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Abstract. In the paper, it is proved that for any Ahlfors–David s-regular sets E and F in

Euclidean spaces, there exist subsets E′ ⊂ E and F ′ ⊂ F such that dimH E′
= dimH F ′

= s and

E′, F ′ are quasi-Lipschitz equivalent.

1. Introduction

For E ⊂ R
n and F ⊂ R

m, a bijection f : E → F is said to be bilipschitz if there
is a positive number L such that

L−1|x− y| ≤ |f(x)− f(y)| ≤ L|x− y| for all x, y ∈ E.

We say that sets E and F in Euclidean spaces are bilipschitz equivalent if there exists
a bilipschitz bijection from E onto F and denote by E ∼ F . We say that E can be
bilipschitz embedded into F if there exists a subset F ′ of F such that E ∼ F ′ and
denote by E →֒ F .

Definition 1. [8] A compact set F is said to be Ahlfors–David s-regular (s-
regular for short), if there is a Borel measure ν supported on E and a constant CF

such that

(1.1) C−1
F rs ≤ ν(B(x, r)) ≤ CF r

s

for all x ∈ F and 0 < r ≤ |F |, where |F | is the diameter of F and B(x, r) is the
closed ball with center x and radius r.

Remark 1. Any s-regular set has Hausdorff dimension s.

Remark 2. Any C1+γ(γ > 0) self-conformal set F satisfying the open set con-
dition is s-regular, where s = dimH F and ν = Hs|F . In particular, any self-similar
set satisfying the open set condition is regular.

Suppose that A and B are regular with dimH A < dimH B. Mattila and Saaranen
[9] proved that for any ǫ > 0, there exists a regular subset A′ of A with | dimH A

′ −
dimH A| < ǫ such that A′ →֒ B, where A′ is bilipschitz equivalent to a generalized
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Cantor set, which is self-similar. They also obtained that if dimH A < 1, then A →֒ B.
However, for dimH A = 1, Deng etc. [2] pointed out that if A = [0, 1], any subset
A′ ⊂ [0, 1] with positive Lebesgue measure can not be bilipschitz embedded into any
self-similar set satisfying the strong separation condition (SSC).

The above works raise the following question: For two regular subsets A and B
of Euclidean spaces satisfying dimH A = dimH B, what kind of good subsets A′ of
A can be bilipschitz embedded into B? Here we hope that the good subset A′ is
close to A, for example, | dimH A

′ − dimH A| is small enough or Hs(A′) > 0 with
s = dimH A.

Llorente and Mattila [7] assumed open set condition and then proved that for self-
conformal sets E and F with the same dimension s, if there exist subsets E ′ ⊂ E and
F ′ ⊂ F with Hs(E ′),Hs(F ′) > 0 such that E ′ ∼ F ′, then E ∼ F. For self-similar sets
with the same dimension satisfying SSC, Deng etc. [2] obtained the similar result.
However, Falconer and Marsh [3] pointed out that the self-similar sets (satisfying
SSC) with the same dimension need not be bilipschitz equivalent. Then the results
of [7, 2] imply that for two self-similar sets with dimH E = dimH F = s but E 6∼ F, we
can not find subsets E ′(⊂ E), F ′(⊂ F ) with positive Hs measure such that E ′ ∼ F ′.

We will introduce a notion weaker than bilipschitz equivalence.

Definition 2. [18] The compact subsets E and F of Euclidean spaces are said
to be quasi-Lipschitz equivalent, if there is a bijection f : E → F such that for all
x1, x2 ∈ E,

(1.2)
log |f(x1)− f(x2)|

log |x1 − x2|
→ 1 uniformly as |x1 − x2| → 0.

We say that E can be quasi-Lipschitz embedded into F if E is quasi-Lipschitz equiv-
alent to a subset of F .

Remark 3. It is proved in [18] that two self-conformal sets E, F satisfying SSC
are quasi-Lipschitz equivalent if and only if they have the same Hausdorff dimension.
This result fails for bilipschitz equivalence, e.g. self-similar sets satisfying SSC as
shown in [3, 19]. [5] and [12] discussed the quasi-Lipschitz equivalence of Moran sets
and regular sets.

