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Abstract. The possibility of reversion of the inequality in the Second Main Theorem of Cartan

in the theory of holomorphic curves in projective space is discussed. A new version of this theorem

is proved that becomes an asymptotic equality for a class of holomorphic curves defined by solutions

of linear differential equations.

1. Introduction

We consider holomorphic curves f : C → P
n. In homogeneous coordinates such

curves are represented as (n + 1)-tuples of entire functions

f = (f0 : . . . : fn),

where not all fj are equal to 0. A homogeneous representation is called reduced if
the fj do not have zeros common to all of them. A reduced representation is defined
up to a common entire factor which is zero-free.

In the following definitions we use a reduced homogeneous representation, how-
ever one can easily check that the definitions of N(r, a, f), T (r, f), N1(r, f), m(r, a, f)
and mk(r, f) are independent of the choice of a reduced homogeneous representation.

Let a be a hyperplane in P
n. It can be described by an equation

(1) α0w0 + . . .+ αnwn = 0, where α = (α0, . . . , αn) 6= (0, . . . , 0).

The intersection points of the curve f(z) with the hyperplane a are zeros of the entire
function ga = (α, f) = α0f0 + . . .+ αnfn. Let n(r, a, f) be the number of these zeros
in the disc |z| ≤ r, counting multiplicity, then the Nevanlinna counting function is
defined as

(2) N(r, a, f) =

ˆ r

0

(n(t, a, f)− n(0, a, f))
dt

t
+ n(0, a, f) log r.

The Cartan–Nevanlinna characteristic T (r, f) can be defined as follows:

T (r, f) =
1

2π

ˆ r

0

(
ˆ

|z|≤t

∆ log ‖f(z)‖ dmz

)

dt

t

=
1

2π

ˆ π

−π

log ‖f(reiθ)‖ dθ − log ‖f(0)‖,

where ‖f‖ =
√

|f0|2 + . . .+ |fn|2, and dm is the element of the area. Here ∆ log ‖f‖
is the density of the pull-back of the Fubini–Study metric, and equality holds by
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Jensen’s formula. The order ρ of f is defined by the formula

ρ = lim sup
r→∞

log T (r, f)

log r
.

The proximity functions are

m(r, a, f) =
1

2π

ˆ π

−π

log
‖α‖‖f(reit‖

|ga(eit)|
dt.

Here the integrand is

log
1

dist(f(z), a)
,

where dist is the “chordal distance” from the point f(z) to the hyperplane a. Now we
consider the Wronskian determinant Wf = W (f0, . . . , fn) which is an entire function;
it is identically equal to zero if and only if f is linearly degenerate, that is if f0, . . . , fn
are linearly dependent. We denote by n1(r, f) the number of zeros of Wf in the disc
{z : |z| ≤ r} and define the function N1(r, f) by a formula similar to (2).

A set A of hyperplanes is usually called admissible if any n + 1 hyperplanes of
the set have empty intersection. If the set A contains at least n + 1 hyperplanes,
admissibility is equivalent to

(3) codim(a1 ∩ . . . ∩ ak) = k

for every k ∈ [1, n+ 1] and every k hyperplanes of the set A. We use the convention
that codim x = n+1 iff x = ∅. We use (3) to extend the definition of admissibility to
systems of arbitrary cardinality. So a system of hyperplanes will be called admissible

if any k ≤ n+1 vectors α defining these hyperplanes as in (1) are linearly independent.
With these definitions, the Second Main Theorem (SMT) of Cartan says:

For every linearly non-degenerate holomorphic curve and for every finite admis-
sible set A,

(4)
∑

a∈A

m(r, a, f) +N1(r, f) ≤ (n+ 1)T (r, f) + S(r, f),

where S is an “error term” with the property that S(r, f) = o(T (r, f)) for r → ∞, r 6∈
E, where E is an exceptional set of finite length.

Better estimates of the error term are available, but they do not concern us here.
When n = 1, Cartan’s SMT coincides with the Second Main Theorem of Nevanlinna
for the meromorphic function f = f1/f0. When n = 1, the assumption that the set
A is admissible is vacuous.

