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Abstract. In the paper, the solid and positive solid hulls of the Nevanlinna class and the

Smirnov class of the unit disc are described. The result is applied to find the best possible estimations

of the Taylor coefficients and the multipliers from the Smirnov class into some large spaces of

holomorphic functions. These results provide a much “softer” and easier way to obtain even stronger

results on the multipiers and the mean growth of the Taylor coefficients proved by Yanagihara.

1. Introduction

In this paper we denote by ω the topological vector space consisting of all complex
sequences x = (x(n)), n ∈ Z+ = {0, 1, 2, . . . }, and equipped with the topology of
coordinate-wise convergence. A subset X of ω is said to be solid if y ∈ X whenever
y ∈ ω and |y| ≤ |x| for some x ∈ X. For each subset X of ω, the solid hull of X
defined as

(SH) S(X) = {y ∈ ω : |y| ≤ |x| for some x ∈ X}
is clearly the smallest solid subset S(X) containing X.

To find the solid hull of a set X ⊂ ω we usually have to describe the strongest
growth condition of absolute values of elements in X. This is often not an easy
problem, especially when X is a space of holomorphic functions on the unit disc
D, each function f ∈ X being identified with the sequence (f̂(n)) of its Taylor

coefficients. (Thus we are actually dealing with the subspace X̂ = {f̂ : f ∈ X} of ω.)
To illustrate this point, let us recall what is known in the case of the classical Hardy
spaces Hp = Hp(D) (0 < p ≤ ∞). Evidently, S(H2) = l2, but the other cases are
not that simple. Thus also S(Hp) = l2 for 2 < p < ∞ (by Littlewood’s theorem on
random power series [D, Thm. A.5]) as well as S(H∞) = l2 (by a result of Kisliakov
[K]). Finally, for 0 < p < 1, Jevtić and Pavlović [JP1] have recently proved that
S(Hp) is the space of all complex sequences (x(n)) such that

∞∑

n=0

(n+ 1)p−2
(

sup
0≤k≤n

|x(n)|p
)
< ∞.

The case 1 ≤ p < 2 is still open. The same authors have recently described the
solid hulls of the Hardy–Lorenz spaces [JP2]. Moreover, Mastyło and Mleczko [MM]
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constructed solid hulls for some quasi-Banach spaces of analytic functions which can
by obtained by interpolation.

In this paper we describe the solid halls of the largest spaces in the scale of Hardy
spaces, that is, the Nevanlinna class N and the Smirnov class N∗ of the unit disc.

Recall that the Nevanlinna class N = N(D) on the unit disc is the space of all
holomorphic functions f on D such that

‖f‖ = sup
r∈(0,1)

ˆ 2π

0

log(1 + |f(reit)|) dt < ∞,

and the Smirnov class N∗ = N∗(D) is the subspace of N consisting of all functions f
such that the family {log(1+ |f(reit)|) : 0 < r < 1} is uniformly integrable on [0, 2π].

More generally, if p > 1 LHp is the Hardy–Orlicz space consisting of all holomor-
phic functions f on the unit disc such that

‖f‖pp = sup
r∈(0,1)

ˆ 2π

0

logp(1 + |f(reit)|) dt < ∞.

Moreover, let F p
∗ denote the space of all complex sequences x = (x(n)) such that

‖x‖p,c = sup
n∈Z+

|x(n)| exp(−cn
1

p+1 ) < ∞ for each c > 0,

with the topology defined by the sequence of norms ‖·‖p,1/k, k = 1, 2, . . . .
It is well known that each function in N is a quotient of two functions in H∞

(see [D] Theorem 2.1), and that

H∞ ⊂ Hp ⊂ Hq ⊂ N∗ ⊂ N for 0 < q < p < ∞.

In this paper we show that the solid hull of the Smirnov class can be identified
with the space F∗ of all complex sequences ((x(n)) such that |x(n)| = O(exp(c

√
n)

for each c > 0 (Theorem 4.1). The space F∗ was invented by Yanagihara [Y1] while
studying Fréchet envelope of N∗ (cf. [DRS]). The crucial points in Yanagihara’s
result where descriptions of the best possible mean growth of the Taylor coefficients
of functions in N∗ and the multipliers from N∗ into H∞ (cf. [Y2]). Theorem 4.1 and
Corollary 4.2 provide a much “softer” and easier way to obtain even stronger result
on the mean growth of the Taylor coefficients. Theorem 4.1 is applied in Theorem 5.1
to describe multipliers from N∗ both into H∞ and some “large” algebras LHp, p ≥ 1,
of holomorphic functions still in a soft and easy way.