This paper focuses an alternative question: For regular sets A and B in Euclidean
spaces with dimH A = dimH B, what kinds of good subsets of A can be quasi-
Lipschitz embedded into B?

Now we give our main theorem.

Theorem 1. Suppose that s > 0. For s-regular sets E and F in Euclidean
spaces, there exist subsets E ′ ⊂ E and F ′ ⊂ F with dimH E

′ = dimH F
′ = s such

that E ′ and F ′ are quasi-Lipschitz equivalent.

Frostman’s lemma shows that if E ⊂ R
d is compact and Ht(E) > 0, then there

is a Borel measure µ supported on E such that

(1.3) µ(B(x, r)) ≤ rt

for all x ∈ R
d, r > 0. Let E ′ be the support of the above measure µ. Can we obtain

a constant c > 0 such that

(1.4) crt ≤ µ(B(x, r)) ≤ rt
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for all x ∈ E ′ and r ≤ |E ′|? If inequality (1.4) holds, then E contains an Ahlfors–
David t-regular subset E ′.

Then a natural question is whether E with dimH E = s always contains a t-regular
subset with t ∈ (0, s]. The following proposition offers a negative answer.

Proposition 1. For any given s ∈ (0, 1), there exists an s-Hausdorff dimensional
Moran set F ⊂ R

1 such that F does not contain any regular subset.

For s = 1, Example 5.3 in [9] gave a set with positive L1 measure which contains
no regular subset. In fact, the key point is that the set in [9] does not contain any
uniformly perfect subset. Inspired by this, for any given s ∈ (0, 1), we will obtain a
Moran set [13, 14] with the structure (I, {nk}, {ck}), where I is the closed interval

[0, 1], nk → ∞ and ck = n
−1/s
k . Then this Moran set, with s-Hausdorff dimension,

contains no regular subsets. In fact, it is the key that none of its subsets can be
uniformly perfect.

When is a Moran set Ahlfors–David regular? We note that the above Moran set

c∗ = inf
k
ck = 0,

where ck,1 = · · · = ck,nk
= ck. For the Moran set with structure (J, {nk}k≥1, {ck,j}k≥1,

j≤nk
) [13, 14], under the condition

c∗ = inf
k,j
ck,j > 0,

the following Proposition 2 gives a necessary and sufficient condition for a Moran set
on R

1 to be regular.

Proposition 2. Suppose a Moran set F is defined as in (2.4) on R
1 satisfying

that c∗ = infk,j ck,j > 0. Then F is s-regular if and only if there are constants
0 < α, β <∞ such that

(1.5) α ≤
N
∏

k=1

nk
∑

j=1

csk,j ≤ β for all N > 0.

Remark 4. For the Moran set in the proof of Proposition 1, let ci,1 = · · · =

ci,ni
= ci for all i, we have

∏N
k=1

∑nk

j=1 c
s
k,j = 1 for all k. Then the condition c∗ > 0 is

necessary.

The paper is organized as follows. In Section 2, we prove Theorem 1 by construct-
ing a special homogeneous Moran subset, which is quasi Ahlfors–David s-regular and
quasi uniformly disconnected. The proof is based on Lemma 1 from [11]. In Section
3, we prove Proposition 1 using uniform perfectness [10] and Proposition 2 using the
measure in [1, 6].

2. Moran subsets with full dimension

2.1. Moran sets. Suppose that J ⊂ R
d is a compact set with nonempty

interior. Let {nk}k≥1 be a given positive integer sequence satisfying nk ≥ 2 for all k.
Let ψ = ψk be a finite positive real vector sequence, where

ψk = (ck,1, · · · , ck,nk
), 0 < ck,j < 1, k ∈ N, 1 ≤ j ≤ nk.

The set of finite words is denoted by D∞ =
⋃∞

k=0D
k, where

Dk = {i1 · · · ik : ij ∈ N ∩ [1, nj] for all j}
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and D0 = {∅} and ∅ is the empty word. Given σ = i1 · · · ik ∈ D
k, τ = j1 · · · jl ∈ D

l,
denote the word σ ∗ τ = i1 · · · ikj1 · · · jl. The length of the word σ ∈ Dk is denoted
by |σ|(= k).