Nevanlinna’s SMT was considered from the very beginning as a partial general-
ization of the Riemann–Hurwitz formula [2]. However, the Riemann-Hurwitz formula
is an equality, while the SMT is only an inequality. This inspired the research on the
reversion of the SMT: roughly speaking, the question is whether one can replace the
≤ sign with the = sign in (4) for n = 1. A survey of the early results on this topic is
contained in the book by Wittich [16, Ch. IV]. The general conclusion one can make
from these results is that for all simple, “naturally arising” meromorphic functions an
asymptotic equality indeed holds. But of course, (4) cannot be literally true for all
meromorphic functions in the form of equality, because there are meromorphic func-
tions f with m(r, a, f) 6= o(T (r, f)) for an uncountable set of a, and an exceptional
set E of r does not help.
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Recently, Yamanoi [17] found a way to overcome this difficulty for n = 1. He
defined the modified proximity function

mq(r, f) = sup
(a1,...,aq)∈C

q

1

2π

ˆ π

−π

max
1≤j≤q

log
1

dist(f(reit), aj)
dt.

With this definition, he proved the following theorem.

Let f : C → C be a transcendental meromorphic function. Let q : R>0 → N be
a function satisfying

q(r) ∼

(

log+
T (r, f)

log r

)20

.

Then

mq(r)(r, f) +N1(r, f) = 2T (r, f) + o(T (r, f)), r 6∈ E,

where E is a set of zero logarithmic density.

For functions of finite order, this result was improved in [18]: it holds with any
function q(r) that satisfies log q(r) = o(T (r, f)).

In this paper, we discuss the possibility of an asymptotic equality in Cartan’s
SMT for arbitrary n > 1. First we show by an example that the admissibility
condition creates a new difficulty which is not present for n = 1: even for very simple
curves there can be no admissible system for which (4) holds with equality. Then we
propose a modified form of Cartan’s SMT which does not involve the admissibility
condition, and show that in this modified form asymptotic equality holds for a class
of holomorphic curves.

2. Example

The simplest non-trivial examples in value distribution theory for n = 1 are mero-
morphic functions f = w1/w0, where w0, w1 are two linearly independent solutions
of a differential equation of the form

(5) w′′ + Pw = 0,

where P is a polynomial. These functions f , which were studied in detail by F. Nevan-
linna [9] and R. Nevanlinna [10], can be characterized by the properties: f is of finite
order, and N1(r, f) ≡ 0.

For each such f , there is an integer p and a finite set of points {a1, . . . , aq} in C

such that

(6) m(r, aj , f) = (2mj/p)T (r, f) +O(log r), r → ∞,

where mj are positive integers, and

q
∑

j=1

mj = p.

So we have an asymptotic equality in (4).
This result is related to two other results:
1. If f is a meromorphic solution of arbitrary linear differential equation with

polynomial coefficients, then we have an asymptotic equality in the SMT for f , with
A = {0,∞}, [16, Ch. IV].
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2. If f has finitely many critical and asymptotic values, then an asymptotic
equality holds in the SMT for f , if A is the set of critical and asymptotic values
[13, 16]. Functions f = w1/w0, where w0, w1 are linearly independent solutions of
(5) have no critical values and their asymptotic values are exactly those aj in (6).

These results suggest that in searching for improvements of (4) one has to look
first at the holomorphic curves whose homogeneous coordinates are linearly indepen-
dent solutions of a differential equation

(7) w(n+1) + Pnw
(n) + . . .+ P0w = 0,

with polynomial coefficients Pj. This class of curves can be characterized by the
properties that the order is finite and N1(r, f) ≡ 0, [11, 6].

The following example was mentioned in [5]:

(8) w′′′ − zw′ − w = 0.

This is equivalent to

(9) w′′ − zw = c, c ∈ C.

This is a non-homogeneous Airy equation, and we can describe the asymptotic behav-
ior of all solutions using the well-known asymptotic formulas [1, 14]. All non-trivial
solutions are entire functions of order ρ = 3/2, and for description of their behavior
we use the Phragmén–Lindelöf indicator:

hw(t) = lim
r→∞

r−3/2 log |w(reit)|.

