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Abstract. Let us assume that we are given two metric spaces (X, dX) and (Y, dY ) where the

Hausdorff dimension s of X is strictly smaller than that of Y . Suppose that X is σ-finite with

respect to Hs. Then we show that for quite general metric spaces, if f : X → Y is a measurable

surjection, there is a set N ⊂ X with Hs(N) = 0 and Hs(f(N)) > 0. If f is continuous, then we

investigate whether N can be chosen to be perfect. We also study more general situations where

the measures on X and Y are not necessarily the same and not necessarily Hausdorff measures.

1. Introduction

Around 1877, Cantor realized that there exists a bijection between the unit in-
terval [0, 1] and the unit square [0, 1]2. Motivated by this result, there has been an
interest in understanding how mappings can increase the dimension. Netto proved
that it is impossible to find a continuous bijection between the interval and the
square. However, Peano’s work showed that one can construct a continuous surjec-
tion from the interval onto the square. We refer the reader to the book of Sagan
for a more detailed account of the history of space-filling curves, [Sag94]. Denoting1

by p : [0, 1] ։ [0, 1]2 the space-filling curve from Peano’s construction, we can define
f : [0, 1]2 ։ [0, 1]2 by f(x, y) = p(x) and see that there are one-dimensional sets, the
intervals [0, 1]× {x}, x ∈ [0, 1], for example, that are mapped onto two-dimensional
sets. This violates Luzin’s condition (N), which requires that sets of measure zero be
mapped to sets of measure zero. Luzin’s condition (N) is important in applications
such as elasticity, see e.g. [MS95]. It is also a requirement for various area- and
change of variables-formulas to hold, see for example Proposition 1.1 in [Mal94].

We take the following question as starting point for our inquiry: “Given a con-
tinuous surjection f : [0, 1] ։ [0, 1]2 is there a set N ⊂ [0, 1] such that H1(N) = 0
and H1(f(N)) > 0?” The fact that the target is higher dimensional than the do-
main means philosophically that some subsets of the domain are “blown up”. Luzin’s
condition (N) requires that small sets stay small. However, space-filling maps could
still satisfy Luzin’s condition (N) by mapping only sets of positive H1-measure onto
two-dimensional sets.

In [WZ12, WZ09a, WZ09b], we (Wildrick and the author) have studied space-
fillings and Luzin’s condition (N) with respect to so called2 Sobolev–Lorentz spaces.
These are generalizations of Sobolev spaces, spaces of mappings that possess some
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1We use the symbol ։ to indicate that the mapping under consideration is a surjection.
2These spaces have also been studied in [RM09] and [Rom08] in the metric setting and in [KKM99]

in the Euclidean setting.
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sort of derivatives that have a certain integrability. We further argued that a space-
filling in a Sobolev–Lorentz space cannot satisfy Luzin’s condition (N), the reason
being that we can partition the space in a null set and countably many sets where the
restrictions of the mapping are Lipschitz. As Lipschitz mappings do not increase the
dimension, it is necessary that the null set is mapped to a set of higher dimension.
The following criterion is basically Theorem 1 in [Tro00]:

Lemma 1.1. [Tro00, Theorem 1] Let f : X → Y be a mapping between two
metric spaces. Suppose that X is locally compact and separable and that µ is a
Radon measure on X. Then the following conditions are equivalent:

(a) There exists a measurable function w : X → [0,∞] that is finite almost ev-
erywhere and such that

dY (f(x1), f(x2)) ≤ dX(x1, x2)(w(x1) + w(x2))

for all x1 and x2 in X.
(b) There exists a monotone sequence of compact subsets K1 ⊂ K2 ⊂ · · · ⊂ X

such that f ↾ Kk is Lipschitz and µ(X \
⋃∞

k=1Kk) = 0.

In this article, we further investigate the dichotomy between Luzin’s condition (N)
and space-fillings on a more abstract level than in our previous work. Especially, we
look also at settings where (b) of Lemma 1.1 is not available.

More precisely, we will look at mappings of which we me merely know that they
are continuous or sometimes even only measurable. To give a flavor of what kind of
results we obtain, we state now one of the results of this article and a corollary. The
terms will be explained in the course of the article.

Theorem 1.2. Let (X,T) be a regular, second countable topological space. Let
µ be a Borel measure on X that is Gδ-regular and such that X is σ-finite with respect
to µ. We further require that X can be written as countable union of compact sets
and a set of measure zero. Suppose that (Y, d) is a metric space with Hausdorff
measure Hh that is of finite order, h(0) = 0, and assume that Y is not σ-finite with
respect to Hh. If f : X ։ Y is a measurable surjection, then there exists a set N ⊂ X
with µ(N) = 0 and Hh(f(N)) > 0.

As corollary, we obtain the following:

Corollary 1.3. Assume that s > 0 and (X, dX) is separable and σ-finite with
respect to Hs and can be written as countable union of compact sets and a set of
measure zero. Suppose that the metric space (Y, dY ) has dimension t. If f : X ։ Y
is a measurable surjection, then there exists a set N ⊂ X such that Hs(N) = 0 and
dimH f(N) = t.

Based on [HT08] and [WZ12], we will give a construction scheme for space-fillings
between rather general metric measure spaces that map a perfect set of measure zero
to the whole target space, see Theorem 9.1. This leads to the question if we can always
find a (perfect) set of measure zero that is mapped to the whole space. However,
for example in the case f : [0, 1] ։ [0, 1]2, this fails if f is 1/2-Hölder, which may
happen:

Theorem 1.4. [Buc96, Theorem 3] There exist Peano curves F : [0, 1] → [0, 1]2

that are α-Hölder continuous for α = 1/2, but no such curve is α-Hölder continuous
for α > 1/2.
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For related results, see also [Shc10], where Hölder continuous surjections between
cubes are studied. Other counter examples can be constructed from the following
result from [HS05]:

Theorem 1.5. [HS05, Thread Theorem] For each n ≥ 2 there exists a contin-
uous, one-to-one mapping ϕ : [0, 1) → (0, 1)n such that L1(ϕ−1(B)) = Ln(B) for all
Borel subsets B of [0, 1]n.

For each n ≥ 2, we obtain a continuous bijection f : [0, 1) → f([0, 1)) ⊂ (0, 1)n

such that L1(B) = Ln(f(B)) for every Borel set B ⊂ [0, 1), and thus L1(N) = 0 if
and only if Ln(f(N)) = 0. Note that in the present case Ln(f([0, 1))) > 0.

The following example was explained to the author by Wildrick, who learned it
from Hencl.

Example 1.6. If f : [0, 1] ։ [0, 1]2 is a continuous surjection, then there exists
a set N ⊂ [0, 1] with H1(N) = 0 and H1(f(N)) > 0. Moreover, N can be chosen to
be closed.

Proof. Suppose that the first statement in the example is not true. Hence,
for every set N ⊂ [0, 1] with H1(N) = 0, we obtain H1(f(N)) = 0. Equivalently
put, if H1(f(E)) > 0, then H1(E) > 0 for all sets E ⊂ [0, 1]. To arrive at a
contradiction, it suffices to find uncountably many pairwise disjoint closed sets Eα

with H1(f(Eα)) > 0. Our assumption tells us then that H1(Eα) > 0, and hence
H1([0, 1]) = ∞. We can clearly find uncountably many pairwise disjoint closed sets
Fα ⊂ [0, 1]2 with H1(Fα) > 0. The sets Eα := f−1(Fα) do the job. �

We will construct in Theorem 9.1 continuous surjections. In these constructions,
it is easily observed that N can be chosen to be a perfect set. The following result
puts this observation into perspective. Note that it implies that each closed set in a
T1-space can be written as union of a perfect and of a countable set.

Theorem 1.7. [Kur72, Cantor–Bendixson, Theorem XIV.5.3] Every T1-space3

with a countable base is the union of two disjoint sets, one dense in itself and closed
(i.e. perfect) and the other countable.

Structure of the paper. The paper can roughly be divided into three parts.
We start in Section 2 with notation, the measure theoretic background, and some
properties of metric spaces. The main content of Section 3 is to give an abstract
version of Theorem 1.6. An important property that we need in this abstract result
is the existence of a certain amount of pairwise disjoint sets. In Section 4, we give a
first result guaranteeing the needed amount of pairwise disjoint subsets. The following
section concludes the first part of the article by providing a first result about blowing
up sets.

Unlike in the first part, where we focussed on conditions on Y to obtain sets
that are blown up, in the second part, we impose more conditions on X. We do this
by searching conditions such that X can be written as union of compact sets with
finite measure and a set of measure zero, such that the restrictions of the space-filling
under question to the compact sets are continuous. In Section 6, we turn our focus
to such a partition of X. In Section 7, our thoughts center around Luzin’s theorem
to improve above partition such that the restriction of the mapping to the sets of

3A topological space is called a T1-space if each single element is closed.
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positive measure are continuous. This second part is concluded with the proof of
Theorem 1.2 in Section 8.

