-point-free and hence, by
Theorem 3.1, there exists ξ ∈ ∂D such that fnt0 = fn

t0
converges to ξ as n → ∞,

uniformly on each compact subset of D. Therefore for the compact sets C and K we
have

(a) ft(x) = fnt0+s(x) = fnt0(fs(x)) ∈ fnt0(K) for each x ∈ C and each t > 0,
where n ∈ N ∪ 0 and 0 ≤ s < t0,

(b) limn→∞ dist (fnt0(K), ξ) = limn→∞ sup{‖z − ξ‖ : z ∈ fnt0(K)} = 0.

From these properties we conclude that limt→∞ dist(ft(C), ξ) = 0, as asserted. Hence
we also get that the semigroup S = {ft}t≥0 has no common fixed point in D. �

5. An intrinsic metric in a kD-closed and convex subset of a domain D

First, note that the function kD,C satisfies the following inequalities.

Lemma 5.1. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) , kD denote its Kobayashi distance, and let C be a nonempty, kD-closed and
convex subset of a domain D. Then for each x̃ ∈ C and every R > 0 there exists a
constant Mx̃,R such that

arg tanh

(

‖x− y‖

diamD

)

≤ kD(x, y) ≤ kD,C(x, y) ≤ Mx̃,R ‖x− y‖

for each x, y ∈ BkD(x̃, R) ∩ C.

Proof. It is obvious that kD(x, y) ≤ kD,C(x, y) and by Lemma 2.1 we get

arg tanh

(

‖x− y‖

diamD

)

≤ kD(x, y) ≤ kD,C(x, y).

Next, observe that the ball BkD(x̃, R) lies strictly inside D and therefore

r = dist
(

BkD(x̃, R), ∂D
)

> 0.

Let x, y ∈ BkD(x̃, R) ∩ C. Take n ∈ N such that

‖y − x‖

n
<

r

2
.

Let xi = x+ i
n
(y − x) ∈ C for i = 0, 1, . . . , n. Then we have x0 = x, xn = y,

sup
0≤t≤ 1

2

d arg tanh

d t
(t) =

4

3
, dist(xi, ∂D) ≥ r,

‖xi − xi+1‖

dist(xi, ∂D)
<

1

2
,

and

arg tanh

(

‖xi − xi+1‖

dist(xi, ∂D)

)

≤
4

3

‖xi − xi+1‖

dist(xi, ∂D)
≤

4

3r
‖xi+1 − xi‖ = Mx̃,R ‖xi+1 − xi‖
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for i = 0, 1, . . . , n − 1, where Mx̃,R = 4
3r
. Hence, for an arbitrary η > 0 and a

sufficiently large n, we get kD(xi, xi+1) < η for i = 0, 1, . . . , n− 1 and therefore

n−1
∑

i=0

kD(xi, xi+1) ≤ Mx̃,R

n−1
∑

i=0

‖xi+1 − xi‖ = Mx̃,R‖y − x‖.

This implies the claimed inequality

kD,C(x, y) ≤ Mx̃,R ‖x− y‖ . �

The above lemma shows that the function kD,C is correctly defined and it is easy
to observe that kD,C is really a metric in C. This lemma also shows that in the set C
the convergence in the norm ‖ · ‖ is equivalent to the convergence in the metric kD,C,
and is also equivalent to the convergence in kD. Additionally, the boundedness of a
set in (C, kD|C×C) is equivalent to boundedness of this set in (C, kD,C). Therefore the

metric space (C, kD,C) is complete. Next, if C is compact in (X, ‖ · ‖), then (C, kD,C)
is finitely compact.

We also have the following two simple observations.