First of all, we have three solutions w0, w1, w2 (Airy’s functions) for c = 0. These
satisfy

(10) w0 + w1 + w2 = 0,

and have the indicators

(11) H0(t) = − cos

(

3

2
t

)

, |t| ≤ π, Hj(t) = H0(t± 2π/3), j = 1, 2.

The rest of solutions of (8), which correspond to non-zero values of c in (9) can be
expressed in terms of Airy functions by the method of variation of constants. These
explicit asymptotic expressions show that the list of possible indicators for c 6= 0 is
this:

(12) G0(t) =

(

− cos

(

3

2
t

))+

, |t| ≤ π, Gj(t) = G0(t± 2π/3), j = 1, 2.

Another way to obtain these indicators is to notice that (8) has a formal solution

w∗(z) =
∞
∑

n=0

(3n)!

3nn!
z−3n−1.

According to the general theory [14], there exists a solution w3 such that w3(z) has
w∗ as the asymptotic expansion in the sector

S0 = {z : | arg z| < π/3}.

For this solution, hw3
(t) = 0, |t| ≤ π/3. As the equation (8) is invariant under the

substitution z 7→ e2πi/3z, in each of the three sectors S0, S±1 = e±2πi/3S0 there exists
a solution with zero indicator.
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Notice that for every t 6∈ {π,±π/3}, the set of solutions with hw(t) ≤ 0 is at
most two dimensional. Indeed, if there were three linearly independent solutions
with hw(t) ≤ 0, then every solution would satisfy h(t) ≤ 0, but this is not so because
max{H0, H1, H2} is positive at every point t 6∈ {π,±π/3}. As for every t there exists
a solution w with hw(t) = 0, we obtain that for every t, the set of solutions w with
hw(t) < 0 is at most one-dimensional. This shows that our list (11), (12) of possible
indicators of solutions is complete.

Now let f be the holomorphic curve whose homogeneous coordinates are three
linearly independent solutions of (8). Then the entire functions ga = (a, f) are
exactly the non-trivial solutions of (8). Let A = {a1, . . . , aq} be an admissible system
of hyperplanes. Let hj be the indicators of entire functions gaj , and let h be their
pointwise maximum. Then

h(t) = | cos((3/2)t)|,
1

2π

ˆ π

−π

h(t) dt =
3

2π

ˆ π/3

−π/3

cos

(

3

2
t

)

dt =
2

π
,

therefore

T (r, f) =

(

2

π
+ o(1)

)

r3/2.

We claim that
q
∑

j=1

ˆ π

−π

(h(t)− hj(t) dt ≤ 8

ˆ π/3

−π/3

cos

(

3

2
t

)

=
32

3
.

This follows from the fact that on each of the three components of the set {t ∈
(−π, π) : h(t) > 0} at most one of the hj can be negative, and at most two of the
hj can be non-positive, and in addition, we cannot have negative indicators in all
three components, because the three solutions w0, w1, w2 satisfying (10) cannot be
all present in an admissible set. So we have

q
∑

j=1

m(r, aj , f) ≤

(

16

3π
+ o(1)

)

r3/2 ≤

(

8

3
+ o(1)

)

T (r, f).

As the Wronski determinant of three linearly independent solutions of (8) is zero-free,
N1(r, f) ≡ 0, and we cannot have asymptotic equality in (4).

This example shows that if one desires (4) with asymptotic equality then non-
admissible sets of hyperplanes A should be permitted. In the next section we state
and prove a version of (4) which applies to an arbitrary finite system of hyperplanes.

3. Modified Second Main Theorem

Let us consider the projective space P
n equipped with the chordal metric dist.

The distance between two subsets of Pn is defined in the usual way, as the inf dist(x, y),
where x is in one set and y is in another set.