The following sections constitute the last part. They complement the findings
in the first two parts. Having assumed the existence of space-fillings in the first
two parts, we give in Section 9 a result showing that there are plenty of space-
fillings. Section 10 complements the existence of blown up sets by considering space-
fillings that do satisfy Luzin’s condition (N). In some respect, these results show the
sharpness of some of the assumptions in our main results. We conclude the article
with Section 11, where we describe some applications of our results.

Acknowledgements. I would like to thank Kevin Wildrick, Pekka Koskela, Pertti
Mattila, Tapio Rajala, Ville Tengvall, and Jeremy Tyson for stimulating discussions
about the subject of the article. Thanks also go to Stanislav Hencl, to whom The-
orem 1.6 goes back. I am grateful to the people in Jyväsklylä and Helsinki who
attended my talks about the subject and to the Department of Mathematics and
Statistics in Jyväskylä and the Mathematical Institute in Bern. This work was sup-
ported by the Swiss National Science Foundation grant PBBEP3_130157 and the
Academy of Finland grant 251650. I thank for the received support.

2. Notation, measure theoretic background,
and some properties of metric spaces

In this section, we lay out some measure theoretic facts. As sources, we mainly
use [Rog70] and [How95] as references for the Hausdorff measures and Fremlin’s opus
on measure theory [Fre].

We denote by measure what some other authors, Fremlin for example, call outer
measure. If we cite a result from one of his volumes, then we replace a possible
occurrence of a σ-algebra by the σ-algebra of the measurable sets.

Definition 2.1. (Measure, σ-finite, (Borel) measurable) Let X be a set.

(a) If µ : P(X) → [0,∞] is such that
• µ(∅) = 0,
• µ(A) ≤

∑∞
i=1 µ(Ai) if A ⊂

⋃∞
i=1Ai,

then we say that µ is a measure, and we call (X, µ) a measure space.
(b) If µ is a measure on X, a set M is said to be µ-measurable4 if for all sets A,

B with A ⊂ M and B ⊂ X \M , we have µ(A ∪ B) = µ(A) + µ(B). We say
that µ is Borel measurable if each Borel set is measurable.

(c) We say that a set S in a measure space (X, µ) is σ-finite with respect to µ if S
can be written as countable union of measurable subsets with finite measure.

(d) Let (X, µ) be a measure space and (Y,S) a topological space. We say that
a mapping f : X → Y is measurable if for any open set O ∈ S, its preim-
age f−1(O) is measurable; if f−1(O) is a Borel set, we say that f is Borel
measurable.

The following fact can be found for example in Section 112C in [Fre].

4If the measure under consideration is clear, then we also speak simply of measurable. We will
also use the equivalent formulation that M is measurable if and only if for every set F , we have
µ(F ) = µ(F ∩M) + µ(F \M).
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Lemma 2.2. Let (X, µ) be a measure space. If (Mn)n is a non-decreasing se-
quence of measurable sets (that is, Mn ⊂ Mn+1, n ∈ N), then

µ
(⋃

n

Mn

)
= lim

n→∞
µ(Mn) = sup

n
µ(Mn).

We take the following definition from Definition 9 in [Rog70] and 411B and 411D
in [Fre]:

Definition 2.3. (R-regular, inner regular, and outer regular) If R is a class of
sets, a measure µ is said to be

(a) R-regular, if for each E in X there is a set R in R with E ⊂ R and µ(E) =
µ(R),

(b) inner regular with respect to R if

µ(M) = sup{µ(R) : R ∈ R, R ⊂ M, and R measurable}

for every measurable set M ,
(c) outer regular with respect to R if

µ(M) = inf{µ(R) : R ∈ R, R ⊃ M, and R measurable}

for every measurable set M .

Definition 2.4. (Premeasure, finite order) A premeasure ξ on Y is a function
mapping the subsets of Y to the non-negative reals satisfying

(a) ξ(∅) = 0,
(b) if U ⊂ V , then ξ(U) ≤ ξ(V ) for all U, V ⊂ Y .

We will say that the premeasure ξ is of finite order if and only if for some constant
η, we have

(c) ξ(Û) ≤ ηξ(U) for all U ⊂ Y ,
(d) inf{ξ(B(y, δ)) : δ > 0} ≤ ηξ({y}) for all y ∈ Y ,

where
Û =

⋃
{E ⊂ Y : E ∩ U 6= ∅ and diamE ≤ diamU}

and B(y, δ) denotes the open ball with center y and radius δ.

Definition 2.5. (δ-cover) We say that a sequence (Ui)i of subsets of Y is a
δ-cover of a set E if and only if E ⊂

⋃
Ui and

diamUi ≤ δ, i ∈ N.

We use Ωδ(E) to denote the family of all such (countable) δ-covers of E.

Definition 2.6. (Hausdorff measure) The measures Λξ
δ are defined for δ > 0 by

Λξ
δ(E) = inf

{ ∞∑

i=1

ξ(Ui) : (Ui)i ∈ Ωδ(E)
}
,

with the convention that inf ∅ = ∞. The Hausdorff ξ-measure Λξ is then defined as
Λξ(E) := supδ>0 Λ

ξ
δ(E).

Definition 2.7. (Hausdorff function, finite order) A function h, defined for all
non-negative real numbers, is a Hausdorff function if and only if the following con-
ditions are satisfied:

(a) h(t) > 0 for all t > 0,
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(b) h(t) ≥ h(s) for all t ≥ s,
(c) h is continuous from the right for all t ≥ 0.

For such a function and a positive constant Θ, we define a premeasure, ξ say, on X
by

ξ(U) = min{h(diamU), h(Θ)}, U 6= ∅,

ξ(∅) = 0.
(1)

If the premeasure ξ is defined by some Hausdorff function h, we will use Hh for Λξ.
If

lim sup
t→0+

h(3t)

h(t)
< ∞,

we say that h is of finite order.

Remark 2.8.

• The constant Θ ensures that the premeasure assigns finite values to all sets.
We can allow for Hausdorff functions that admit the value ∞ if it is possible
to choose 0 < Θ so small that h(t) < ∞ for t ≤ Θ.

• If h is of finite order, then the induced premeasure is of finite order for small
enough Θ. When we speak of finite order, then we assume that Θ has been
chosen to be so small that ξ is of finite order.

• Assume that h is of finite order, continuous from the right in 0, increasing,
0 < h(t) < ∞ for t > 0, and h(0) = 0. If we set H(0) = 0 and for t > 0

H(t) :=
1

t

ˆ 2t

t

h(s) ds,

then H is a continuous Hausdorff function of finite order comparable to h for
small arguments, see for example Section 1 in [Edg07] for more information.

We take the definition of the Hausdorff–Besicovitch dimension from Section 4 in
[How95].

Definition 2.9. (Hausdorff–Besicovitch dimension) We define the Hausdorff–
Besicovitch dimension5 of a metric space, (X, d), to be the supremum of all non-
negative s for which Λh(s) > 0, where h(s) is defined on all non-negative t by h(s)(t) =
ts. We denote the Hausdorff–Besicovitch dimension of X by dimH(X).

We can define a partial strict ordering on the set of Hausdorff functions:

Definition 2.10. We say that

g ≺ h

for two Hausdorff functions g and h if

lim
t→0+

h(t)

g(t)
= 0.

The following lemma is stated on p. 79 in [Rog70] as corollary and enables us to
talk about sort of generalized dimension.

5It is also known as Hausdorff dimension. Sometimes we also simply omit both, Hausdorff and
Besicovitch, and just talk about dimension.



Space-filling vs. Luzin’s condition (N) 837

Lemma 2.11. Let f, g, and h be Hausdorff functions with f ≺ g ≺ h. If a set
E in a metric space has σ-finite positive Hg-measure, then E has zero Hh-measure
and non-σ-finite Hf -measure.

Theorem 27 on p. 50 in [Rog70] tells us about regularity properties of Hausdorff
measures:

Theorem 2.12. A Hausdorff measure Hh is a regular, Gδ-regular6 metric7 mea-
sure, all Borel sets are Hh-measurable, and each Hh-measurable set of finite Hh-mea-
sure contains an Fσ-set with the same measure.

Let us turn our attention towards metric spaces. The aim is to introduce the
needed definitions in order to state Howroyd’s result on the existence of disjoint
subsets of positive measure.

Definition 2.13. (Analytic, Souslin) A Hausdorff space is analytic, also called
Souslin, if it is either empty or a continuous image of NN0

0 .

Definition 2.14. (Souslin’s operation) Let S be the set
⋃

k N
k
0. If E is a family

of sets, we write S(E) for the family of sets expressible in the form8

⋃

φ∈N
N0
0

⋂

k≥1

Eφ↾k

for some family (Eσ)σ∈S in E . A family (Eσ)σ∈S is called a Souslin scheme; the
operation

(Eσ)σ∈S 7→
⋃

φ∈N
N0
0

⋂

k≥1

Eφ↾k

is Souslin’s operation. Thus S(E) is the family of sets obtainable from sets in E by
Souslin’s operation. If E = S(E), we say that E is closed under Souslin’s operation.

Definition 2.15. (Polish space) A topological space X is Polish if it is separable
and its topology can be defined from a metric under which X is complete.

Remark 2.16. By 423B in [Fre], Polish spaces are analytic.