Lemma 5.2. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let kD denote its Kobayashi distance. Assume that C is a nonempty, kD-
closed and convex subset of a domain D. Then for each x, y ∈ C and for each conver-
gent to 0 sequence {ηi}i of positive numbers there exists sequence {{w0,ηi, w1,ηi, . . . ,
wni,ηi}}i such that

(i) {w0,ηi , w1,ηi, . . . , wni,ηi} ∈ PC,x,y,ηi for i = 1, 2, . . .,
(ii) kD,C(x, y) = limi Σ

ni

j=1kD(wj−1,ηi, wj,ηi).

Lemma 5.3. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let kD denote its Kobayashi distance. Assume that C is a nonempty,
kD-closed and convex subset of a domain D. If for x, y ∈ C there exist sequences
{ηi}i and {{w0, w1, . . . , wni,ηi}}i, and a constant L ≥ 0 such that

(a) {ηi}i is a sequence of positive numbers which converges to 0,
(b) {w0,ηi , w1,ηi, . . . , wni,ηi} ∈ PC,x,y,ηi for i = 1, 2, . . .,
(c) lim inf iΣ

ni

j=1kD(wj−1,ηi, wj,ηi) ≤ L,

then kD,C(x, y) ≤ L.

Now we recall a definition of a metrically convex metric space.

Definition 5.1. ([58], see also [10, 19]) Let (X, d) be a metric space. If for all
distinct points x, y ∈ X there exists z ∈ X\{x, y} such that d(x, z)+d(z, y) = d(x, y),
then the metric space (X, d) is said to be metrically convex.

We also need a definition of a metric segment.

Definition 5.2. ([58], see also [10, 19]) Let (X, d) be a metric space and let x, y
be two different points in X. A subset of X, denoted by [x, y]d, is called a d-metric
segment in X joining points x and y, if

(i) x, y ∈ [x, y]d;
(ii) for each 0 < β < d(x, y) there exists a unique point z ∈ [x, y]d such that

d(x, z) = β
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and

d(x, y) = d(x, z) + d(z, y);

(iii) for each w ∈ [x, y]d we have

d(x, y) = d(x, w) + d(w, y).

Here we also have to recall the Menger theorem in the weaker version which is
sufficient for our purposes.

Theorem 5.4. ([58], see also [5, 10, 11, 19, 40, 59]) Let (X, d) be a finitely
compact metric space. If (X, d) is metrically convex, then any two distinct points in
X can be joined by a d-metric segment in X.

Directly from the definition of the intrinsic metric kD,C and the Menger theorem
we get the following lemma.

Lemma 5.5. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let C be a nonempty, kD-closed, convex and relatively compact in norm
subset of a domain D. Then for each two different points w, z ∈ C there exists a
kD,C-metric segment [w, z]kD,C

in C, i.e.

(i) the set [w, z]kD,C
is a subset of C;

(ii) w, z ∈ [w, z]kD,C
;

(iii) for each 0 < β < kD,C(w, z) there exists a unique point v ∈ [w, z]kD,C
such

that

kD,C(w, v) = β

and

kD,C(w, z) = kD,C(w, v) + kD,C(v, z);

(iv) for each v ∈ [w, z]kD,C
we have

kD,C(w, z) = kD,C(w, v) + kD,C(v, z).

Proof. By the Menger theorem it is sufficient to prove that the metric space
(C, kD,C) is metrically convex. Indeed, let x, y ∈ C be two distinct points. Then by
Lemma 5.2 there exist sequences {ηi}i and {{w0,ηi, w1,ηi, . . . , wni,ηi}}i such that

(i) {ηi}i is a sequence of positive numbers which converges to 0,
(ii) {w0,ηi , w1,ηi, . . . , wni,ηi} ∈ PC,x,y,ηi for i = 1, 2, . . .,
(iii) kD,C(x, y) = limi Σ

ni

j=1kD(wj−1,ηi, wj,ηi).