2. Positive solid hulls

If X is a vector subspace of ω then, in general, its solid hull S(X) is not a linear
set (it need not be closed under addition). Fortunately, for some applications it
suffices to study solid hulls of the cone of nonnegative elements in the space.

For any subset X of ω we denote

X+ = {x ∈ X : x ≥ 0}.
Note that if X is a linear subspace, then X+ is a convex cone in X.

Fact 2.1. If X is a linear subspace of ω, then S(X+) is a solid linear subspace

of ω containing X+.
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Proof. Let yj ∈ S(X+), λj ∈ C, j = 1, 2. Then |yj| ≤ xj for some xj ∈ X+,
j = 1, 2. Since

|λ1y1 + λ2y2| ≤ |λ1||y1|+ |λ2||y2| ≤ |λ1|x1 + |λ2|x2 ∈ X+,

it follows that λ1y1 + λ2y2 ∈ S(X+). �

In this paper, all vector spaces under consideration have natural “sequence space”
group or vector topologies. Assume that X is a vector subspace of ω equipped with
a locally balanced group (vector) topology τ . We say that X = (X, τ) is a sequence

vector group (space) if

(S) τ is stronger than the topology of coordinate-wise convergence, i.e., the coef-
ficient functionals x 7→ x(n) are continuous on X for all n ∈ Z+,

and that it is a solid sequence group (space) if X is solid and τ has a base of neigh-
borhoods of zero consisting of solid sets.

Fact 2.2. Let X = (X, τ) be a sequence space with a group [vector] topology τ ,
and let U be a base of τ -neighborhoods of zero. Then the family

U+(0) = {S(U+) : U ∈ U}

is a base of solid neighborhoods of zero for a solid group [vector] topology τ+ on

S(X+). Moreover, if τ is Hausdorff or metrizable, so is τ+, respectively.

Proof. To see the first part it is enough to observe that if U, V ∈ U and V +V ⊂ U ,
then S(V+) + S(V+) ⊂ S(V+ + V+) ⊂ S(U+), and that S(U+) is absorbing in S(X+)
whenever U is absorbing in X.

Assume τ is Hausdorff and suppose an element y ∈ S(X+) is such that x ∈ S(U+)
for all U ∈ U . Thus for each U ∈ U one has |y| ≤ xU for some xU ∈ U+. Then the
net (xU) is τ -convergent, hence also coordinate-wise convergent, to zero. It follows
that |y| = 0, and τ+ is Hausdorff.

Finally, if τ is metrizable, then τ+ is Hausdorff and has a countable base at zero,
hence it is metrizable, too. �

If a space X = (X, τ) as above is metrizable, then its topology is induced via
the metric d(x, y) = ‖x − y‖ by an FG-norm ‖·‖, i.e., a function ‖·‖ : X → [0,∞]
which is subadditive, vanishes only at zero, and satisfies ‖λx‖ ≤ ‖x‖ for all x ∈ X
and |λ| ≤ 1. If, in addition, τ is a vector topology, then ‖·‖ can be chosen so that
‖λx‖ → 0 whenever λ → 0 (i.e., ‖·‖ is an F -norm). Conversely, for every FG-norm
[F -norm] ‖·‖ on X the associated metric induces a locally balanced group [vector]
topology on X. If the resulting metric space is complete then we call X an FG-space

[F-space].
We say that ‖·‖ is solid (monotone) if |x| ≤ |y| implies ‖x‖ ≤ ‖y‖.
Fact 2.3. Let X = (X, τ) be a sequence space and ‖·‖ an FG-norm inducing the

topology τ . Then the formula

(ASF ) |||y||| = inf{‖x‖ : |y| ≤ x ∈ X+}

defines a solid FG-norm inducing the topology τ+ on S(X+). Moreover, if the space