Definition 2.17. (Souslin-F) Let X be a topological space. A subset of X is a
Souslin-F set in X if it is obtainable from closed subsets of X by Souslin’s operation;
that is, it is the projection of a closed subset of NN0

0 × X. For a subset of Rn, or,
more generally, of any Polish space, it is common to say ‘Souslin set’ for ‘Souslin-F
set’.

The next theorem is a version of [Fre, Theorem 423E].

Theorem 2.18. Let (X,T) be an analytic Hausdorff space. For a subset A of
X, the following are equivalent:

(i) A is analytic,

6A set is termed Gδ if it can be written as countable intersection of open sets. If it has a
representation as countable union of closed sets, then it is called Fσ-set.

7A metric measure µ is such that µ(A ∪ B) = µ(A) + µ(B), whenever A and B have a positive
distance.

8As Fremlin in [Fre], we can regard a member of N0 as the set of its predecessors, so that N
k
0

can be identified with the set of functions from k to N0, and if φ ∈ N
N0

0
and k ∈ N0, we can speak

of the restriction φ↾ k ∈ N
k
0 .
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(ii) A is Souslin-F,
(iii) A can be obtained by Souslin’s operation from the family of Borel subsets of

X.

Definition 2.19. (Finite structural dimension) We say that (Y, d) has finite
structural dimension if and only if for all positive ξ, there exist N ∈ N such that
every subset of Y of sufficiently small diameter δ can be covered by N sets of diameter
not greater than ξδ.

Remark 2.20. Recall that a space is doubling if there is a number N such that
each ball can be covered by N balls of half the radius of the original ball. Doubling
spaces have finite structural dimension. On the other hand, if a space has finite
structural dimension and is compact, then it is doubling.

Definition 2.21. (Ultrametric) The metric space (Y, d) is said to be ultrametric
if and only if

d(x, z) ≤ max{d(x, y), d(y, z)}

for all x, y, and z in Y .

Howroyd lists different kind of spaces for which his result holds. We collect these
spaces under a common condition:

Definition 2.22. Assume that a space A = (A, d,Hh) is given.

(H) We say that A has property (H) if and only if (A, d) is an analytic subspace
of a complete, separable metric space (Y, d), and h is a continuous Hausdorff
function with h(0) = 0 such that at least one of the following properties holds:
(a) h is of finite order,
(b) Y has finite structural dimension,
(c) Y is ultrametric.

(H∞) We say that A has property (H∞) if and only if A satisfies property (H) and
is not σ-finite with respect to Hh.

Assume X = (X, µ) is a measure space and κ a cardinal.

(Aκ) We say that X satisfies property (Aκ) if and only if it can be written as union
of κ-many measurable sets of finite measure and is further such that the union
of κ-many sets of measure zero has measure zero as well.

Remark 2.23. (Continuum Hypothesis (CH)) Sometimes we will assume the
Continuum Hypothesis (CH), i.e. that every infinite subset of R has either the same
cardinality as R or as Q.

3. An abstract result

It is surprising how few properties of [0, 1], [0, 1]2 and their standard metric and
measure, we actually need for the argument in Example 1.6 to work. We start by
reviewing the example in a very abstract fashion. More precisely, we look at [0, 1]
and [0, 1]2 as topological spaces. We further replace the Hausdorff measures by more
general measures, for example Borel measures. In Example 1.6, we have that the
target Y is higher dimensional than the domain X. This is encoded by the fact that
[0, 1] has finite H1-measure and [0, 1]2 is not σ-finite with respect to H1. In the new
setting, we do not compare the “dimensions” of the domain and the target. However,
we express the fact that the domain is “smaller” than the target by requiring that the
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domain can be written as union of, say, κ-many measurable sets of finite measure,
whereas Y cannot. This also permits to look at situations where the image is lower
dimensional than the target. If we look for example at a continuous surjection from
[0, 1]3 onto [0, 1]2, then there is a set of measure zero in [0, 1]3 that is mapped onto a
set of dimension two.

Let us finally state a quite abstract result:

Lemma 3.1. Assume that κ < λ are two cardinals and if η is a cardinal with
κ · η = λ, then ℵ0 < η. Suppose that (X, µ) is a measure space satisfying (Aκ).
Assume (Y, ν,S) is a measure space equipped with topology S that contains λ-many
pairwise disjoint Borel sets Yj that have positive measure. Further, we stipulate the
existence of a measurable surjection f : X ։ Y . Then there is a set N ⊂ X such
that µ(N) = 0 and ν(f(N)) > 0. Moreover, N can be chosen to be the preimage of
one of the sets Yj.

Proof. Without loss of generality, we may assume that µ(X) > 0 for otherwise
we can choose N = f−1(Y1). We first write X as union

X =
⋃

i∈I

Xi,

where each Xi is measurable, has finite measure, and card I ≤ κ. We let {Yj}j be
a collection of λ-many pairwise disjoint Borel sets Yj with ν(Yj) > 0. We set Aj :=
f−1(Yj) and note that the sets Aj are measurable. We further argue that the sets in
{Aj}j are pairwise disjoint. If not, then there are distinct j and k and a point x ∈ X
contained in Aj ∩Ak. But then, as f is surjective, f(x) ∈ f(Aj)∩f(Ak) = Yj ∩Yk—a
contradiction.

Assume by contradiction that µ(N) = 0 implies ν(f(N)) = 0 for all sets N ⊂ X.
Otherwise stated, if ν(f(E)) > 0, then µ(E) > 0 for each measurable set E ⊂ X.
This establishes that each set Aj has positive measure.

For each set Aj, there is a set Xi such that µ(Xi ∩ Aj) > 0 for otherwise the
measure of Aj would be zero. Having the different cardinalities in mind, we find a
set Xn such that there are uncountably many Aj such that µ(Xn ∩ Aj) > 0. There
exists m ∈ N and a countably infinite set L such that for the above chosen set Xn

µ(Al ∩Xn) >
1

m
for l ∈ L. This implies that

∞ > µ(Xn) ≥
∑

l∈L

µ(Xn ∩Al) ≥
∑

l∈L

1

m
= ∞.

This contradiction gives the proof. �

Remark 3.2. Ostaszewski shows in Theorem 2 of [Ost74] that Martin’s axiom
implies that the union of less than 2ℵ0 sets of µ-measure zero is of µ-measure zero
if µ is a measure of Hausdorff type. He attributes the proof for the case when µ is
a Hausdorff measure Hh with Hausdorff function h satisfying h(0) = 0 to Martin
and Solovay, [MS70]. Further studies of the connection between Martin’s axiom and
Hausdorff measures can be found in [Zin].

The conclusion of Lemma 3.1 can hold in cases where the assumptions are not
satisfied:
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Example 3.3. Let Y = {y0} be a set with one element. Define the Borel measure
ν on Y by ν(Y ) = ∞. Then Y is not σ-finite with respect to ν, but does not contain
uncountably many pairwise disjoint sets. If (X, µ) is a measure space that contains
a point {x0} that has measure zero and f : X ։ Y is a surjection, then there exists
a set N ⊂ X with µ(N) = 0 and 0 < ν(f(N)) = ∞. For example, we can take
N = {x0}.

However, we will see in Example 10.10 that we need some conditions in order
that the conclusion of Lemma 3.1 holds.9

4. A first test for the existence of disjoint sets

In Lemma 3.1, we require the existence of a certain amount of pairwise disjoint
Borel sets Bα in Y with ν(Bα) > 0. Later, we will assume that Y is a metric space
and ν a Hausdorff measure; but before, we provide an abstract criterion for the
existence of the desired sets. We will employ it later in concrete situations.

The idea is the following: we assume that ν(Y ) = ∞ and that Y cannot be
written as, let us say, a countable union

⋃
n Yn of Borel sets Yn with ν(Yn) < ∞. We

find a Borel set B1 ⊂ Y with 0 < ν(B1) < ∞. In the next step, we look at Y \ B1

and extract a Borel set B2 ⊂ Y \B1 with 0 < ν(B2) < ∞. Continuing this process,
we end up with countably many pairwise disjoint Borel sets Bn with 0 < ν(Bn). To
prove the existence of a desired collection with uncountably many elements, we resort
to Zorn’s Lemma. We prove that there has to be a maximal collection of pairwise
disjoint Borel sets, and that this collection has the desired cardinality.

Let us recall Zorn’s Lemma, which is equivalent to the axiom of choice:

Lemma 4.1. (Zorn’s Lemma) Let (P,≤) be a nonempty partially ordered set,
i.e. for all a, b, c ∈ P

(a) a ≤ a,
(b) a ≤ b and b ≤ a implies a = b,
(c) a ≤ b and b ≤ c implies a ≤ c.

A chain Q in P is a subset of P such that for all a, b ∈ Q, a ≤ b or b ≤ a. If each
chain in P has an upper bound in P , then P has a maximal element.

In the following lemma, we can for example think of A as the analytic sets, I as
N and C as the collection of the Borel or the closed sets.