Let β = 1
2
kD,C(x, y). Without loss of generality we may assume that 0 < ηi <

1
4
kD(x, y) ≤

1
4
kD,C(x, y) and

∑ni

j=1 kD(wj−1,ηi, wj,ηi) > 1
2
kD,C(x, y) for each i. Then

for each i we find the smallest 1 < ji < ni such that

ji
∑

j=1

kD(wj−1,ηi, wj,ηi) ≥
1
2
kD,C(x, y) >

ji−1
∑

j=1

kD(wj−1,ηi, wj,ηi).

Since ηi → 0+ we get

lim
i

ji
∑

j=1

kD(wj−1,ηi, wj,ηi) =
1
2
kD,C(x, y).
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This and the equality

kD,C(x, y) = lim
i

ni
∑

j=1

kD(wj−1,ηi, wj,ηi)

imply

lim
i

ni
∑

j=ji+1

kD(wj−1,ηi, wj,ηi) =
1
2
kD,C(x, y).

By assumption the set C is relatively compact in (X, ‖ · ‖) and kD-closed. Therefore
the sequence {wji,ηi}i, which is bounded in (D, kD), contains a convergent subse-
quence {wjil ,ηil

}l. Let v = liml wjil ,ηil
∈ C. Then we have (see Lemma 5.3)

kD,C(x, v) ≤ lim
l

[

jil
∑

j=1

kD(wj−1,ηi, wj,ηi) + kD(wjil ,ηil
, v)

]

= 1
2
kD,C(x, y),

kD,C(v, y) ≤ lim
l

[

kD(v, wjil ,ηil
) +

nil
∑

j=jil+1

kD(wj−1,ηi, wj,ηi)
]

= 1
2
kD,C(x, y),

and hence we obtain

kD,C(x, y) = kD,C(x, v) + kD,C(v, y).

This means that (C, kD,C) is metrically convex. �

Before we prove the next properties of kD,C , observe the following facts describing
behavior of self-mappings in (D, kD) and their restrictions on C furnished with kD,C.

Lemma 5.6. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let C be a nonempty, kD-closed and convex subset of a domain D.

(1) If a mapping g : D → D is kD-nonexpansive and the set C is g-invariant, then
the restriction g|C : C → C of g to C is kD,C-nonexpansive.

(2) If a mapping g : D → D is a contraction with a constant 0 ≤ k < 1 in metric
space (D, kD) and C is g-invariant, then g|C : C → C is a contraction with
the same constant k in the metric space (C, kD,C).

Proof. Let x, y ∈ C, η > 0 and {w0, w1, . . . , wn} ∈ PC,x,y,η.
If g is kD-nonexpansive, then we have

kD(g(wj−1), g(wj)) ≤ kD(wj−1, wj)

for j = 1, 2, . . . , n and therefore {g(w0), g(w1), . . . , g(wn)} ∈ PC,g(x),g(y),η. Addition-
ally, we get

n
∑

j=1

kD(g(wj−1), g(wj)) ≤
n

∑

j=1

kD(wj−1, wj).

Similarly, if g is k-contraction, where 0 ≤ k < 1, then we obtain

kD(g(wj−1), g(wj)) ≤ k · kD(wj−1, wj) ≤ kD(wj−1, wj)

for j = 1, 2, . . . , n and hence {g(w0), g(w1), . . . , g(wn)} ∈ PC,g(x),g(y),η. We also have

n
∑

j=1

kD(g(wj−1), g(wj)) ≤ k ·
n

∑

j=1

kD(wj−1, wj). �
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Corollary 5.7. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let C be a nonempty, kD-closed and convex subset of a domain D. Then

(a) if x, y, z ∈ C and s ∈ [0, 1], then

kD,C(sx+ (1− s)y, sx+ (1− s)z) ≤ kD,C(y, z);

(b) if x, y ∈ C and s, t ∈ [0, 1], then

kD,C(sx+ (1− s)y, tx+ (1− t)y) ≤ kD,C(x, y).

Proof. (a) Let x, y, z ∈ C and 0 < s < 1. It is sufficient to apply the contraction
g : D → D given by g = (1− s)x+ I (see Theorem 2.4 and Lemma 5.6) to get

kD,C(sx+ (1− s)y, sx+ (1− s)z) ≤ kD,C(y, z).