We say that the family F = {Jσ : σ ∈ D
∞} of subsets of Rd has Moran structure,

if the following three conditions hold:

(i) for any σ ∈ D∞, Jσ is geometrically similar to J , where we denote by J∅ = J ;
(ii) for any k ≥ 0 and σ ∈ Dk−1,

(2.1) Jσ∗1, · · · , Jσ∗nk
⊂ Jσ

satisfying

(2.2) int(Jσ∗i) ∩ int(Jσ∗j) = ∅ whenever i 6= j,

where int denotes the interior of the set;
(iii) for any k ≥ 1, σ ∈ Dk−1 and 1 ≤ j ≤ nk, it holds that

(2.3)
|Jσ∗j |

|Jσ|
= ck,j.

Then we call the following compact set

(2.4) F =
∞
⋂

k=0

⋃

σ∈Dk

Jσ

a Moran set in R
d with the structure (J, {nk}, {ψk}) = (J, {nk}, {ck,j}). The mem-

bers of the family {Jσ : σ ∈ D
k} are called basic elements of rank k.

A Moran set F defined in (2.4) is said to be homogeneous with the structure
(J, {nk}, {ck}), if ck,1 = · · · = ck,nk

= ck for any k ≥ 1.
When we talk about a Moran set on R

1, for convenience as in [13, 14], we always
assume that the initial set J is a closed interval. The members of the family {Jσ : σ ∈
Dk} are called basic intervals of rank k.

2.2. Result on quasi-Lipschitz equivalence. Recall the notions of quasi
uniform disconnectedness and quasi Ahlfors–David regularity in [11].

Definition 3. We say that a subset F of metric space X is quasi uniformly

disconnected if there is a function ρ : (0,∞) → (0,∞) with limt→0
log ρ(t)
log t

= 1 such
that for any x ∈ F , r > 0, there is a subset B ⊂ F such that

(2.5) F ∩ B(x, ρ(r)) ⊂ B ⊂ B(x, r) and dist(B,F\B) > ρ(r),

where dist(A1, A2) denotes the least distance between A1 and A2.

Definition 4. A compact set F is said to be quasi Ahlfors–David s-regular,
if there exists a Borel measure ν supported on F and a non-decreasing function
h : (0, |F |)→ (0,+∞) with limt→0 h(t) = 0, such that for all x ∈ F and 0 < r ≤ |F |,

(2.6) s(1− h(r)) ≤
log ν(B(x, r))

log r
≤ s(1 + h(r)).

In fact, any quasi s-regular set has Hausdorff dimension s. Inequality (2.6) means
that as r → 0,

log ν(B(x, r))

log r
→ s uniformly for all x ∈ F.

The reference [11] points out the following result on quasi-Lipschitz equivalence.
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Lemma 1. Suppose A and B are compact and quasi uniformly disconnected in
metric spaces. If A and B are quasi s-regular and quasi t-regular respectively, then
they are quasi-Lipschitz equivalent if and only if s = t.

2.3. Construction of Moran subsets. We will construct subsets of full
dimension and obtain their quasi-Lipschitz equivalence by using Lemma 1.

Suppose that E ⊂ R
d is an s-regular set with the measure ν supported on E

such that

C−1
E rs ≤ ν(B(x, r)) ≤ CEr

s

for all x ∈ E and 0 < r ≤ |E|, where CE > 0 is a constant. Now, we will construct
recursively a full dimensional homogeneous Moran subset E ′ of E such that E ′ is
quasi s-regular and quasi uniformly disconnected.

Given ε > 0 small enough, let R0 = 1 and

(2.7) Rk = ε1+2+···+k for all k ≥ 1.

Then

(2.8)
Rk

Rk−1
= εk → 0 and

logRk

logRk−1
→ 1 as k →∞.

For any compact subset A of Rd, let Mε(A) and Nε(A) be the maximum number
of disjoint ε-balls with centers in A and the minimum number of ε-balls needed to
cover A respectively. By [14], we have

(2.9) CdNε(A) ≤ N2ε(A) ≤Mε(A) ≤ Nε(A),

where Cd > 0 is a constant depending on the space R
d.