Lemma 4.2. Let (Y, ν) be a measure space and C be a collection of subsets of
Y . Assume there exists a collection A of subsets of Y and a cardinal κ ≥ ℵ0 with
the following properties

(a) Y ∈ A,
(b) Y cannot be written as union of κ-many sets in A with finite measure,
(c)

⋃
j∈J Cj and Y \

⋃
j∈J Cj lie in A provided card(J) ≤ κ and Cj ∈ C,

(d) If ν(A) = ∞ for some A ∈ A, then there exists a set C ∈ C with C ⊂ A and
0 < ν(C) < ∞.

Under these conditions, there exists a collection of pairwise disjoint sets Cγ ∈ C with
0 < ν(Cγ) whose cardinality is strictly larger than κ.

9At least when we assume the Continuum Hypothesis.
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Proof. We let
D := {{Dδ}δ∈J}

be the set of all possible collections {Dδ}δ∈J of pairwise disjoint sets in the collection

C with 0 < ν(Dδ) < ∞. We say that {Dδ}δ∈J ≤ {D̃δ̃}δ̃∈J̃ if {Dδ}δ∈J ⊂ {D̃δ̃}δ̃∈J̃ .
Since ⊂ is an ordering relation, (D,≤) is a partially ordered set.

Let us verify the assumptions of Zorn’s Lemma and thus the existence of a max-
imal collection in D.

By (a), the set Y is in A and by (b) we obtain ν(Y ) = ∞. Assumption (d) gives
a set D ∈ C with 0 < ν(D) < ∞ implying {D} ∈ D 6= ∅.

Let {{Dj
δ}δ∈Jj}j∈J be a chain in D. We set

U := {Dj
δ : δ ∈ Jj, j ∈ J}

and claim that U is an upper bound of the chain in D. From the definition of U , it
follows at once that its elements are sets Dj

δ in C with 0 < ν(Dj
δ) < ∞. Now let us

show that the sets in U are pairwise disjoint. Let us select two distinct sets in U .
The chain property allows us to assume that both sets are in the same element of the
chain forcing their disjointness. We conclude that U is indeed in D, and it is easy to
see that U is an upper bound for the chain.

Zorn’s Lemma 4.1 guarantees the existence of a maximal collection {Mγ}γ∈C of
pairwise disjoint sets in C with 0 < ν(Mγ) < ∞.

Assume by contradiction that above maximal collection has cardinality at most
κ. We set

M :=
⋃

γ∈C

Mγ .

By (c), M and Y \M lie in A. According to (b), the measure of Y \M is infinite.

Appealing to (d), there exists a set M̃ ⊂ Y \ M in C with 0 < ν(M̃) < ∞, and it
is clearly disjoint to every element in {Mγ}γ∈C . But then the collection {Mγ}γ∈C ∪

{M̃} ∈ D contradicts the maximality of {Mγ}γ∈C , and we are done. �

Remark 4.3. For related theorems, see [Dav68] (or the comment before Corol-
lary 5.3) and Theorem 2 in [Lar74].

5. Existence of disjoint sets in the metric setting and first results

We give now a version of Corollary 7 in [How95] that we will use to verify (d) in
Lemma 4.2.

Theorem 5.1. (Howroyd) Suppose (A, d,Hh) satisfies property (H). Then for
all real l with10 l < Λξ(A), there exists a (compact) subset K of A such that

l < Hh(K) < ∞.

Corollary 5.2. Suppose (Y, d,Hh) satisfies (H∞). Then there are uncountably
many pairwise disjoint compact subsets of Y with positive measure.

Proof. In Lemma 4.2, we let C be the compact and A the analytic subsets of Y .
Further, we let κ = ℵ0. By Theorem 2.18, Borel sets are analytic. Requirement (d)
in Lemma 4.2 follows from Theorem 5.1, and the other assertions in the lemma are
easily verified. �

10See (1) for the relation between ξ and h.
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If we assume that the space Y is compact, then we can be more precise about
the number of pairwise disjoint sets in Lemma 4.2. The Theorem in [Dav68] roughly
states that if (Y, d) is a compact space of non-σ-finite Hh-measure, and every closed
subset of Y has subsets of finite measure, then Y contains a system of 2ℵ0 disjoint
closed subsets each of non-σ-finite measure.

Corollary 5.3. If (Y, d,Hh) is a compact space that satisfies (H∞), then there
are 2ℵ0 pairwise disjoint compact subsets each of non-σ-finite measure.

We recall the definition of a perfect set.

Definition 5.4. (Perfect) A set is perfect if it is closed, and each open set that
meets it at all, meets it in an infinite set.

Theorem 5.5. Suppose X = (X, µ) is σ-finite and µ is Borel. Suppose further
that (Y, d,Hh) satisfies (H∞). If f : X ։ Y is a measurable surjection, then there is
a set N ⊂ X such that µ(N) = 0 and Hh(f(N)) > 0. Moreover, if X is additionally
equipped with a topology with a countable basis and such that points are closed, and
we further stipulate that f is such that for every closed set F ⊂ Y , the preimage
f−1(F ) can be written as countable union of closed sets, then N can be chosen to be
perfect.

Proof. We want to apply Lemma 3.1. The assumptions on (X, µ) are satisfied
with κ = ℵ0. Using Corollary 5.2, we obtain the existence of some cardinal λ > κ
along with λ-many pairwise disjoint compact sets Yj with positive measure. Applying
Lemma 3.1 gives the existence of N , and it can be chosen to be the preimage of a
closed set.

For the moreover part, note that N can be written as union of countably many
closed sets Fn. If Hh(f(Fn)) would be zero for all n ∈ N, then Hh(f(N)) as well.
Hence one of the sets Fn is mapped to a set of positive measure. We extract a suitable
perfect set by Cantor–Bendixson’s Theorem 1.7. �

If we know that the target is compact, we can relax the assumption that X is
σ-finite a little bit due to Corollary 5.3. We skip the proof of the following result.

Theorem 5.6. Let us assume that κ < 2ℵ0 is a cardinal. Suppose that (X, µ)
satisfies (Aκ), and that (Y, d,Hh) satisfies (H∞) and is compact. If f : X → Y
is a measurable surjection, then there is a set N ⊂ X such that µ(N) = 0 and
Hh(f(N)) > 0. Moreover, if (X, µ,T) is a topological space where points are closed
and with a countable basis, and f is such that for every closed set F , the preimage
f−1(F ) can be written as countable union of closed sets, then N can be chosen to be
perfect.

Question 5.7. Does Theorem 5.6 also hold if we drop the assumption that Y is
compact?

We have encountered in Theorem 1.4 a (continuous) mapping f : [0, 1] ։ [0, 1]2

that maps every set N of H1-measure zero to a set of H2-measure zero. In contrast
to Theorem 5.5, there is no (perfect) set P of H1-measure zero with H2(f(P )) > 0.
However, we may try to replace H2(f(P )) > 0 by the slightly weaker condition
dimH f(P ) = 2.
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Actually, the next result will be an important ingredient in the proof; however it
is stated in greater generality than necessary for the existence of above set. We skip
the proof.

Lemma 5.8. Let t > 0 and define

h(x) =





0, x = 0,

xt log( 1
xt/2 ), 0 < x ≤ e−2/t,

e−2, x > e−2/t.

Then h is a continuous Hausdorff function of finite order and xt′ ≺ h(x) ≺ xt for all
0 < t′ < t.

Corollary 5.9. (Corollary of Theorem 5.5) Suppose (X, d) is σ-finite with re-
spect to Hs. Assume (Y, d) is t-dimensional and an analytic subspace of a complete,
separable space. If f : X ։ Y is a measurable surjection, then there exists a set
N ⊂ X such that Hs(N) = 0 and dimH f(N) = t. If additionally t and Ht(Y ) are
positive and f is such that for each closed set F ⊂ Y , its preimage can be written as
countable union of closed sets, then N can be chosen to be perfect.

Proof. If t = 0, then N = ∅ does the job. Otherwise, using Theorem 5.5, we
choose for each n with t−1/n > 0 a set Nn such that Hs(Nn) = 0 and Ht−1/n(f(N))
is positive. The union of the sets Nn is as required. For the second statement, we
may by Theorem 5.5 assume that Y is σ-finite with respect to Ht. We choose h as
in Lemma 5.8. By Lemma 2.11, (Y, d,Hh) satisfies (H∞). Theorem 5.5 provides us
with a set N (perfect under the additional assumption on f) with Hs(N) = 0 and
Hh(f(N)) > 0, thus with dimH f(N) = t by Lemma 5.8 and Lemma 2.11. �

We look now at targets that are not separable. These spaces are so large that it
is no problem to find uncountably many of the desired disjoint sets.

For the following theorem, see for example Proposition 1.14 in [Lév79]:

Theorem 5.10. (Tarski) The axiom of choice is equivalent to the following state-
ment: for every infinite set A, there is a bijection between A and A×A.

Lemma 5.11. Every uncountable set A can be written as union of card(A)-many
pairwise disjoint uncountable sets.

Proof. Assume that A is uncountable. By Tarski’s Theorem 5.10, we find a
bijection f : A× A ։ A. We define

A := {Aα := f(A× {α}), α ∈ A}.