Let us fix an arbitrary finite set A of hyperplanes. Intersections of various subsets
of hyperplanes in A are projective subspaces of various codimension. We call these
subspaces “flats generated by A”, and denote the set of all these flats by F (A). We
also denote by codim(x) the codimension of a flat x ∈ F (A). If codim(x) = k,
then there exists an admissible set {a1, . . . , ak} ⊂ A such that x = a1 ∩ . . . ∩ ak. If
∅ ∈ F (A), then flats of all codimensions 1, . . . , n + 1 exist in F (A). Such systems
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A will be called complete. A system of hyperplanes is complete if the vectors α
corresponding to this system as in (1) span C

n+1.
We frequently use the following fact, without special mentioning: if a1, . . . , ak is

an admissible set of hyperplanes, and X = a1 ∩ . . . ∩ ak then

C1 max
1≤j≤k

dist(w, aj) ≤ dist(w,X) ≤ C2 max
1≤j≤k

dist(w, aj), w ∈ P
n,

with positive constants C1, C2 depending only on the set of hyperplanes.
For w ∈ P

n and k ∈ {1, . . . , n}, we define dj(w) as the shortest distance from w
to a flat of codimension k in F (A). It is also convenient to set dn+1(w) = 1.

For a holomorphic curve f : C → P
n and k ∈ {1, . . . , n + 1}, we define the

k-proximity functions

mk(r, f) =
1

2π

ˆ π

−π

log
1

dk(f(reit))
dt.

So m1 ≥ m2 ≥ . . . ≥ mn ≥ mn+1 = 0. Functions mk depend on A which is not
reflected in the notation. Proximity functions for flats of arbitrary codimension were
considered for the first time by H. and J. Weyl’s [15]. With this definition we have

Theorem 1. Let f : C → P
n be a linearly non-degenerate holomorphic curve.

Let A be an arbitrary finite complete set of hyperplanes. Then

(13)

n
∑

k=1

mk(r, f) +N1(r, f) ≤ (n + 1)T (r, f) + S(r, f),

where S(r, f) is the same error term as in Cartan’s theorem.

When n = 1, we have

m1(r, f) =
1

2π

ˆ π

−π

max
a∈A

log
1

dist(f(reit), a)
dt+O(1),

so in the case when m(r, a, f) = o(T (r, f)) for all but finitely many a, Theorem gives
essentially the same as Yamanoi’s result.

Let f0, . . . , fn be linearly independent polynomials whose maximal degree is k.
Then there exist linear combinations g0, . . . , gn of these polynomials whose degrees
satisfy k0 < k1 < . . . < kn = k. Then we have

mj(r, f) = (k − kj−1) log r +O(1), T (r, f) = k log r +O(1).

Computing the degree of the Wronskian W (g0, . . . , gn), we obtain

(14) N1(r, f) =

(

n
∑

j=0

kj − n(n + 1)/2

)

log r +O(1).

Thus
n
∑

j=1

mj(r, f) +N1(r, f) = (n+ 1)T (r, f)−
n(n+ 1)

2
log r +O(1).

When k is large, T (r, f) is large in comparison with log r, and we obtain a relation
close to (13). So (13) can be considered as an extension of the formula for the degree
of the Wronskian to the transcendental case, compare [14, Introduction, (II′′)].

The proof of Theorem 1 is a combination of Cartan’s argument with the following
elementary
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Lemma 1. Let A be a finite complete set of hyperplanes in P
n. Then there

exists a constant C > 0 depending only on A, such that for every w ∈ P
n we have

n
∏

k=1

dk(w) ≥ Cmin
B

∏

a∈B

dist(w, a),

where the infimum is taken over all admissible systems B = {a1, . . . , an+1} of hyper-
planes in A.

Proof. First we notice that if x ∈ F (A) and codim x = k, then there exists an
admissible subset {a1, . . . , an+1} ∈ A such that x = a1 ∩ . . . ∩ ak. Indeed, by passing
from hyperplanes to their defining vectors, this is equivalent to the familiar statement
from linear algebra: if a finite set A of vectors spans the space, then every linearly
independent subset of A can be completed to a basis consisting of vectors of A.

Now we prove the statement by contradiction. For w not in the union of hyper-
planes of A, we set

φ(w) =

∏n
k=1 dk(w)

minB

∏

a∈B dist(w, a)
.

Suppose that there is a sequence wj for which φ(wj) → 0. By choosing a subsequence,
we may assume that wj → w∞ ∈ P

n. If w∞ does not belong to any hyperplane
a ∈ A, then φ(w∞) > 0, and we obtain a contradiction because φ is continuous in
the complement of hyperplanes.