Fix x∅ ∈ E for empty word ∅. Since ε is small enough, we can take n1 = 2 and
x1, x2 ∈ B(x∅, 1/2) ∩ E such that B(x1, ε) ∩B(x2, ε) = ∅.

By induction, assume we obtain points {xi1···ik−1
}i1···ik−1

⊂ E satisfying

(1) xi1···ik−2ik−1
∈ B(xi1···ik−2

, Rk−2/2) ∩ E for all i1 · · · ik−2ik−1;
(2) B(xi1···ik−2ik−1

, Rk−1) ∩ B(xi1···ik−2jk−1
, Rk−1) = ∅ if ik−1 6= jk−1.

Given point x := xi1···ik−1
∈ E, suppose that {B(yi, Rk/2)}

Nk(x)
i=1 is a covering of

B(x,Rk−1/2) ∩ E, where yi ∈ B(x,Rk−1/2) and Nk(x) := NRk/2(B(x,Rk−1/2) ∩ E).
Using the definition of Nε(·), we can take zi ∈ B(x,Rk−1/2) ∩ E such that

B(x,Rk−1/2) ∩ E ⊂
⋃Nk(x)

i=1
B(zi, Rk).

Therefore, we have

2−s · C−1
E · R

s
k−1 ≤ ν(B(x,Rk−1/2) ∩ E) ≤ ν(

⋃Nk(x)

i=1
B(zi, Rk))

≤
∑Nk(x)

i=1
ν(B(zi, Rk)) = Nk(x) · CE ·R

s
k.

Let Mk(x) :=MRk
(B(x,Rk−1/2) ∩ E). It follows from (2.9) that

Mk(x) ≥ C2
dNk(x),

which implies

(2.10) Mk(x) ≥ D · (Rk−1/Rk)
s = D · ε−ks,

where D = C2
d · 2

−s · C−2
E .
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Therefore, by (2.10) we can take nk = [Dε−ks] points

(2.11) {xi1···ik−1ik}
nk

ik=1 ⊂ B(xi1···ik−1
, Rk−1/2) ∩ E

satisfying

(2.12) B(xi1···ik−1ik , Rk) ∩B(xi1···ik−1jk , Rk) = ∅ for any ik 6= jk,

where [a] is the integral part of a. Then

(2.13) E ′ =
⋂

k≥1

⋃

i1···ik
B(xi1···ik , Rk).

is a homogeneous Moran subset of E(⊂ R
d) with structure (B(x∅, 1), {nk}, {ck})

where

n1 = 2, nk = [Dε−ks] for k ≥ 2 and ck = Rk/Rk−1 = εk.

2.4. The proof of Theorem 1. In fact, for any x ∈ B(xi1···ikik+1
, Rk+1), we

have

(2.14) |x− xi1···ik | ≤ Rk/2 +Rk+1.

Given i1 · · · ik 6= j1 · · · jk, applying (2.14) we have

B(xi1···ikik+1
, Rk+1) ⊂ B(xi1···ik , Rk/2 +Rk+1) for all ik+1,

B(xj1···jkjk+1
, Rk+1) ⊂ B(xj1···jk , Rk/2 +Rk+1) for all jk+1.

(2.15)

We can take small ε in (2.7) such that 1
2
εk + εk+(k+1) < 1 and εk+1 < 1

6
for all

k ≥ 1, which implies

Rk−1 > Rk/2 +Rk+1 and Rk > 6Rk+1.

Let B = B(xi1···ik , Rk/2 + Rk+1)). Since B(xi1···ik , Rk) ∩ B(xj1···jk , Rk) = ∅, using
(2.15) we have

(2.16) dist(B,E ′\B) ≥ 2(Rk − (Rk/2 +Rk+1)) > 2Rk+1.

Now, according to Lemma 1, we will check the properties of E ′.

Lemma 2. E ′ is quasi uniformly disconnected.