We claim that A is a partition as described in the statement of the lemma. Given a
set Aα, its cardinality is the same as the one of A× {α} and thus of A. Hence Aα is
uncountable. Given distinct α and β, then A × {α} and A × {β} are disjoint, and
since f is injective, their images under f are disjoint as well. Finally, we see that the
cardinality of A is the same as the one of A. �

Lemma 5.12. Assume that κ is a cardinal with ℵ0 ≤ κ. Suppose that (Y, d) is
a metric space that does not contain any dense set of cardinality less or equal than
κ. Then there exists a collection of pairwise disjoint closed sets that have infinite
measure for every Hausdorff measure Hh, and the cardinality λ of the collection is
strictly larger than κ.
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Proof. First, we want to construct a set whose cardinality is larger than κ, and
whose elements are separated so that the measure of the set is infinite. We do this
with the help of Zorn’s Lemma 4.1.

Fix a natural number n ∈ N. We let

Mn := {Mα}α

be the collection of all sets Mα such that if x and y are distinct points in Mα, then
d(x, y) ≥ 1/n. We define an order ≤ on Mn simply by set inclusion: C ≤ D if and
only if C ⊂ D. It is clear that Y is not empty, and we can take y0 ∈ Y . Then the
set {y0} is in Mn showing that Mn is not empty. Assume that {Aα}α∈J is a chain
in Mn. We claim that

U :=
⋃

α∈J

Aα

is an upper bound for the chain in Mn. Given two distinct points x and y in U , they
belong a priori to two different elements Aα and Aβ. However, by the chain property,
one set is contained in the other, and hence we can assume that x and y belong to
the same set, and hence d(x, y) ≥ 1/n. That U is larger than any element in the
chain is clear. Applying Zorn’s Lemma 4.1, we conclude the existence of a maximal
set Mn, whose elements are all at least 1/n apart. We set

M :=
⋃

n

Mn.

We assume by contradiction that M and hence every Mn has cardinality at most κ.
The contradiction will follow as soon as we have shown that M is dense in Y . Let
ε > 0 and y ∈ Y . We choose a natural number n ∈ N such that 1/n < ε. If y would
be such that d(x, y) ≥ 1/n for all x ∈ Mn, then we could add y to Mn contradicting
the maximality of Mn. Hence, there exists x ∈ Mn with d(x, y) < 1/n < ε. Since y
and ε > 0 were arbitrary, it follows that M is a dense subset of Y with cardinality
bounded from above by κ leading to a contradiction. Hence the cardinality of M is
strictly larger than κ. We can conclude that this is true as well for one of the sets Mn.
In Lemma 5.11, we have verified that we can write Mn as union of card(Mn)-many
pairwise disjoint uncountable sets (Nα)α. Since any Nα contains uncountably many
points, which are separated, it does not have a countable cover with sets of diameter
smaller than 1/n, and hence any Hausdorff measure of Nα is infinite. Furthermore,
since Nα consists only of separated points, it is closed. �

Theorem 5.13. Suppose that κ ≥ ℵ0 is a cardinal. We assume that X = (X, µ)
is a measure space satisfying (Aκ). We stipulate that (Y, d,Hh) is a metric measure
space, where Hh is a Hausdorff measure. Suppose that any dense set in Y has
cardinality strictly larger than κ. If f : X ։ Y is a measurable surjection, then
there is a set N ⊂ X such that µ(N) = 0 and Hh(f(N)) > 0. Moreover, if X is
additionally equipped with a topology with a countable basis and such that points
are closed, and f is further such that for every closed set F , the preimage f−1(F )
can be written as countable union of closed sets, then N can be chosen to be perfect.

Proof. The proof is essentially as the one of Theorem 5.5. In Lemma 3.1, λ is
as indicated in Lemma 5.12, and again the sets Yj are closed. The moreover-part is
proven exactly as in the proof of Theorem 5.5. �
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6. Some topological considerations

Until now, we required Y to be an analytic subset of a complete, separable
metric space. We want to get rid of this restriction. However, the price we pay is the
introduction of some additional regularity conditions on X. They enable us to find
a countable partition of X by compact sets Kn (and a set of measure zero) such that
the restrictions of f to the sets Kn are continuous. Therefore, the images Yn = f(Kn)
are compact as well.

Our goal in this section is to show that a σ-finite, σ-compact space can be written
as countable union of compact sets with finite measure and a set of measure zero.
To achieve this, we put some restrictions on the measure and the topology.

The main point in the following proposition is the fact that we can choose the
compact sets to have finite measure. We will later on study the existence of the
desired Fσ-sets.

Proposition 6.1. Let (X,T) be a topological Hausdorff space and µ a Borel
measure on X that is σ-finite and has the property that each measurable set of finite
measure contains an Fσ-set with the same measure. Suppose that X can be written
as countable union of compact sets and a set of measure zero. Then we can write X
as countable union of compact sets with finite measure and a set of measure zero.

Proof. The nature of the statement allows us to assume that X is σ-finite and
σ-compact. By definition, we can decompose X =

⋃
nXn, where all Xn are measur-

able and have finite measure. By assumption, we can write Xn = Ẑn ∪Nn, where Ẑn

is an Fσ-set and Nn has measure zero. Hence

X =
⋃

n

Zn ∪N,

where N has measure zero and the sets Zn are Fσ-sets with finite measure. Hence,
each Zn has the form

Zn =
⋃

l

Cn
l ,

where the sets Cn
l are closed.

On the other hand, we can write

X =
⋃

m

Km,

where the sets Km are compact. Now,

Zn = Zn ∩

(⋃

m

Km

)
=

⋃

m

(Zn ∩Km),

Zn ∩Km =

(⋃

l

Cn
l

)
∩Km =

⋃

l

(Cn
l ∩Km).

In topological Hausdorff spaces, compact sets are closed. As closed subsets of compact
sets, the sets Cn

l ∩Km are compact. It follows that the sets Zn ∩Km and hence Zn

are σ-compact. �

Question 6.2. Can we weaken the condition in Proposition 6.1 that each mea-
surable set of finite measure contains an Fσ-set with the same measure and still
obtain the same conclusion?
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We further want to study the condition concerning the Fσ-sets in the last propo-
sition. The proof of the following result is as the one of Theorem 22 on p. 35 in
[Rog70]:

Theorem 6.3. Let µ be a Borel measure that is Gδ-regular on a topological
space (X,T) such that every open set is a Fσ-set. If E ⊂ X is measurable with
µ(E) < ∞, then there exists an Fσ-set H ⊂ E with µ(H) = µ(E).

We now give conditions on a topological space implying that every open set is
an Fσ-set.

Definition 6.4. (Regular) A topological space (X,T) is called regular if points
are closed and if for any x ∈ X and closed set C ⊂ X that does not contain x, there
exist disjoint open subsets U and V of X such that x ∈ U and C ⊂ V .

Remark 6.5. Note that a regular space is Hausdorff.

Definition 6.6. (Second countable) A topological space is second countable if it
has a countable basis.

Lemma 6.7. Let (X,T) be a regular, second countable topological space. Then
every open set is an Fσ-set.

Proof. Let O be an open set and choose x ∈ O. We note that C := X \ O is
closed. Since X is regular, there exist disjoint open sets U and V with x ∈ U and
C ⊂ V . Now D := X \ V ⊂ X \ C is closed, and since x is not a point in V , it lies
in D. If y ∈ U , then y 6∈ V and hence y ∈ D. Thus

x ∈ U ⊂ D ⊂ X \ C = X \ (X \O) = O.

Consequently, we can choose for every x ∈ O an open set Ux with x ∈ Ux ⊂ Ux ⊂ O.
Let

O := {Oi}

be a countable basis for the topology. Hence, for every x ∈ O and Ux, we find an
open set Oi with x ∈ Oi ⊂ Oi ⊂ Ux ⊂ O. We collect all occurring indices in the set
I. Then

O =
⋃

i∈I

Oi ⊂
⋃

i∈I

Oi ⊂ O,

and the claim follows. �

7. From measurable to continuous

In Howroyd’s Theorem 5.1, we have the requirement that Y is an analytic subset
of a complete, separable metric space. We would like to get rid of some assumptions
on Y and add in turn more requirements on X. In this section, we show that Y
inherits the desired topological properties from X. For example if X is compact and
separable, and f : X ։ Y is continuous, then Y = f(X) is compact (thus complete),
and separable as well. Thus, we can use the machinery that we developed before.

The following is from Definition 411M in [Fre]; however, we have allowed ourselves
to change the transcription of Luzin:

Definition 7.1. (Almost continuous, Luzin measurable) Let (X, µ,T) be a mea-
sure space with topology T and (Y,S) another topological space. We say that a
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mapping f : X → Y is almost continuous or Luzin measurable if µ is inner regular
with respect to the family of subsets A of X such that f ↾A is continuous.

The main point in is the verification that our setting permits the application
of the following version of Theorem 451S in [Fre], referenced there to an article by
Fremlin and one by Koumoullis and Prikry:

Theorem 7.2. (Luzin’s theorem) Let (X, µ) be a measure space with topology
T such that

(a) whenever a set is measurable with infinite measure, there exists a measurable
subset with positive and finite measure (µ is semi-finite),

(b) every point of X has a neighborhood of finite measure (µ is locally finite),
(c) if E is not measurable, then there exists a measurable set F of finite measure

such that the intersection E ∩ F is not measurable (if additionally µ is semi-
finite, then this is called locally determined),

(d) the topology is Hausdorff,
(e) µ is inner regular with respect to the compact sets.

