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Abstract. In this article we consider some integral means problem for certain classes of
univalent analytic functions, in particular for the class of the starlike functions of order β and for
the class of α-spirallike functions of order β. Our investigation settles one of the open problems of
Gromova and Vasil’ev. In addition, we solve another problem concerning area maximum property
of α-spirallike functions of order β in the setting of Yamashita and hence, we find the solution to
Yamashita’s conjecture for certain Dirichlet-finite functions in a general form.

1. Preliminaries and the main results

In this paper, we investigate some families of univalent functions for which the
range of each of its member function has a specific geometric property. We will
be particularly interested in determining estimates for certain integral means for
functions with geometric property. In this connection one of the classical results of
Rogosinski [13] for subordination is useful. Using this, we prove a general result and
a particular case solves one of the open problems of Gromova and Vasil’ev [5] on the
best estimate for a special integral means for starlike functions of order β. Also, we
prove Yamashita’s conjecture on area maximum property for α-spirallike functions
of order β.

Let D := {z ∈ C : |z| < 1} denote the open unit disk and H denote the class of
all functions f analytic in D with the topology of uniform convergence of compact
subsets of D and A = {f ∈ H : f(0) = 0 and f ′(0) = 1}. For f, g ∈ H, the symbol
f ≺ g means that f(z) = g(w(z)), where w(z) is analytic in D and w(0) = 0 and
|w(z)| < 1 on D. When g is univalent in D, f ≺ g if and only if f(D) ⊂ g(D) and
f(0) = g(0).

Lemma A. If f ≺ g and g(z) 6= 0 in D, then, for each real p and 0 ≤ r < 1, we
have

(1)
1

2π

ˆ π

−π

dθ

|f(reiθ)|2p
≤

1

2π

ˆ π

−π

dθ

|g(reiθ)|2p
.
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Proof. The case p < 0 of (1) is a simple consequence of Rogosinski [13] subordi-
nation result. Since g(z) is nonvanishing in the unit disk, we have

1

f(z)
≺

1

g(z)
, z ∈ D,

and therefore, the inequality (1) for p > 0 follows if we apply Rogosinski [13] subor-
dination result to the last relation. �

We shall use this lemma mainly for p = 1, but we have stated it in this form as
this will help to extend many results of Gromova and Vasil’ev [5]. However, we would
like to point out that Lemma A gives generalizations of the some cases in Gromova
and Vasil’ev [5], e.g. λ2 = 0 in [5, Theorems 1,3,4]. We refer to Corollary 3. However,
we are interested mainly in finding upper bounds in terms of the Taylor coefficients
and this motivates the rest of the paper.

In this article, we consider the following two families of functions from A. The
first one is the class

S⋆(A,B) =

{

f ∈ A :
zf ′(z)

f(z)
≺

1 + Az

1 +Bz
, z ∈ D

}

,

where −1 ≤ B < A ≤ 1. For β ∈ [0, 1), S⋆(1 − 2β,−1) =: S⋆(β) denotes the
usual normalized class of all (univalent) starlike functions of order β. The class
S⋆(0) := S⋆ is the usual class of starlike functions, i.e. f ∈ A such that f(D) is
starlike with respect to the origin. Functions in S⋆(A,B) are included in the class
S of univalent functions from A and the class S has been the central object in the
study of geometric function theory.

The second one is the class Sα(β) of functions, called α-spirallike of order β. This
is defined by

Sα(β) =

{

f ∈ A : e−iα zf
′(z)

f(z)
≺

e−iα + (eiα − 2β cosα)z

1− z
, z ∈ D

}

,

where β ∈ [0, 1) and α ∈ (−π/2, π/2) (see [7]). Clearly, Sα(β) ⊂ Sα(0). Functions in
Sα(0) are called α-spirallike. The class Sα(0) was introduced by Spaček [17] and the
set Sp = ∪{Sα(0) : α ∈ (−π/2, π/2)} is referred to us the class of spirallike functions
and functions in Sp are known to be univalent in D. As remarked in [7], spirallike
functions have been used to obtain important counter-examples in geometric function
theory (see also [4, p. 72 and Theorem 8.11]).

Also, it is clear that S⋆(β) := S0(β). We remark that the class of α-spirallike
functions is neither included in the Kaplan class K of close-to-convex functions nor
includes it (see also [7]). A complete characterization of spirallike functions by means
of subordination is given by Ruscheweyh [14].