If w∞ belongs to some flat of F (A), let x ∈ F (A) be the flat of maximal codi-
mension to which w∞ belongs. Then dj(w) are bounded away from zero for w in a
neighborhood V of w∞ and j > k = codim x. Suppose that x = a1∩. . .∩ak. Then, by
the remark in the beginning, there is an admissible system B = {a1, . . . , an+1} ⊂ A
beginning with a1, . . . , ak, and w∞ 6∈ aj for j > k by definition of x. Then for w ∈ V ,
we have

n
∏

j=1

dj(w) ≥ C1

k
∏

j=1

dj(w) ≥ C2

k
∏

j=1

dist(w, aj) ≥ C3

n+1
∏

j=1

dist(w, aj).

This contradicts our assumption that φ(wj) → 0 and proves the lemma. �

Proof of Theorem 1. Fix a reduced representation of f . Normalize all hyperplane
coordinates so that ‖α‖ = 1 in (1). Let

(15) u = log ‖f‖, ua = log |ga|, a ∈ A.

Then

− log dist(f(z), a) = u(z)− ua(z).

According to Lemma 1, for every z ∈ C, we can find an admissible system B(z), |B(z)| =
n+ 1, in A such that

−
n
∑

k=1

log |dk(f(z))| ≤ −
∑

a∈B(z)

log dist(f(z), a) +O(1)

= (n+ 1)u(z)−
∑

a∈B(z)

ua(z) +O(1).(16)
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Let W = W (f0, . . . , fn) be the Wronskian determinant. If B = {a1, . . . , an+1} is an
admissible system, then

(17) |WB| = |W (ga1, . . . , gan+1
)| = C(B)|W |.

Let

LB(z) = log+

∣

∣

∣

∣

∣

WB(z)
∏

a∈B(z) |ga(z)|

∣

∣

∣

∣

∣

.

Then

(18) −
∑

a∈B(z)

ua(z) ≤ − log |WB(z)|+ |LB(z)|+O(1) ≤ − log |W (z)|+ R(z),

where R(z) is the sum of non-negative quantities LB(z) over all admissible systems
of cardinality n + 1. The Lemma on the Logarithmic derivative implies that

ˆ π

−π

R(reit) dt = S(r, f),

see [4], [8, p. 222]. Jensen’s formula gives

1

2π

ˆ π

−π

log |W (reit)| dt = N1(r, f) +O(1),

and the definition of T (r, f) can be rewritten as

1

2π

ˆ π

−π

u(reit) dt = T (r, f) +O(1).

Combining (16) and (18), integrating over circles |z| = r, and using the last three
equations we obtain

n
∑

k=1

mk(r, f) +N1(r, f) ≤ (n + 1)T (r, f) + S(r, f).

This completes the proof of Theorem 1. �

Now we compare Cartan’s formulation of the SMT with Theorem 1.

Proposition. Let A be a finite admissible system of hyperplanes, |A| ≥ n+1, and
f a non-constant holomorphic curve whose image in not contained in any hyperplane
of A. Then

∑

a∈A

m(r, a, f) ≤
n
∑

k=1

mk(r, f) +O(1).

Proof. Let A = {a1, . . . , aq}. Define u and uj = log |gaj | by formulas (15). Fix
z ∈ C and order the functions uj by magnitude of uj(z),

uj1(z) ≤ uj2(z) ≤ . . . ≤ ujq(z),

where the jk depend on z. Then for k ≤ n we have

u(z)− ujk(z) = − log dist(f(z), xk) +O(1) ≤ − log dk(f(z)) +O(1),

where xk = aj1 ∩ . . .∩ ajk , and the O(1) depends only on A. For k ≥ n+1 we obtain
u(z)− ujk(z) = O(1). Adding these inequalities we obtain

q
∑

k=1

u(z)− ujk(z) ≤ −
n
∑

k=1

dk(f(z)) +O(1).
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Integrating this inequality, over circles |z| = r we obtain the statement of the propo-
sition. �

Remark. Unlike the usual proximity functions m(r, a, f), the mk(r, f) can be
substantially greater than T (r, f). For example, if f is the curve considered in the
previous section, then m1(r, f) = 2T (r, f) + O(1). It is a challenging problem to
obtain the exact upper estimates of the quantities

δk = lim inf
r→∞

mk(r, f)

T (r, f)

for every k ∈ [1, n]. These are analogs of Nevanlinna defects. There is a conjecture
that δ2 ≤ 1 for n = 2.