X = (X, ‖·‖) is complete, so is the space (S(X+), |||·|||).
Proof. It is easily seen that |||·||| is an FG-norm inducing τ+.
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In order to prove that S(X+) is complete it suffices to show that if a sequence
(yj) in S(X+) is such that

∑∞

j=1 |||yj||| < ∞, then the series
∑∞

j=1 yj is convergent in

S(X+).
By the definition of |||·|||, there is a sequence (xj) ⊂ X+ such that |yj| ≤ xj and

‖xj‖ ≤ 2|||yj||| for each j. Then
∑∞

j=1 ‖xj‖ < ∞, hence by the completeness of ‖·‖
the series

∑∞

j=1 xj converges unconditionally in X. Since X is a sequence space,

this series is unconditionally (hence absolutely) coordinate-wise convergent to some
y ∈ ω. Let sJ =

∑∞

j=J yj, J = 1, 2, . . . . Then |sJ | ≤
∑∞

j=J xj =: rJ ∈ X+, so

sJ ∈ S(X+) and |||sJ ||| ≤ ‖rJ‖ ≤ ∑∞

j=J ‖xj‖ → 0 as J → ∞. Finally, the series∑∞

j=1 yj is convergent in S(X+) to y = s1. �

Fact 2.4. Let X = (X, τ) be a sequence vector group, (Z, ζ) a solid sequence

group, and T : ω → ω a positive linear operator, i.e., Tx ≥ 0 whenever x ≥ 0. If

T (X+) ⊂ Z, then also T (S(X+)) ⊂ Z.

Proof. Take any y ∈ S(X+), so that |y| ≤ x for some x ∈ X+. If y is a real
sequence, then |Ty| = |Ty+ − Ty−| ≤ Ty+ + Ty− = T |y| ≤ Tx. If y is a complex
sequence, then y = u+ iv, where u, v are real sequences, and

|Ty| = |Tu+ iT v| ≤ |Tu|+ |Tv| ≤ T |u|+ T |v| ≤ T (2x).

Since the space Z is solid, we conclude that Ty ∈ Z. �

Remark 2.5. It is true, though not quite obvious, that |Ty| ≤ T |y| for all
y = (y(n)) ∈ ω. To see this, consider first a positive linear functional t on ω. Then

it is also continuous, hence of the form t(y) =
∑k

j=0 ajy(j), where a1, . . . , ak ∈ R+.

In consequence, |t(y)| 6
∑k

j=0 aj |y(j)| = t(|y|). Now, if T : ω → ω is a positive linear

operator, then its components tn (n ∈ Z+) are positive linear functionals on ω and,
by the preceding part, |Ty| = (|tn(y)|) ≤ (tn(|y|)) = T |y|.

3. The solid hull of the Nevanlinna class

Recall that

‖f‖ = sup
r∈(0,1)

ˆ 2π

0

log(1 + |f(reit)|) dt

is an FG-norm on the Nevanlinna class N = N(D) and (N, ‖·‖) is an FG-space. It
is well known [P] that for each function f ∈ N ,

|f̂(n)| = O(exp(O(
√
n)).

In view of the lemma below, this estimate is best possible, and this fact will quickly
lead us to the [positive] solid hull of N .

Lemma 3.1. (see [P], pp. 151–153) For each c > 0 define

fc(z) = exp
( c
2

1 + z

1− z

)
, z ∈ D.

Then

fc ∈ N, ‖fc‖ =
c

2
and f̂c(n) = exp

(
2
√
cn[1 + o(1)]

)
.
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Proposition 3.2. The solid hull S(N) and the positive solid hull S(N+) of the

Nevanlinna class N = N(D) coincide, and they are equal to the space F consisting

of all sequences (x(n)) ∈ ω such that

(NCE) sup
n

|x(n)| exp(−c
√
n) < ∞ for some c > 0.

Proof. As it was mentioned above, |f̂(n)| = O(exp(O(
√
n)) for each f ∈ N .