Proof. Suppose that 2Rk−1 < r ≤ 2Rk−2 and x ∈ B(xi1···ikik+1
, Rk+1) ∩ E

′. Let
ρ(r) = 2Rk+1.

We take B = E ′ ∩B(xi1···ik , Rk/2 +Rk+1) as above. Using (2.16), we have

(2.17) E ′ ∩ B(x, 2Rk+1) ⊂ B.

Since |x− xi1···ik | ≤ Rk/2 +Rk+1 and Rk−1 > Rk/2 +Rk+1, we have

(2.18) B ⊂ B(x, 2Rk−1) ⊂ B(x, r).

By (2.8), we note that

(2.19) 1←
log(2Rk+1)

log(2Rk−1)
≤

log ρ(r)

log r
≤

log(2Rk+1)

log(2Rk−2)
→ 1.

Then quasi uniform disconnectedness follows from (2.16)–(2.19). �

Lemma 3. E ′ is quasi Ahlfors–David s-regular.
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Proof. It is easy to check that

lim
k→∞
−
log n1 · · ·nk

log c1 · · · ck
= lim

k→∞

logn1 · · ·nk

log(1/Rk)
= s.

Equipping the ball B(xi1···ik , Rk) with mass 1
n1···nk

, we obtain a mass distribution

µ on F . In order to illustrate that (2.6) holds for F and µ, we only need to prove
that

(2.20)
log µ(B(x, r))

log r
→ s uniformly.

For this, we assume that Rk/3 < r ≤ Rk−1/3 and x ∈ F .
We suppose that x ∈ B(xi1···ik−1ikik+1

, Rk+1), then x ∈ B(xi1···ik−1
, Rk−1). By

(2.14) and Rk < Rk−1/6 for small ε, we have B(x, r) ⊂ B(xi1···ik−1
, Rk−1/2+Rk+r) ⊂

B(xi1···ik−1
, Rk−1). Thus

µ(B(x, r)) ≤ µ(B(xi1···ik−1
, Rk−1)) =

1

n1 · · ·nk−1

.

On the other hand, since 2Rk+1 < Rk/3(< r) when ε is small, we have B(xi1···ik−1ikik+1
,

Rk+1) ⊂ B(x, r), which implies

µ(B(x, r)) ≥ µ(B(xi1···ik−1ikik+1
, Rk+1)) =

1

n1 · · ·nk+1
.

Therefore, we have

log n1 · · ·nk−1

log(3/Rk)
≤

logµ(B(x, r))

log r
≤

logn1 · · ·nk+1

log(3/Rk−1)
,

where
logn1···nk−1

log(3/Rk)
,
logn1···nk+1

log(3/Rk−1)
→ s as k →∞. Then (2.20) follows. �

Since E ′ is quasi Ahlfors–David s-regular,

dimH E
′ = dimH E = s.

Using Lemmas 1–3, we obtain Theorem 1.

3. Regularity of Moran sets

In this section, we consider Moran subsets of R1 generated by the initial closed
interval I. Without loss of generality, we always assume the diameter |I| = |I∅| = 1.
If σ = i1 · · · ik ∈ D

k, then each Iσ is similar to I∅ with ratio c1,i1 · · · ck,ik and then

(3.1) |Iσ| = c1,i1 · · · ck,ik .

Definition 5. A Moran set F defined as in (2.4) is called a homogeneous uniform

Cantor set with the structure (I, {nk}, {ck}), if where I is a closed interval and
{ck}k≥1 is a ratios sequence such that F satisfies, for all σ ∈ Dk−1,

(1) Iσ∗1, Iσ∗2, · · · , Iσ∗nk
are subintervals of Iσ∗nk

, arranged from left to right;
(2) Iσ and Iσ∗1 share left end-points, and Iσ and Iσ∗nk

share right end-points;
(3) δσ∗1 = · · · = δσ∗(nk−1), where δσ∗j is the length of gap between Iσ∗j and Iσ∗(j+1).

Recall that any Iσ with σ ∈ Dk is called a basic intervals of rank k.
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Definition 6. A compact subset E of Rn is called uniformly perfect if there is
a constant 0 < c < 1 such that

(3.2) E ∩ {y : cr ≤ |y − x| ≤ r} 6= ∅

for all 0 < r < |E| and x ∈ E.