Assume Y is a metrizable space. Then a function f : X → Y is measurable if and
only if it is almost continuous.

With the help of Luzin’s theorem, we obtain a nice partition of our space:

Proposition 7.3. Let (X,T) be a compact space where the topology T is Haus-
dorff. Assume that µ is a Borel measure on X that is inner regular with respect to
the compact sets and µ(X) < ∞. Suppose (Y,S) is metrizable. If f : X → Y is
measurable, then we can write

X =
⋃

n

Kn ∪N,

where Kn is compact, µ(N) = 0, and f ↾Kn is continuous.

Proof. Note that by Theorem 211L in [Fre], (X, µ) is locally determined. The set-
ting is such that we can apply Theorem 7.2 to obtain a sequence (Am)m of measurable
sets in X such that the restriction f ↾Am of f to Am is continuous and

µ(X) < µ(Am) +
1

2m
.

Using the inner regularity of µ with respect to compact sets, we obtain compact sets
Km contained in Am such that

µ(X) < µ(Am) +
1

2m
< µ(Km) +

1

m
.

We set N := X \
⋃

mKm and deduce that

µ(N) = µ

(
X \

⋃

m

Km

)
= µ

(⋂

m

(X \Km)

)
≤ µ(X \Km0

) ≤ µ(X)− µ(Km0
) <

1

m0

for every m0 ∈ N. The claim follows. �

8. Proofs of Theorem 1.2 and of Corollary 1.3

Proof of Theorem 1.2. First, we want to write X as countable union of compact
sets with finite measure and a set of measure zero. According to Proposition 6.1,
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it suffices to verify that each measurable set of finite measure contains an Fσ-set of
the same measure (regular spaces are Hausdorff). Theorem 6.3 reduces the this task
to the verification that open sets are Fσ-sets. Under our assumptions, this follows
from Lemma 6.7. Summarizing, we may now apply Proposition 6.1 (we noted in
Remark 6.5 that X is Hausdorff; the same is true for the sets Kn in the following
decomposition), i.e. we may write

X =
⋃

n

Kn ∪N,

where the sets Kn are compact with finite measure, and N has measure zero. We
want to replace each compact set Kn by a union of compact sets and a set of measure
zero such that f restricted to each of these new compact sets is continuous. In view
of Proposition 7.3, let us verify the inner regularity with respect to compact sets of
the restriction of µ to Kn denoted by µ↾Kn. If E ⊂ Kn is measurable, then we have
argued before that it contains an Fσ-set F ⊂ E with the same measure. Hence F
can be written as countable union of closed, and since X is compact, of compact sets.
Let us denote these compact sets by Lm and note that, by replacing Lm by the union⋃m

r=1Lr if necessary, the inclusion Lm ⊂ Lm+1 holds. By Lemma 2.2, we have

µ(E) = µ(F ) = sup
m

µ(Lm),

verifying the inner regularity of µ ↾Kn with respect to compact sets. By Proposi-
tion 7.3, we can now write

X =
⋃

n

Mn ∪M0

where µ(M0) = 0, the sets Mn are compact with µ(Mn) < ∞, and f ↾Mn is continuous.
If Hh(f(M0)) > 0, then we are done. Otherwise, by the fact that Hh is Gδ-regular as
noted in Theorem 2.12, there is a Borel set B ⊃ f(M0) with Hh(B) = 0. Note that

Y =
⋃

n

f(Mn) ∪B

is, as the sets f(Mn) are compact, a countable union of Borel sets. If each set
f(Mn) would have a representation as countable union of measurable sets with finite
measure, then this would also be true for Y . By our assumption on Y , this is not
possible. Hence, there is a set Mn such that f ↾Mn : Mn ։ f(Mn) is such that we can
apply Theorem 5.5. The statement follows. �

Question 8.1. Can the set N in Theorem 1.2 be chosen to be perfect? The
problem lies in the case where Hh(f(Mn)) > 0 implies that n = 0.

Proof of Corollary 1.3. The proof is basically as the one of Corollary 5.9. We
just apply Theorem 1.2 instead of Theorem 5.5. �

9. Space-fillings

We have been talking about surjections from one space onto another one. Here,
we give a result concerning their existence. As blueprints for their constructions, the
proofs of Theorem 1.3 in [HT08] and of Theorem 5.1 in [WZ12] were used. See also
Section 2 in [AS12].
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Theorem 9.1. Let (X, d) be a locally compact metric space. Suppose h is a
Hausdorff function with limt→0 h(t) = 0. Let Y be any non-empty length-compact11

metric space. Suppose that P ⊂ X is a non-empty perfect set. Then there exists
a compact, perfect set P ′ ⊂ P and a continuous surjection f : X ։ Y such that
Hh(P ′) = 0 and f(P ′) = Y .

Proof. We suppose that Y is equipped with the path metric. Without loss of
generality, we can assume that diamY ≤ 1.

As building blocks of the continuous surjection, we will use mappings from an-
nuli12 to paths. Thus, the ingredients for the construction of the continuous surjection
are as follows: a system of annuli/balls, a system of paths, and bump functions. As
the space X is locally compact, it suffices to construct the continuous surjection in a
compact ball such that the surjection is constant in a neighborhood of the boundary.
Consequently, in what follows, we assume that X is a compact ball and that P has
positive distance to the boundary. We will also tacitly assume that every chosen ball
in X is contained in this compact ball.13 We start by looking at the bump functions.
Given x0 ∈ X and 0 < δ < ε, we can construct continuous functions η : X → [0, 1]
satisfying

(i) supp η is a compact subset of B(x0, ε),
(ii) η(x) = 1 for all x ∈ B(x0, δ),
(iii) η is Lipschitz.

Let us turn our focus to the system of paths in Y . Since Y is length-compact, we
may find for each non-negative integer n a finite set Yn = {yni }

kn
i=1 with the property

that each y ∈ Y can be connected to a point in Yn by a path of length no greater
than 2−n. Then

⋃
n Yn is dense in Y .

For each positive integer n ≥ 1, we may partition Yn into sets C(yn−1
i ) so that

if ynj ∈ C(yn−1
i ), then there is a 1-Lipschitz path γn

j : [0, 2
−(n−1)] → Y satisfying

γn
j (0) = yn−1

i and γn
j (2

−(n−1)) = ynj .
To each path, we need to assign a corresponding annulus. Let us mix the con-

struction of the annuli and the mapping f . Actually, we will work with globally
defined mappings and modify them in balls.

Let f0 : X → Y be the constant mapping f0(x) = y01 for all x ∈ X. Fix some
point x0 ∈ P . As P is perfect and non-empty, it is infinite, and so we may find
a collection C(x0

1) of k1 distinct points {x1
i }

k1
i=1 ⊂ P . Choose ε1 > 0 so small and

balls {B(x1
i , ε1)}

k1
i=1 such that their centers have distance at least 3ε1 from each other

(hence the balls are pairwise disjoint), and k1h(2ε1) < 1. We can fix a number 0 <
δ1 < ε1 and for each of the points x1

i a corresponding bump function η1i : X → [0, 1]
as14 above.

As the collection {B(x1
i , ε1)}

k1
i=1 consists of pairwise disjoint balls, we may define

the mapping f1 : X → Y by

11This means that Y is compact with respect to the path metric.
12Maybe, it would be more accurate to speak about balls instead of annuli. In each step, we

modify the mapping in balls. However, if we look what additional part stays fixed when we go from
one step to the next, then we obtain a system of annuli.

13Fixing a point x ∈ P and a closed ball B(x, r) that is compact, we note that B(x, r/2) ∩ P is
uncountable. By the Cantor–Bendixson Theorem 1.7, we can replace the original perfect set by one
in B(x, 3r/4) ∩ P .

14In the construction of the bump function, we let δ = δ1, ε = ε1, and x0 = x1
i .
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f1(x) =

{
γ1
i ◦ η

1
i (x), x ∈ B(x1

i , ε1),

f0(x), x 6∈ ∪k1
i=1B(x1

i , ε1).

Note that f1(x
1
i ) = γ1

i (1) = y1i . It is easily checked that f1 is Lipschitz continuous.
Now, we continue inductively. For each n ∈ N, we may find a set of points

{xn+1
i }kn+1

i=1 ⊂ P , pairwise disjoint balls B(xn+1
i , εn+1), and a continuous mapping15

fn+1 : X → Y defined by

fn+1(x) =

{
γn+1
i ( 1

2n
ηn+1
i (x)), x ∈ B(xn+1

i , εn+1),

fn(x), x 6∈ ∪kn+1

i B(xn+1
i , εn+1),

such that

(a) kn+1h(2εn+1) <
1

n+1
,

(b) xn
j 6∈ B(xn+1

i , εn+1) ⊂ B(xn
j , δn) if xn+1

i ∈ C(xn
j ). Further, each B(xn

j , δn) con-

tains at least two balls16 B(xn+1
i , εn+1), the centers of the balls have distance

bounded from below by 3εn+1, and each ball contains infinitely many points
of P ,

(c) for each yn+1 ∈ C(yin), there is a xi
n+1 ∈ C(xi

n),

(d) fn+1(x) = fn(x) for all x 6∈
⋃kn+1

i=1 B(xn+1
i , εn+1),

(e) fn+1(x) = y01 if x 6∈
⋃k1

i=1B(x1
i , ε1),

(f) fm(x
n+1
i ) = yn+1

i for all integers m ≥ n+ 1 and i = 1, . . . , kn,
(g) dY (fn+1(x), fn(x)) ≤ 2−n for all x ∈ X,
(h) fn+1 is continuous.