(b) Observe that for 0 ≤ s′ ≤ 1 and w, z ∈ C we get

kD,C(s
′w + (1− s′)z, z) = kD,C(s

′w + (1− s′)z, s′z + (1− s′)z) ≤ kD,C(w, z)

by (a), and

sx+ (1− s)y =
s− t

1− t
x+

(

1−
s− t

1− t

)

[tx+ (1− t)y]

for 0 ≤ t ≤ s < 1 and x, y ∈ C. �

We can generalize the property (a) from the last corollary in the following way
(compare with Lemma 2.2).

Theorem 5.8. Let D be a convex bounded domain in a complex Banach space
(X, ‖·‖) and let C be a nonempty, kD-closed and convex subset of a domain D. Then
for x, y, w, z ∈ C and s ∈ [0, 1] we have

kD,C(sx+ (1− s)y, sw + (1− s)z) ≤ max [kD,C(x, w), kD,C(y, z)] .

Proof. Consider the following cases.
a) Let s ∈ (0, 1), x, y, w, z ∈ C and y = z. Then we can apply Corollary 5.7 (a).
b) Let x, y, w, z ∈ C, x 6= w, y 6= z and s ∈ (0, 1). Without loss of generality

we may assume that 0 < kD,C(y, z) ≤ kD,C(x, w). Fix n0 ∈ N such that 0 < 1
n0

<
1
4
kD(y, z). Then for each n0 ≤ n ∈ N there exist 0 < δn < 1

3n
, m1,n ∈ N and

{u0,n, u1,n, . . . , um1,n,n} ∈ PC,x,w,δn satisfying the inequality

kD,C(x, w)−
1
n
<

m1,n
∑

j=1

kD(uj−1,n, uj,n) < kD,C(x, w) +
1
n
,

and ui,n 6= uj,n for i 6= j and i, j = 1, 2, . . . , m1,n. Then

µn = min
j,j′=0,1,...m1,n, j 6=j′

kD(uj,n, uj′,n) > 0

and let ρn = µn

5m1,n
< δn

4m1,n
.

Next, there exist 0 < ηn < ρn, m2,n ∈ N and {v0,n, v1,n, . . . , vm2,n,n} ∈ PC,y,z,ηn

such that vi,n 6= vi′,n for i 6= i′, i, i′ = 0, 1, 2, . . . , m2,n and

kD,C(y, z)− ρn <

m2,n−1
∑

i=0

kD(vi,n, vi+1,n) < kD,C(y, z) + ρn.
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Now we choose r0,n, r1,n, . . . , rm′

n,n
from indexes 0, 1, . . . , m2,n in such way that

0 = r0,n < · · · < rm′

n,n
≤ m2,n, 1 ≤ m′

n ≤ m1,n,

r1,n−2
∑

i=r0,n

kD(vi,n, vi+1,n) < kD(u0,n, u1,n) ≤

r1,n−1
∑

i=r0,n

kD(vi,n, vi+1,n),

r2,n−2
∑

i=r1,n

kD(vi,n, vi+1,n) < kD(u1,n, u2,n) ≤

r2,n−1
∑

i=r1,n

kD(vi,n, vi+1,n)

and we continue this procedure as far as it is possible, i.e. we finish our procedure
when

rm′
n,n−2
∑

i=rm′
n−1,n

kD(vi,n, vi+1,n) < kD(um′

n−1,n, um′

n,n
) ≤

rm′
n,n−1
∑

i=rm′
n−1,n

kD(vi,n, vi+1,n)

and either rm′

n,n
= m2,n or rm′

n,n
< m2,n. Then we have the following possible cases.