The uniform perfectness is an interesting invariant under bilipschitz mappings
[10, 20, 17]. Using the definition of regularity, we obtain the following result directly.

Lemma 4. Any Ahlfors–David regular set is uniformly perfect.

3.1. A Moran set without regular subset. We will construct a Moran set
such that none of its subsets can be uniformly perfect. Then Proposition 1 follows
from Lemma 4.

For any s ∈ (0, 1), let F be a homogeneous uniform Cantor set with the structure
(I, {nk}, {ck}), where I∅ = [0, 1], nk →∞, nk+1/nk →∞ and

(3.3) ck ≡ n
− 1

s

k for all k > 0.

Then dimH(F ) = lim
k→∞

logn1n2···nk

− log c1c2···ck
= s (see [13]).

We note that the length of each gap of rank k

δk =
1− nkck
nk − 1

c1c2 · · · ck−1 =
1− n

1− 1

s

k

nk − 1
c1c2 · · · ck−1.

Since nk+1/nk → ∞, we have δk+1 < δk for all k. Any basic interval of rank k has
length λk = c1c2 · · · ck. Therefore,

(3.4) lim
k→∞

λk
δk

= lim
k→∞

cknk = lim
k→∞

(nk)
1− 1

s = 0.

Suppose on the contrary that E(⊂ F ) is uniformly perfect with constant c as in
(3.2).

Fix a point x ∈ E. For any k, assume that x belongs to Iσ which is a basic
interval of rank k. Note that Iσ ⊂ {y : λk ≤ |x − y|}. Then the construction of F
implies that

F ∩ {y : 2λk ≤ |x− y| ≤ δk/2} = ∅,

which implies for all k,

0 < c ≤
2λk
δk/2

.

Letting k → ∞, we obtain that c = 0. This a contradiction. Then Proposition 1 is
proved.

3.2. Regular Moran set on R
1. We begin the proof of Proposition 2.

“ ⇐= ” Suppose (1.5) holds, we will verify the regularity. In order to prove
Proposition 2, we introduce the natural measure µ supported on Moran set F (see
to [1]). Fix s > 0. Let

(3.5) µ(I∅) = 1,

where ∅ is the empty word. By induction, for σ = i1 · · · ik ∈ D
k, we write σ− =

i1 · · · ik−1 ∈ D
k−1 and define

(3.6) µ(Iσ) =
csk,ik

∑nk

j=1 c
s
k,j

µ(Iσ−).
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Using (3.6) again and again, we obtain that µ(Iσ) =
(ck,ikck−1,ik−1

···c1,i1 )
s

∏k
i=1

∑ni
j=1

csi,j
µ(I∅). By (3.1)

we have

(3.7) µ(Iσ) =
|Iσ|

s

∏k
i=1

∑ni

j=1 c
s
i,j

More and more, we get a probability measure µ supported on F . Hence, by (1.5), it
holds that

(3.8) β−1|Iσ|
s ≤ µ(Iσ) ≤ α−1|Iσ|

s.

For any given point x ∈ F , fix 0 < r ≤ |F |. The collectionWr of words is defined
by

(3.9) Wr =

∞
⋃

k=1

{

σ ∈ Dk : Iσ ∩ B(x, r) 6= ∅ and |Iσ| ≤ r < |Iσ−|
}

.

Let

(3.10) Ar = {Iσ | σ ∈ Wr} .

For members of Ar, since their interiors are pairwise disjoint and

(3.11) |Iσ| ≥ c∗r for any Iσ ∈ Ar,

we have #Ar ≤ (2/c∗ + 2). Notice that

(3.12) B(x, r) ∩ F ⊂
⋃

Iσ∈Ar

Iσ.