4. Curves defined by solutions of linear ODE

Let F be the set of all entire functions y which satisfy differential equations of
the form

(19) y(N) + PN−1y
(N−1) + . . .+ P0y = 0

with polynomial coefficients Pj. This class contains exponential polynomials. For
the curves of the form f(z) = (eλ0z : . . . : eλnz) asymptotic equality holds in Cartan’s
SMT [3].

Theorem 2. Let f : C → P
n be a transcendental linearly non-degenerate holo-

morphic curve, whose homogeneous coordinates belong to F. Then there exists a
finite complete system A of hyperplanes such that

n
∑

k=1

mk(r, f) +N1(r, f) = (n + 1 + o(1))T (r, f), r → ∞.

These curves are of finite order, so there is no exceptional set of r. The result
seems to be new even for n = 1.

To prove Theorem 2, we use the following two facts about the class F:

1. F is a differential ring [7]. This means that F is closed under addition, mul-
tiplication and differentiation.

2. For every differential equation (19) and every θ, there exists ǫ > 0, and N
linearly independent solutions y1, . . . , yN of (19) such that

(20) yk(z) ∼ eQk(z
1/p)zsk/p logmk z, z = reit, r → ∞,

uniformly with respect to t when |t−θ| ≤ ǫ. Here Qk are polynomials, Qk(0) =
0, p is a positive integer, and sk, mk are integers. All triples (Qk, nk, mk), 1 ≤
k ≤ N, in (20) are distinct. For a proof we refer to [14].

We make some conclusions of this second fact:

a) Except for a finite set of rays, the asymptotics of |yk| are all distinct, in the
sense that for k 6= m the limit of |yk/ym| as |z| → ∞ is either zero or infinity
on every ray, except finitely many rays.

b) For each y ∈ F there exists a finite set E ⊂ [0, 2π] such that for each t ∈
[0, 2π]\E we have

(21) |y(reit)| ∼ ceQ(r1/p)rs/p(log r)m, r → ∞,
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where c ∈ R\{0}, Q is a real polynomial, p is a positive integer, and s,m are
integers.

In particular,

c) For every t ∈ [0, 2π]\E, there exist ρ = ρ(y, t) and h = h(y, t) 6= 0, such that
there exists a limit

lim
r→∞

log |y(reit)|

rρ
= h(y, t).

This also holds for the elements of the ratio field R of F.

The number ρ(y, t) will be called the exponential order of y on the ray {reit : r >
0}. If y satisfies (21) on this ray, then ρ(y, t) = (degQ)/p and h(y, t) is the coefficient
of top degree of Q.

Fix a non-exceptional ray L = {reit0 : r > 0}. Then the solutions (20) can be
ordered so that yk = o(yk+1) as |z| → ∞ on L, 1 ≤ k ≤ N −1. The ordering depends
on the ray L, but the same ordering holds on nearby rays, so the ordering does not
change in the sector between two adjacent exceptional rays.

Let Y be the vector space of all solutions of equation (19). Then each element
u ∈ Y \{0} satisfies u ∼ cyk on L, with some k and a constant c 6= 0. Moreover, if
u1 ∼ c1yk and u2 ∼ c2yk then the linear combination c2u1 − c2u2 = O(yk−1).

Proof of Theorem 2. Let f : C → P
n be a linearly non-degenerate holomorphic

curve whose homogeneous coordinates are functions of F. By [7, Satz. 1], we may
assume that the coordinates satisfy one equation (19). Let V ⊂ Y be the subspace
spanned by the homogeneous coordinates. It consists of all functions ga = (a, f). Let
us fix a non-exceptional ray L. Each element w ∈ V \{0} has an asymptotics w ∼ cyk
on L. Let w1, . . . , wn+1 be the a maximal set of elements of V with the property that
wj ∼ cjykj with kj pairwise distinct. We arrange the wk so that wk = o(wk+1) as
|z| → ∞ z ∈ L.