Case 1. m′
n < m1,n. Then we set ũj,n = uj,n for j = 0, 1, . . . , m1,n, ũm1,n+1,n = w,

ṽj,n = vrj,n,n for j = 1, . . . , m′
n and ṽj,n = z for j = m′

n + 1, . . . , m1,n + 1.
Observe that

kD(ũj−1,n, ũj,n) = kD(uj−1,n, uj,n) < δn,

for j = 1, . . . , m1,n,

kD(ũm1,n,n, ũm1,n+1,n) = kD(w,w) = 0

and

kD(ṽj−1,n, ṽj,n) = kD(vrj−1,n,n, vrj,n,n) ≤

rj,n−1
∑

i=rj−1,n

kD(vi,n, vi+1,n)

=

rj,n−2
∑

i=rj−1,n

kD(vi,n, vi+1,n) + kD(vrj,n−1,n, vrj,n,n)

< kD(uj−1,n, uj,n) + ηn < 2δn

for j = 1, . . . , m′
n.

Now we have to consider two possibilities: either rm′

n,n
= m2,n or rm′

n,n
< m2,n.

If rm′

n,n
= m2,n, then we get

kD(ṽj−1,n, ṽj,n) = kD(z, z) = 0

for j = m′
n + 1, . . . , m1,n + 1.

If rm′

n,n
< m2,n, then we have

kD(ṽm′

n,n
, ṽm′

n+1,n) = kD(vrm′
n,n

, z) = kD(vrm′
n,n

, vm2,n,n)

≤

m2,n−1
∑

i=rm′
n,n

kD(vi,n, vi+1,n) < kD(um′

n
, um′

n+1) < δn

and

kD(ṽj−1,n, ṽj,n) = kD(z, z) = 0

for j = m′
n + 2, . . . , m1,n + 1.
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Hence, in both subcases, we obtain

{ũ0,n, . . . , ũm1,n+1,n} ∈ PC,x,w,2δn

and

{ṽ0,n, . . . , ṽm1,n+1,n} ∈ PC,y,z,2δn,

which implies

{sũ0,n + (1− s)ṽ0,n, . . . , sũm1,n+1,n + (1− s)ṽm1,n+1,n} ∈ PC,sx+(1−s)y,sw+(1−s)z,2δn

⊂ PC,sx+(1−s)y,sw+(1−s)z, 2
n
.

Additionally, we get

kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s) ṽj,n)

≤ max [kD (ũj−1,n, ũj,n) , kD (ṽj−1,n, ṽj,n)] = max [kD (uj−1,n, uj,n) , kD (ṽj−1,n, ṽj,n)]

≤ max [kD (uj−1,n, uj,η) , kD (uj−1,n, uj,n) + ηn] = kD (uj−1,n, uj,n) + ηn

for j = 1, . . . , m′
n,

kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s) ṽj,n)

= kD (suj−1,n + (1− s) z, suj,n + (1− s) z)

≤ kD (uj−1,n, uj,n) < kD (uj−1,n, uj,n) + ηn

for j = m′
n + 1, . . . , m1,n, and

kD
(

sũm1,n,n + (1− s)ṽm1,n,n, sũm1,n+1,n + (1− s)ṽm1,n+1,n

)

= kD (sw + (1− s)z, sw + (1− s)z) = 0.

Therefore, we have

m1,n+1
∑

j=1

kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s) ṽj,n)

=

m1,n
∑

j=1

kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s) ṽj,n)

<

m1,n
∑

j=1

[kD(uj−1,n, uj,n) + ηn] =

m1,n
∑

j=1

kD(uj−1,n, uj,n) +m1,nηn

< kD,C(x, w) +
1

n
+ δn < max{kD,C(x, w), kD,C(y, z)}+

2
n
.

Case 2. m′
n = m1,n. Then we set ũj,n = uj,n and ṽj,n = vrj,n,n for j = 1, . . . , m′

n =
m1,n. Similarly as in Case 1 we get

kD(ṽj−1,n, ṽj,n) = kD(vrj−1,n,n, vrj,n,n)

≤

rj,n−1
∑

i=rj−1,n

kD(vi,n, vi+1,n) =

rj,n−2
∑

i=rj−1,n

kD(vi,n, vi+1,n) + kD(vrj,n−1,n, vrj,n,n)

< kD(uj−1,n, uj,n) + ηn < 2δn

for j = 1, . . . , m′
n = m1,n.