According to (3.8), we have

µ(B(x, r)) = µ(B(x, r) ∩ F ) ≤
∑

Iσ∈Ar

µ(Iσ) ≤ #Ar ·max
Iσ∈A

µ(Iσ)

≤ (2/c∗ + 2)α−1 ·max
Iσ∈A
|Iσ|

s ≤ (2/c∗ + 2)α−1 · rs

On the other hand, since x is the center of B(x, r), it is easy to find that there is
always a word τ ∈ Wr satisfying that x ∈ Iτ and Iτ ⊂ B(x, r) due to |Iτ | ≤ r. Then
it holds that, by (3.8),

(3.13) µ(B(x, r)) ≥ µ(Iτ ) ≥ β−1|Iτ |
s ≥ β−1cs∗r

s.

Therefore, we can get (1.1) for the measure µ and the constant CF = max{(2/c∗ +
2)α−1, βc−s

∗ }.
“ =⇒ ” Suppose the Moran set is regular, we shall verify (1.5). We need the

following lemma.

Lemma 5. If F is s-regular, then there is a constant C such that

(3.14) C−1|Iσ|
s ≤ ν(Iσ) ≤ C|Iσ|

s, ∀σ ∈ D∞.

Proof. Suppose that there is a Borel probability measure ν supported on F and
a constant CF such that

(3.15) C−1
F rs ≤ ν(B(x, r)) ≤ CF r

s.

For any given σ ∈ Dk, let P be the set of all basic intervals of rank (k+2) in Iσ,
i.e.,

P = {Iσ∗j∗h : 1 ≤ j ≤ nk+1, 1 ≤ h ≤ nk+2}.
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Since nk ≥ 2 for all k > 0, it holds that #P ≥ 4. Then we have

(3.16) Q = P\(J− ∪ J+) 6= ∅,

where J− is the most left member in P and J+ is the most right one. Moreover, it is
natural that

(3.17) |J−| ≥ c2∗|Iσ| and |J+| ≥ c2∗|Iσ|.

Therefore, for any one point x ∈ Q∩F , we have B(x, c2∗|Iσ|) ⊂ Iσ. Then it holds
that, by (3.15),

(3.18) ν(Iσ) ≥ ν(B(x, c2∗|Iσ|)) ≥ C−1
F · c

2s
∗ |Iσ|

s

On the other hand, it is obvious that Iσ ⊂ B(x, |Iσ|) for any x ∈ F ∩ Iσ. Then

(3.19) ν(Iσ) ≤ ν(B(x, |Iσ|)) ≤ CF |Iσ|
s.

Therefore, let C = max{CF , c
−2s
∗ CF}, we have (3.14). �

By (3.14), we have, ∀k > 0,

(3.20) 1 = ν(I∅) =
∑

σ∈Dk

ν(Iσ) ≥ C−1
∑

σ∈Dk

|Iσ|
s = C−1

k
∏

i=1

ni
∑

j=1

csi,j.

On the other hand, it is clear that

(3.21) 1 = ν(I∅) =
∑

σ∈Dk

ν(Iσ) ≤ C
∑

σ∈Dk

|Iσ|
s = C

k
∏

i=1

ni
∑

j=1

csi,j.

Let α = C−1 and β = C, (1.5) holds. Then Proposition 2 follows.

3.3. An example. For s-regular set E, by Theorem 5.7 of [8], we have

(3.22) dimBE = dimBE = dimHE = s.

For Moran set with structure (J, {nk}, {ck,j}), the positive sequence {sk}k>0 is
called the pre-dimension sequence of F , where sk satisfies

k
∏

i=1

ni
∑

j=1

cski,j = 1.

Let s∗ = limk→∞sk and s∗ = limk→∞sk. It was shown in [13, 14] that, if c∗ > 0 for
Moran set F as above, then

dimHF = s∗ and dimBF = s∗.

Therefore, if s∗ < s∗, then F can not be regular.

Example 1. Let nk ≡ 2 and ck ∈ {1/3, 1/5}. Then c∗ > 0. Take a sequence
{ck}k such that a = limk→∞qk < limk→∞qk = b, where

qk =
#{i ≤ k : ck = 1/3}

k
.

Then

limk→∞sk =
log 2

a log 3 + (1− a) log 5
and limk→∞sk =

log 2

b log 3 + (1− b) log 5
,

which means dimHF < dimBF if Moran set F has the structure {[0, 1], {nk}, {ck}}.
Hence F can not be regular.
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