Consider the subspaces Vk ⊂ V consisting of functions w with the property
w = O(wk) on L. We have

V1 ⊂ V2 ⊂ . . . ⊂ Vn+1 = V,

and dimVk = k. So there exist hyperplanes a1, . . . , an+1 such that each Vk is spanned
by ga1 , . . . , gak . These hyperplanes depend on the ray L, but they can be chosen the
same for all rays in each sector complementary to the exceptional rays. Taking all
these hyperplanes for all sectors we obtain an finite set A of hyperplanes.

Now we compute the asymptotics of log dk(f(z)) on a fixed non-exceptional ray L.
Let a1, . . . , an+1 be the hyperplanes associated to this ray in the previous paragraph.
This set of hyperplanes is admissible, and we consider flats xk = a1 ∩ . . . ∩ ak. Then

log dk(f(z)) ≤ log dist(f(z), xk) ≤ max
1≤j≤k

log dist(f(z), aj) +O(1)

= log dist(f(z), ak) +O(1) = uk − u+O(1),

where uk = log |gak | and u = log ‖f‖, as before. To obtain the estimate in the
opposite direction, we argue by contradiction. Suppose that

log dk(f(zj))− uk(zj) + u(zj) → −∞

for some sequence zj ∈ L, zj → ∞. Then we can choose a subsequence, and a flat
xk ∈ F (A), codim xk = k, such that dk(f(zj)) = dist(f(zj), xk) for this subsequence
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zj. Let xk = b1 ∩ . . . ∩ bk. Then b1, . . . , bk is an admissible system, so the dimension
of the span S is k. On the other hand, for all w ∈ S, we will have w = o(wk), thus
S ⊂ Vk−1, which is a contradicts dimVk−1 = k − 1. �

We proved that for every non-exceptional ray

(22) −
n
∑

k=1

log dk(f(z)) = nu−
n
∑

k=1

uk +O(1).

Now we compute the asymptotics of the Wronskian W = W (f0, . . . , fn) on a non-
exceptional ray. Using (17), it is sufficient to compute W (ga1, . . . , gan+1

). All these
functions have asymptotics gak ∼ wk.

Lemma 2. Let w1, . . . , wm be functions of F with distinct asymptotics (21) on
some non-exceptional ray. Then their Wronskian satisfies

log |W (w1, . . . , wm)| =
m
∑

j=1

log |wj|+O(log r)

on this ray.

Postponing the proof of this lemma, we finish the proof of Theorem 2. According
to Lemma 2 we have

(23) log |W (z)| =
n
∑

j=1

uj(z) + u(z) +O(log |z|).

Combining (22) and (23) we obtain on our ray L

log |W (z)| −
n
∑

j=1

log dj(f(z)) = (n+ 1)u(z) +O(log |z|).

Each term of this equation, except the error term is independent of L. The estimate
of the error term is uniform with respect to arg z, except at the small neighborhoods
of the exceptional rays. Integrating over circles |z| = r we obtain the statement of
our theorems, because the contribution of the small neighborhoods of finitely many
exceptional rays is o(T (r, f)).

Proof of Lemma 2. Evidently W = W (w1, . . . , wm) ∈ F. We use the notation

L(w1, . . . , wm) =
W (w1, . . . , wm)

w1 . . . wm
.

In view of (21) it is sufficient to prove that ρ(L(w1 . . . wm)) = 0.
As L is a determinant consisting of logarithmic derivatives of functions of the

class F, we always have ρ(L) ≤ 0 by the lemma on the logarithmic derivative [8]. It
remains to prove that ρ(L) ≥ 0.

We prove this by induction in m. The statement is evident when m = 1. Suppose
that it holds for all Wronskians of size at most m− 1. Assume by contradiction that
ρ(L(w1, . . . , wm)) < 0, and order our functions wj so that wj = o(wj+1), on the ray
L. Define functions Aj as solutions of the following system of linear equations

m−1
∑

j=1

Ajw
(k)
j = w(k)

m , k = 0, . . . , m− 2.
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By Cramer’s rule,

Aj = ±
Wj

Wm

,

where Wj is the Wronskian of size m − 1 made of functions wi with i 6= j. We use
the formula for differentiation of the logarithm of the quotient of Wronskians [12,
Part VII, Probl. 59], [8, p. 251]