Thus N ⊂ F and so S(N+) ⊂ S(N) ⊂ F because F is solid. By Lemma 3.1, for

each sequence x = (x(n)) ∈ F there are C, c > 0 such that |x(n)| ≤ Cf̂c(n) for each
n ∈ Z+. Consequently, x ∈ S(N+) and finally S(N+) = S(N) = F . �

4. The solid hull of the Smirnov class

Recall that the Smirnov class N∗ = N∗(D) is the largest linear subspace of the
Nevanlinna class which is a topological vector space in the relative topology (cf. [SS]).
Moreover, ‖f − f(r·)‖ → 0 for each f ∈ N∗, where f(r·)(z) = f(rz) for |z| < 1/r.

Theorem 4.1. The solid hull S(N∗) and the positive solid hull S((N∗)+) of the

Smirnov class N∗ = N∗(D) coincide, and they are equal to the space F∗ consisting of

all sequences (x(n)) such that

(SCE) sup
n

|x(n)| exp(−c
√
n) < ∞ for each c > 0.

Proof. It is well known that N∗ ⊂ F∗ (cf. [Y1, Theorem 1]). Consequently,
S((N∗)+) ⊂ S(N∗) ⊂ F∗ since F∗ is solid. In order to prove that F∗ ⊂ S((N∗)+), fix
x = (x(n)) ∈ F∗. It suffices to show that the series

∑∞

n=0 x(n)en (which converges to
x coordinate-wise) satisfies the Cauchy condition with respect to the F -norm |||·||| of
the F-space S((N∗)+) (cf. Fact 2.3, (ASF)).

Take any c > 0 and consider the function fc as in lemma 3.1. Then f̂c(n) ≥
d exp(d

√
n) for some d > 0 and each n ∈ Z+. Since x ∈ F∗, there is M ∈ Z+ such

that |x(n)| ≤ d exp(d
√
n) for each n ≥ M .

Now, fix arbitrary k ≥ j ≥ M , and set Pj,k(z) =
∑k

n=j z
n. Since ‖fc‖ = 1

2
c,

there is δ > 0 so small that ‖fc‖ + ‖δPj,k‖ < c. Next, since fc(r·) → fc (as r → 1)
uniformly on compact subsets of D, we have supr∈(0,1) ‖fc(r·)‖ = ‖fc‖. Moreover,

f̂c(r·)(n) = f̂c(n)r
n > 0, hence we can find r ∈ (0, 1) such that f̂c(n) ≤ f̂c(r·)(n) + δ

for j ≤ n ≤ k. Then the function g = fc(r·) + δPj,k belongs to (N∗)+,

‖g‖ ≤ ‖fc(r·)‖+ ‖δPj,k‖ ≤ ‖fc‖+ ‖δPj,k‖ < c,

and

|x(n)| ≤ d exp(d
√
n) ≤ f̂c(n) ≤ f̂c(r·)(n) + δ = ĝ(n) for j ≤ n ≤ k.

It follows that |||
∑k

n=j x(n)en||| < c. Consequently, the series
∑∞

n=1 x(n)en is Cauchy

in S((N∗)+). �

It is easily seen that F∗ coincides with the space of all complex sequences ((x(n))
such that |x(n)| = O(exp(cn

√
n) for some sequence of positive numbers (cn) tending

to zero.
As an immediate consequence of this observation and Theorem 4.1 we now may

state the following.
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Corollary 4.2. For any sequence (cn) of positive numbers tending to zero, there

is a function f ∈ (N∗)+ such that

f̂(n) ≥ exp(cn
√
n) for each n ∈ Z+.

Remark 4.3. It follows that the estimate |f̂(n)| = O(exp(o(
√
n)) for functions

f ∈ N∗ is best possible in a very strong way. So far it was only known that for
each positive sequence (cn) tending to zero there is a function f ∈ N∗ such that

|f̂(n)| 6= O(exp(cn
√
n)) [Y3, ST].

5. Multipliers

Suppose that X and Y are sequence spaces, and let [[X, Y ]] denote the collection
of all sequences λ = (λ(n)) in C such that λx = (λ(n)x(n)) belongs to Y whenever
(x(n)) is a member of X. This is a linear space whose elements are called the
(coefficient) multipliers from X into Y . By the Closed Graph Theorem, each λ ∈
[[X, Y ]] gives rise to a continuous linear operator

Λ: X → Y : x 7→ λx.