Point (g) above shows that (fn)n is a Cauchy sequence of mappings in the supremum
norm. The sequence (fn)n converges uniformly to a continuous function f : X → Y .

We consider

P ′ :=
⋂

n∈N

kn⋃

i=1

B(xn
i , εn)

and argue in the following that it is a as required in the theorem. Let us show the
compactness of P ′. As intersection of closed sets it is closed as well and as closed
subset of a compact set, it is itself compact.

To conclude that P ′ is not empty, we consider a sequence (xn)n of centers of balls
such that xn+1 is in B(xn, εn). It follows that xn+m ∈ B(xn, εn) for all m ∈ N. By the
compactness of B(xn, εn), a subsequence of (xm)m converges in B(xn, εn). However,
since the original sequence is a Cauchy sequence, the original sequence converges.
Since n was arbitrary, the existence of the limit in the intersection follows.

We continue by verifying that P ′ is perfect. We have already verified that it is
closed. For showing the last required property in the definition of perfect, we assume
by contradiction that there is an open set O that hits P ′ but only in finitely many
points. Let x ∈ O ∩P ′. Then there is some r > 0 such that B(x, r) ⊂ O and B(x, r)
hits P ′ only in finitely many, say N , points. There is a ball B(xn, εn) that contains

15For ηn+1

i , we choose δ = δn+1 and ε = εn+1 for the radii, and we further set x0 = xn+1

i in the
construction of the bump function detailed before.

16The requirement that we need at least two balls is a small nuisance. We will need it in order
to find a perfect set P ′ that is blown up. However, it is no problem as we can always add additional
paths.
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x and lies in B(x, r). We find a generation n+m that has more than N + 1 disjoint
balls in B(xn, εn). Continuing similarly as when we showed that P ′ is not empty, we
obtain the existence of N + 1 distinct points in P ′ ∩B(x, r)—a contradiction.

Now, we verify that Hh(P ′) = 0. Let δ > 0. We can choose n so large that
2εn < δ. Thus

Hh
δ (P

′) ≤ knh(2εn) <
1

n

for all large n. We see that Hh
δ (P

′) = 0 and since δ > 0 was arbitrary, the claim
follows.

Let us conclude the proof by showing that f(P ′) = Y . Let y ∈ Y . We find a
sequence (yn)n ⊂ Y converging to y such that each yn is some ynj(n). Thus, for each

yn, there is xn := xn
j(n) with f(xn) = yn. We can find a subsequence of (xn)n that

converges to some x ∈ P ′ with f(x) = y. �

Remark 9.2. In the above theorem, we cannot require Hh(P ′) = 0 simultane-
ously for all Hausdorff functions with h(0) = 0, since in this case P ′ is countable, see
Corollary 3 on p. 67 in [Rog70].

Remark 9.3. (Assumes (CH)) According to Theorem 7.5 in [Kee86], assuming
the Continuum Hypothesis and that n is a natural number, there exists a separable
metric space Xn such that 0 < Hn(Xn) < ∞ but with the property that there is no
continuous map f : Xn → [0, 1] that is onto.

10. Some space-fillings satisfying Luzin’s condition (N)

Previously, we have assumed that X can be written as union of a certain amount
of sets of finite measure, whereas Y cannot. Actually, we have also excluded the case
where Y has σ-finite measure. We have done so with good reason:

Example 10.1. Let us consider the differentiable bijection tan: (−π
2
, π
2
) ։ R.

Let us assume that (−π
2
, π
2
) and R are equipped with the Euclidean distance and

Lebesgue measure. Hence (−π
2
, π
2
) has finite measure and R is σ-finite. Note that as

locally Lipschitz continuous function, the tangent tan satisfies Luzin’s condition (N).

The following example enlightens that different dimensions do not always force
sets to been blown up. Note that there are compact 0-dimensional spaces that are
not countable.

Example 10.2. Assume that (X, dX ,H
0) is 0-dimensional, and (Y, dY , ν) is a

metric measure space. If f : X ։ Y is a surjection, then it satisfies Luzin’s condi-
tion (N).

Proof. As H0 is the counting measure, the only subset of X with measure zero
is the empty set, which is mapped onto the empty set as well. �

Remark 10.3. Why does above example not violate our results? Let ν = Hh

as specified in our results. As f is a surjection, we have cardY ≤ cardX violating
the conditions of Theorem 5.5 and Theorem 5.13, and if X is countable also of
Theorem 5.6. In the remaining case, Y is assumed to be compact and thus separable.
By Section 2 in [Fre73], card(Y ) ∈ {ℵ0, 2

ℵ0}—none of the alternatives is in the scope
of Theorem 5.6.
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The two preceding Examples 10.1 and 10.2 are quite special. In the first example,
the domain and the target have the same dimension, while in in the second one, the
domain is zero-dimensional and has therefore no non-trivial sets of measure zero.
Our goal is to construct space-fillings whose domains have dimension larger than
zero, and whose dimensions of the targets do not necessarily agree with the ones of
the domains. In most constructions, we assume the Continuum Hypothesis for the
existence of certain sets in the domain.

Before we can start with constructing such sets, we need to deal with cardinalities
of families of certain subsets in metric spaces.

Lemma 10.4. Let (X, d) be a separable metric space with at least17 2ℵ0 elements.
Assume that h is a Hausdorff function with h(0) = 0. Let

O := {O ⊂ X : O open},

C := {C ⊂ X : C closed},

E := {E ⊂ X : E is a Gδ-set that is σ-finite with respect to Hh}.

Then cardO = card C = card E = 2ℵ0 .

Proof. By Theorem XIV.3.1 in [Kur72], the cardinality of the family of all open
sets is bounded from above by 2ℵ0 . The same upper bound applies to the closed
sets. Since points are closed, both families O and C have cardinality 2ℵ0 . As points
are Gδ-sets with zero measure, it suffices to prove that card E ≤ 2ℵ0 to obtain that
card E = 2ℵ0 . For each set E ∈ E we find a sequence Oi of open sets whose intersection
is E. Thus the cardinality of E is bounded from above by the cardinality of all
sequences of real numbers. Cardinal arithmetics, see for example Sections 3 and 4 in
[Jec03], gives the wished upper bound. �

Lemma 10.5. Assume (X, d,Hh) is compact and satisfies (H∞). Then X con-
tains exactly 2ℵ0 perfect sets of non-σ-finite measure. Moreover, we can find 2ℵ0

perfect sets of non-σ-finite measure that are pairwise disjoint.

Proof. Let us first determine the cardinality of the family of the closed sets that
do not have σ-finite Hh-measure. Note that X is separable, thus the desired upper
bound for the cardinality of the collection of the closed sets of Lemma 10.4 applies.
From Corollary 5.3, we know of the existence of the required amount of pairwise
disjoint compact sets with the right size.

Let us now tackle the cardinality of the perfect sets. Since perfect sets are closed,
the same upper bound applies. Separable metric spaces have a countable basis, and
thus Cantor–Bendixson’s Theorem 1.7 gives the desired amount of perfect sets. �

The following construction is inspired by an example by Besicovitch, see Chap-
ter II in [Bes33]; parts of Besicovitch’s example are also used in Example 10.8:

Proposition 10.6. (Assumes (CH)) Assume that (X, d,Hh) is compact, satisfies
(H∞), and that (CH) holds. Then there exists a set G ⊂ X such that

(a) the cardinality of G is 2ℵ0 ,
(b) if E ⊂ G is σ-finite with respect to Hh, then G ∩ E is countable,
(c) G is non-σ-finite with respect to Hh,
(d) each subset A ⊂ G is Hh-measurable.

17The conclusion shows that in this case, we actually have exactly 2ℵ0 elements.
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Proof. We set

P := {P ⊂ X : P is perfect but not σ-finite with respect to Hh},

E := {E ⊂ X : E =
⋂

n∈NOn, On open, and E is σ-finite with respect to Hh}.

Using Lemmas 10.4 and 10.5, we obtain that

cardP = card E = 2ℵ0 .

Let us denote the ordinal corresponding to the real numbers by c. There exist
bijections between c and P, and between c and E , respectively. Given i ∈ c, we
denote by Pi and Ei the corresponding element in P and E , respectively. Let us
choose an arbitrary point x1 out of the set P1 \ E1. Since P1 is not σ-finite, but E1

is, such a point certainly exists.
Take i0 ∈ c and assume that for each i < i0, we have already chosen a point

xi ∈ Pi \
⋃i

k=1Ek, different from all the previously chosen points xk for k < i. We

choose now a point xi0 ∈ Pi0 \
⋃i0

k=1Ek different from all the already chosen points
xk. Arguing similarly as in the choice of x1, such a point xi0 certainly exists. We
collect the points in the following set

G := {x ∈ X : there exists i ∈ c such that x = xi}.