Next, we have to consider two subcases: either rm′

n,n
= m2,n or rm′

n,n
< m2,n.
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If rm′

n,n
= m2,n, then we set ũm1,n+1,n = um1,n,n = w and ṽm1,n+1,n = vrm′

n
,n =

vm2,n,n = z. Hence we have

kD(ũm1,n,n, ũm1,n+1,n) = kD(w,w) = 0

and

kD(ṽm1,n,n, ṽm1,n+1,n) = kD(z, z) = 0.

If rm′

n,n
< m2,n, then we put ũm1,n+1,n = um1,n,n = w and ṽm1,n+1,n = vm2,n,n = z.

Hence we obtain kD(ũm1,n,n, ũm1,n+1,n) = kD(w,w) = 0 and

kD(ṽm1,n,n, ṽm1,n+1,n) = kD(vrm′
n,n,n

, z) = kD(vrm′
n,n,n

, vm2,n,n)

≤

m2,n−1
∑

i=rm′
n,n

kD(vi,n, vi+1,n) =

m2,n−1
∑

i=0

kD(vi,n, vi+1,n)−

rm′
n,n−1
∑

i=0

kD(vi,n, vi+1,n)

≤ kD,C(y, z) + ρn −

m′

n−1
∑

j=0





rj+1,n−1
∑

i=rj,n

kD(vi,n, vi+1,n)





≤ kD,C(y, z) + ρn −

m1,n−1
∑

j=0

kD(uj,η, uj+1,η) < kD,C(y, z) + ρn −
[

kD,C(x, w)−
1
n

]

< kD,C(x, w) +
2
n
− kD,C(x, w) =

2
n
.

Observe that, in both subcases, we get

{ũ0,n, . . . , ũm1,n+1,n} ∈ PC,x,w, 2
n

and

{ṽ0,n, . . . , ṽm1,n+1,n} ∈ PC,y,z, 2
n
.

Thus

{sũ0,n + (1− s)ṽ0,n, . . . , sũm1,n+1,n + (1− s)ṽm1,n+1,n} ∈ PC,sx+(1−s)y,sw+(1−s)z, 2
n
.

We also have

kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s)ṽj,n)

≤ max [kD(ũj−1,n, ũj,n), kD(ṽj−1,n, ṽj,n)] = max [kD(uj−1,n, uj,n), kD(ṽj−1,n, ṽj,n)]

≤ max [kD(uj−1,n, uj,n), kD(uj−1,n, uj,n) + ηn]

= kD(uj−1,η, uj,η) + ηn < δn + ηn < 2
n

for j = 1, . . . , m′
n = m1,n and

kD(sũm1,n,n + (1− s)ṽm1,n,n, sũm1,n+1,n + (1− s)ṽm1,n+1,n)

≤ max{kD(ũm1,n,n, ũm1,n+1,n), kD(ṽm1,n,n, ṽm1,n+1,n)} < 2
n
.

So similarly as in Case 1 we get

m1,n+1
∑

j=1

kD(sũj−1,n + (1− s)ṽj−1,n, sũj,n + (1− s)ṽj,n)

< max{kD,C(x, w), kD,C(y, z)}+
4
n
.
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Summarizing, in the both cases, we obtain

{w0,n, . . . , wm1,n+1,n} = {sũ0,n + (1− s)ṽ0,n, . . . , sũm1,n+1,n + (1− s)ṽm1,n+1,n}

∈ PC,sx+(1−s)y,sw+(1−s)z, 2
n
,

kD(wj−1,n, wj,n) = kD (sũj−1,n + (1− s) ṽj−1,n, sũj,n + (1− s) ṽj,n)

≤ kD (uj−1,η, uj,η) + ηn

for j = 1, . . . , m1,n and

kD(wm1,n,n, wm1,n+1,n)

= kD
(

sũm1,n,n + (1− s) ṽm1,n,n, sũm1,n+1,n + (1− s) ṽm1,n+1,n

)

< 2
n
.