Yanagihara [Y1] described the space of multipliers from the Smirnov class N∗ into
the disc algebra A = A(D) and the Hardy classes Hp for 0 < p ≤ ∞. Later, Jarchow,
Montesinos, Wirths, and Xiao [JMWX] extended this result to the case of multipliers
from the Nevanlinna algebras LHp into “small” spaces like Hp above. The crucial
point in the proofs of these results was that the topology of the space Y in question
is defined by a norm or a q-norm for some 0 < q ≤ 1. The solid hull described
in Theorem 4.1 allows us to find multipliers into “large spaces” F p

∗ which natural
topology is not locally bounded. It also seems to provide a much “softer” and easier
way to obtain the result than the earlier method used by Yanagihara.

Recall that LHp is the Hardy–Orlicz space consisting of all holomorphic functions
f on the unit disc such that

‖f‖ = sup
r∈(0,1)

ˆ 2π

0

logp(1 + |f(reit)|) dt < ∞.

Moreover, let F p
∗ denote the space of all complex sequences x = (x(n)) such that

‖x‖p,c = sup
n∈Z+

|x(n)| exp(−cn
1

p+1 ) < ∞ for each c > 0,

with the topology defined by the sequence of norms ‖·‖p,1/k, k = 1, 2, . . . .

Theorem 5.1. For every sequence λ = (λ(n)) in C, the following are equivalent:

(i) λ(n) = O
(
exp(−c

√
n)
)

for some c > 0.
(ii) λ ∈ [[N∗, A]].
(iii) λ ∈ [[N∗, H

q]] for some [all] 0 < q ≤ ∞.

(iv) λ ∈ [[N∗, LH
p]] for some [all] 1 < p < ∞.

(v) λ ∈ [[N∗, F
p
∗ ]] for some [all] 1 < p < ∞.

(vi) λ ∈ [[F∗, F
p
∗ ]] for some [all] 1 < p < ∞.

Proof. The equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) were proved by Yanagihara [Y2],
the implication (i) =⇒ (ii) being an easy part of the proof. Since A ⊂ Hq ⊂ LHp ⊂
F p
∗ for 0 < q ≤ ∞ and p > 1, so (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) (cf. [ST] for the

inclusion LHp ⊂ F p
∗ ).
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Suppose now that λ ∈ [[N∗, F
p
∗ ]] for some 1 < p < ∞. Since F p

∗ is solid, also
|λ| = (|λ(n)|) ∈ [[N∗, F

p
∗ ]]. Now, the positive linear operator Λ: x 7→ |λ|x in ω maps

N∗ into F p
∗ , hence it also maps S((N∗)+) = S(N∗) = F∗ into F p

∗ (cf. Fact 2.4 and
Theorem 4.1).

Finally assume that λ ∈ [[F∗, F
p
∗ ]] for some 1 < p < ∞. Then the operator

Λ: F∗ → F p
∗ : x 7→ λx is continuous, so there are c > 0 and ε > 0 such that

|λ(n)x(n)| ≤ exp(n
1

p+1 ) for each x = (x(n)) ∈ F∗ = F 1
∗ with ‖x‖1,c ≤ ε. In particular,

if xn = ε exp(c
√
n)en, then xn ∈ F∗ and ‖xn‖1,c ≤ ε, and therefore

|λ(n)| ≤ exp(n
1

p+1 )

ε exp(cn
1

2 )
≤ C exp(−c

√
n)

for some C > 0 and all n ∈ Z+. Thus (vi) =⇒ (i). �

Remark 5.2. It was proved by Yanagihara [Y2] that each continuous linear
functional T on the Smirnov class N∗ is of the form

(LF) Tf =
∞∑

n=0

f̂(n)λ(n),

where (λ(n)) is a multiplier from N∗ into H∞. This and Theorem 5.1 gives an easy
“soft” proof that T is of the form (LF), where λ(n) = O

(
exp(−c

√
n)
)

for some c > 0

6. Open problems

Problem 6.1. Find the solid hulls of the Hardy–Orlicz spaces LHp, p > 1 on
the unit disk.

Problem 6.2. Find the solid hulls of the Nevanlinna class N(D) or the Smirnov
class N∗(D), where D is the unit polydisk or the unit ball in C

n.
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