Before proving that G has the required properties, let us note that if P ∈ P, then
there is an index i ∈ c with P = Pi. Thus there exists a point xi ∈ G ∩ P implying
that G ∩ P is not empty.

(a) By construction.
(b) Assume that E is σ-finite with respect to Hh, and we suppose first that it is

a countable intersection of open sets. In this case, there is an index i0 ∈ c

such that E = Ei0 . For all i > i0, we have

xi ∈ Pi \
i⋃

k=1

Ek ⊂ Pi \ Ei0 .

Hence at most the points x1, x2, . . . , xi0 lie in Ei0 and G. It follows that
G ∩ E = G ∩ Ei0 is countable.

If the σ-finite set E is not a countable intersection of open sets, then we
write E =

⋃
n∈NEn, where the sets En are measurable sets with finite mea-

sure. By Theorem 2.12, the Hausdorff measure is Gδ-regular. Thus the sets
En are contained in sets Fn that can be written as countable intersection of
open sets. Hence, by our considerations above, each Fn ∩G is countable, and
consequently this is true for each En ∩G and finally for E ∩G.

(c) If G would be σ-finite, then by (b), it would be countable. This would con-
tradict (a).

(d) Suppose A ⊂ G. Let F ⊂ X be an arbitrary subset. We have to show that

Hh(F ) ≥ Hh(F ∩A) +Hh(F \ A)

holds. If Hh(F ) = ∞ or Hh(F ) = 0, the inequality follows. Thus, we may
assume that 0 < Hh(F ) < ∞. It follows that Hh(F ∩ A) < ∞. But this
implies by (b) that F ∩A ⊂ G is countable, and our assumptions on h imply
that Hh(F ∩ A) = 0. But then the inequality holds as well. �
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Theorem 10.7. (Assumes (CH)) Suppose (X, d,Hh) is compact and satisfies
(H∞). We further stipulate that (CH) holds. Assume that (Y, ν) is a measure space
such that cardY = 2ℵ0, and ν is such that points have measure zero. Then there
exists a measurable surjection f : X ։ Y such that whenever N ⊂ X is σ-finite with
respect to Hh, then ν(f(N)) = 0.

Proof. Choose G ⊂ X as in Proposition 10.6. According to Lemma 5.11, we can
write G as union of 2ℵ0 many, uncountable sets Aλ, λ ∈ R, that are pairwise disjoint.
We denote by F : R ։ Y a bijection and fix a point y0 ∈ Y . We define f : X → Y
by f(x) = F (λ) if x ∈ Aλ, and we set18 f(x) = y0 if x ∈ X \ G. By construction, f
is a surjection.

Remember that each subset of G is measurable. The preimage of any subset of
Y is either a subset of G or the union of X \G and a subset of G. In both cases, the
preimage is measurable. This shows that f is measurable.

A set N of measure zero splits in a part lying in G and one lying in the complement
of G. The part in the complement is mapped to the point y0; its measure is zero.
The part inside G has countably many points and is thus mapped to a set with the
same cardinality upper bound. This gives the claim. �

We may ask if the dichotomy between Luzin’s condition (N) and space-fillings
is still valid if we do not require the mapping to be measurable. To answer this
question in Example 10.9, we first introduce a peculiar set constructed by Besicovitch,
which has been the main source of inspiration for the construction of the set in
Proposition 10.6. Here again, we assume that the Continuum Hypothesis (CH) holds.

Example 10.8. (Assumes (CH)) Besicovitch constructs in [Bes33, Chapter II]
under the continuum hypothesis a set H ⊂ [0, 1]2, which has, amongst others, the
following two properties

(a) the exterior plane measure of H is 1,
(b) any subset of H of plane measure zero is a countable set.

For example from Theorem 264I in [Fre], we know that the Hausdorff measure H2

and the Lebesgue measure L2 have the same measurable sets, the same null sets, and
agree up to a factor on the σ-algebra of measurable sets. We claim that H2(H) > 0.
Since H2 is a Gδ-regular Borel measure by Theorem 2.12, there exists a positive
constant C and a Borel set B with H ⊂ B and

H2(H) = H2(B) = CL2(B) ≥ CL2(H) = C > 0.

In the following example, we construct (under the Continuum Hypothesis) a non-
measurable space-filling that satisfies Luzin’s condition (N). The main difference to
the mapping constructed in Theorem 10.7 is that here, the domain has finite measure.

Example 10.9. (Assumes (CH)) If we have a surjection f : H ։ [0, 1]3 (the
existence follows since by the continuum hypothesis, H and [0, 1]3 have the same
cardinality), then it satisfies Luzin’s condition (N) with respect to H2 on domain
and target, since the only sets of measure zero contained in H are countable and are
thus mapped on countable sets in [0, 1]3 as well.

18By Howroyd’s Theorem 5.1, we see that G 6= X .
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We can extend the mapping f to a surjection F : [0, 1]2 ։ [0, 1]3 by letting
F (x) = 0 whenever x 6∈ H and F (x) = f(x) otherwise. Theorem 1.2 tells us that F
cannot be measurable.

Measurability of a mapping depends to a certain degree on the topology of the
target. The following example contains a version of Example 10.9 where the topology
of the target is trivial. It also shows that in Lemma 3.1, we cannot get rid of the
assumption of the existence of the desired disjoint Borel sets.

Example 10.10. (Assumes (CH)) Let (Y,T) be a topological space, where the
topology T is given by T = {Y, ∅}. Suppose ν is a non-σ-finite Borel measure without
atoms on Y and card(Y ) = card(R).

Let H be the set defined in Example 10.8. It is uncountable and by the Con-
tinuum Hypothesis, its cardinality is the same as that of [0, 1]2. We find a bijection

f̃ : H ։ Y . Fix a point y0 ∈ Y and let f : [0, 1]2 ։ Y be defined by f(x) = f̃(x) if
x ∈ H and f(x) = y0 otherwise.

We assume that [0, 1]2 is equipped with the standard metric and measure. Let
N ⊂ [0, 1]2 be a set of measure zero. Then

NH := N ∩H

is of measure zero as well, and hence it is countable. Thus f(NH) is countable. The
set N[0,1]2\H := N ∩ ([0, 1]2 \H) is mapped to y0. So f(N[0,1]2\H) and finally f(N) are
countable. Since ν has no atoms, f(N) has measure zero. Thus f is a measurable
space-filling satisfying Luzin’s condition (N).

11. Applications

For example by Proposition 423B in [Fre], Polish spaces are analytic. Choosing
for f the identity in Theorem 5.5 and by way of contradiction, we obtain the following
result:

Corollary 11.1. (Corollary of Theorem 5.5) Let (X, d, µ) be a complete, sepa-
rable metric measure space, where µ is Borel. Suppose X is σ-finite with respect to
µ. We assume further that h is a continuous Hausdorff function of finite order with
h(0) = 0, and that Hh is absolutely continuous with respect to µ. Then X is σ-finite
with respect to Hh.

From our results, we can obtain rigidity results:

Theorem 11.2. Let (X, µ) be an analytic Hausdorff space such that µ is Borel
with µ(X) < ∞. Suppose Y is a complete and separable metric space and h a
continuous Hausdorff function with h(0) = 0 and one of the following is satisfied:

(a) h is of finite order,
(b) Y has finite structural dimension,
(c) Y is ultrametric.

Suppose that f : X → Y is Borel measurable and satisfies Luzin’s condition (N) in
the sense that µ(N) = 0 implies that Hh(f(N)) = 0. Then f(X) is σ-finite with
respect to h.

Proof. Under the given conditions, Y is analytic, see for example Proposi-
tion 423B in [Fre] and by Lemma 423G in the same source, we know that f(X)
is analytic. Now, f is surjective onto its image. If it would not be σ-finite with
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respect to Hh, then Theorem 5.5 would imply that f violates Luzin’s condition (N).
Thus the claim follows. �

We cite Theorem 1.3 in [CHM10]:

Theorem 11.3. Let f ∈ W 1,n−1
loc

((−1, 1)n,Rn) be a homeomorphism19. Then
for almost every y ∈ (−1, 1) the mapping f ↾(−1,1)n−1×{y} satisfies the ((n− 1)-di-
mensional) Luzin condition (N), i.e., for every A ⊂ (−1, 1)n−1 × {y}, Hn−1(A) = 0
implies Hn−1(f(A)) = 0.

Combining above theorem with Theorem 11.2 and further exhausting the sets
(−1, 1)n−1 × {y} with compact sets, we obtain the following result:

Corollary 11.4. Let f ∈ W 1,n−1
loc

((−1, 1)n,Rn) be a homeomorphism20. Then
for almost every y ∈ (−1, 1), we obtain that f((−1, 1)n−1 × {y}) has dimension
bounded from above by n− 1.
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