Hence we get

mj,n+1
∑

j=0

kD(wj−1,n, wj,n) =

m1,n
∑

j=0

kD(wj−1,n, wj,n) + kD(wm1,n,n, wm1,n+1,n)

<

m1,n
∑

j=1

[kD(uj−1,n, uj,n) + ηn] +
2
n
=

m1,n
∑

j=1

kD(uj−1,n, uj,n) +m1,n · ηn +
2
n

< kD,C(x, w) +
4
n
= max{kD,C(x, w), kD,C(y, z)}+

4
n
,

which implies

kD,C(sx+ (1− s)y, sw + (1− s)) ≤ lim inf
n

Σ
mj,n+1
j=0 kD (wj−1,n, wj,n)

≤ max{kD,C(x, w), kD,C(y, z)}

and completes the proof. �

Finally, we investigate a horosphere GD,C (x, ξ, R, {xn}) in a nonempty, kD-closed,
convex and relatively compact subset C of a bounded and convex domain D in a
complex Banach space (X, ‖ · ‖) (see Definition 2.3). Taking under account local
kD,C-compactness of the set C and known properties of the metric kD,C, we are able
to prove the following properties of this horosphere.

Theorem 5.9. Under the assumptions given in Definition 2.3 the horosphere
GD,C (x, ξ, R, {xn}) ⊂ C has the following properties:

(I) for each x ∈ C and for each R > 0 the horosphere GD,C (x, ξ, R, {xn}) is
nonempty and convex;

(II) for each 0 < R < 1 we have BkD,C

(

x,−1
2
logR

)

∩GD,C (x, ξ, R, {xn}) = ∅ and

therefore GD,C (x, ξ, R, {xn}) ∩ C 6= C.

Proof. (I) By Lemma 5.5 for each w, z ∈ C, w 6= z, β ∈ R and 0 < β <
kD,C(w, z), there exists a point yw,z,β in C such that

kD,C(w, z) = kD,C(w, yw,z,β) + kD,C(yw,z,β, z)

and

kD,C(yw,z,β, z) = β.

Fix 0 < β ∈ R and take β > max{0,−1
2
logR}. Without loss of generality we can

assume that 0 < β < kD,C(xn, x) for each n ∈ N. Then for each yxn,x,β we have

kD,C(xn, x) = kD,C(xn, yxn,x,β) + kD,C(yxn,x,β, x) = kD(xn, yxn,x,β) + β.
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Since the sequence {yxn,x,β}n lies strictly inside D, it has a norm convergent subse-
quence {yxni

,x,β}i with a limit yβ,x ∈ C. Hence we get

β = lim
i→∞

kD,C(yxni
,x,β, x) = kD,C(yβ,x, x)

and

lim
n→∞

[kD,C(yβ,x, xn)− kD,C(x, xn)]

= lim
i→∞

[

kD,C(yxni
,x,β, xni

)− kD,C(x, xni
)
]

= − lim
i→∞

kD,C(yxni
,x,β, x) = −β < 1

2
logR.

Therefore we obtain yβ,x ∈ GD,C (x, ξ, R, {xn}) . Next, applying Theorem 5.8 we
immediately get the convexity of GD,C (x, ξ, R, {xn}).

(II) Fix 0 < R < 1 and y ∈ BkD,C
(x,−1

2
logR). Then we have

lim
n→∞

[kD,C(y, xn)− kD,C(x, xn)] ≥ −kD,C(y, x) >
1
2
logR

and therefore y /∈ GD,C (x, ξ, R, {xn}) . �
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