(24)
d

dz
log

(

Wj

Wm

)

=
Wj,mW

WjWm
=

Lj,mL

LjLm
,

where Wj,m is the Wronskian of size m − 2 with wj and wm deleted, and W is our
Wronskian of size m. Notation L,Lj,Lj,m has similar meaning. Using the induction
assumption, we conclude that the right hand side of (24) has negative exponential
order. Integrating with respect to z along the ray L we obtain Aj ∼ cj , 1 ≤ j ≤ m−1,
where cj 6= 0 are constants. So we have

wm =
m−1
∑

j=1

(cj + o(1))wj.

This contradicts our assumption that wj = o(wm). This contradiction completes the
proof of the lemma. �

Remark. A special case of Theorem 2 is that the homogeneous coordinates of
f are linearly independent solutions of (7) with N = n + 1. In this case we have
N1(r, f) = 0. For such curves Theorem 2 gives

n
∑

k=1

mk(r, f) = (n+ 1 + o(1))T (r, f).

These curves are analogous to meromorphic functions considered in [9, 10].

The author thanks the referee whose remarks helped to improve the exposition.

References

[1] Abramowitz, M., and I. Stegun: Handbook of mathematical functions with formulas,
graphs, and mathematical tables. - U.S. Government Printing Office, Washington D.C., 1964.

[2] Ahlfors, L.: Zur Theorie der Uberlagerungsflächen. - Acta Math 65:1, 1935, 157–194.

[3] Ahlfors, L.: The theory of meromorphic curves. - Acta Soc. Sci. Fenn. 3-4, 1941, 1–31.

[4] Cartan, H.: Sur les zéros des combinaisons linéaires de p fonctions holomorphes données. -
Mathematica, Cluj, 7, 1933, 5–31.

[5] Eremenko, A.: Extremal holomorphic curves for defect relations. - J. Anal. Math. 74, 1998,
307–323.

[6] Eremenko, A.: A Toda lattice in dimension 2 and Nevanlinna theory. - J. Math. Phys. Anal.
Geom. 31, 2007, 39–46.

[7] Frank, G., and H. Wittich: Zur Theorie linearer Differentialgleichungen im Komplexen. -
Math. Z. 130, 1973, 363–370.

[8] Lang, S.: Introduction to complex hyperbolic spaces. - Springer, NY, 1987.

[9] Nevanlinna, F.: Über eine Klasse meromorpher Funktionen. - Comptes Rendus de Septiéme
Congr̀ess Math. Scand., Oslo 1929, A. W. Brøggers Boktrykkeri, Oslo, 1930.



On the Second Main Theorem of Cartan 871

[10] Nevanlinna, R.: Über Riemannsche Flächen mit endlich vielen Windungspunkten. - Acta
Math. 58, 1932, 295–373.

[11] Petrenko, V.: Entire curves. - Vyshcha shkola, Kharkiv, 1984 (in Russian).

[12] Pólya, G., and G. Szegö: Aufgaben und Lehrsätze aus der Analysis, Band II. - Julius
Springer, Berlin, 1925.

[13] Teichmüller, O.: Eine Umkehrung des zweiten Hauptsatzes der Wertverteilungslehre. -
Deutsche Math. 2, 1937, 96–107.

[14] Wasow, W.: Asymptotic expansions for ordinary differential equations. - Interscience Publ.,
NY, 1965.

[15] Weyl, H., and J. Weyl: Meromorphic curves. - Ann. of Math. 39:3, 1938, 516–538.

[16] Wittich, H.: Neuere Untersuchungen über eindeutige analytische Funktionen. - Springer,
Berlin, 1955.

[17] Yamanoi, K.: Zeros of higher derivatives of meromorphic functions in the complex plane. -
Proc. Lond. Math. Soc. (3) 106:4, 2013, 703–780.

[18] Yamanoi, K.: On a reversal of the Second Main Theorem for meromorphic functions of finite
order. - In: Proceedings of the 19th ICFIDCAA (Hiroshima, 2011), edited by K. Matsuzaki
and T. Sugawa, Tohoku Univ. Press, 2012, 75–83.

Received 27 October 2013 • Accepted 21 February 2014