In 2002, Gromova and Vasil’ev [5] considered the functional, called integral
means,

M(r, f, λ1, λ2) =
1

2π

ˆ π

−π

|f(reiθ)|λ1 |f ′(reiθ)|λ2 dθ (z = reiθ ∈ D)

where λ1, λ2 ∈ R. Choosing λ1 = −2 and λ2 = 0 reduces to the integral means

I1(r, f) := M(r, f,−2, 0) =
1

2π

ˆ π

−π

dθ

|f(reiθ)|2



On the problem of Gromova and Vasil’ev on integral means, and Yamashita’s conjecture 723

The estimates of I1 and the mean I2, where I2(r, f) := M(r, f, 0,−2), have received
special attention. One of the reasons for these choices is backgrounded by some prob-
lems in planar fluid mechanics, where these functionals are participating in isoperi-
metric problems for moving phase domains, e.g. [19] and [20]. In [5], the authors
obtained that if f ∈ S⋆(β), then the estimate

L1(r, f) := r2I1(r, f) ≤ 1 + 4(1− β)3r2 + (1− β)r2, r ∈ (0, 1],

holds and the inequality is sharp only for β = 0 and β = 1/2. It was also remarked
that a sharp estimate is still unknown (see [5, p. 565]). Furthermore, not much is
known concerning the estimate for L1(r, f) for many geometric classes of functions
from S. One of our aims is to state the following sharp estimate as a corollary to a
main result and hence, the open problem of Gromova and Vasil’ev [5] is settled.

Corollary 1. Let f ∈ S⋆(β) for 0 ≤ β < 1. Then

L1(r, f) := r2I1(r, f) ≤
Γ(5− 4β)

Γ2(3− 2β)
, r ∈ (0, 1].

In particular, L1(r, f) ≤ 6 for f ∈ S⋆. Both inequalities are sharp.

From Corollary 1, it follows that L1(r, f) ≤ 2 for f ∈ C. Here C denotes the class
of convex functions from S. This is because C ( S⋆(1/2) and

L1(r, f) ≤ 2 for f ∈ S⋆(1/2).

As remarked in [11], many useful probabilities can be expressed in terms of the
Taylor coefficients of z/f(z), its derivatives, or their combinations and as a conse-
quence of it, certain known inequalities for such combinations allow us to find explicit
estimates for probabilities. We refer to [6, 8, 9, 15, 16] where one can find many in-
teresting applications in the theory of analytic fixed point functions and even in
questions in probability.

To state our first main result, we need some preparation. Let 2F1(a, b; c; z) :=
F (a, b; c; z) denote the Gaussian hypergeometric function defined by

F (a, b; c; z) := 1 +
∞
∑

k=1

(a)k(b)k
(c)k

zk

k!
, z ∈ D,

where a, b, c are complex numbers such that c 6= −m, m = 0, 1, 2, 3, . . ., (a)0 = 1 for
a 6= 0 and (a)k denotes the Pochhammer symbol (a)k := a(a + 1) · · · (a + k − 1) for
k ∈ N. In general, a, b and c are complex numbers with c 6= 0,−1,−2, . . . . Note that
if either a = 0 or b = 0, then F (a, b; c; z) = 1. Basic information about Gaussian
hypergeometric functions may be obtained from standard text books, for example
the books of Temme [18] and Anderson et al. [1]. We see that (a)n = Γ(a+ n)/Γ(a)
and, in the exceptional case c = −m, m = 0, 1, 2, 3, . . ., the function F (a, b; c; z) is
clearly defined even if a = −j or b = −j, where j = 0, 1, 2, . . . and j ≤ m. The
following well-known Gauss formula is also used to simplify certain expressions:

(2) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
< ∞ for Re c > Re (a + b).

We now state our first main result from which one can obtain results for several
special cases.
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Theorem 1. For −1 ≤ B < A ≤ 1, let f ∈ S⋆(A,B). Then we have

L1(r, f) := r2I1(r, f) ≤

{

F ((A/B)− 1, (A/B)− 1; 1; |B|2) for B 6= 0,

J0(2i|A|) for B = 0,

where J0(z) is the Bessel function of order zero. Both inequalities are sharp.

For the definition of J0(z), we refer to [18, Eqn. (9.14), p. 228].

Proof of Corollary 1. Proof follows by choosing A = 1 − 2β and B = −1 in
Theorem 1. Thus, we have

L1(r, f) := r2I1(r, f) ≤ F ((A/B)− 1, (A/B)− 1; 1; |B|2) = F (2β − 2, 2β − 2; 1; 1).

The desired conclusion follows if we use the well-known Gauss formula (2). �

In addition to this case, the following special case may be worth mentioning.

Corollary 2. If f ∈ S⋆(A,−A) for 0 < A ≤ 1, then we have the sharp inequality
L1(r, f) ≤ 1 + 4A2 + A4. In particular, L1(r, f) ≤ 6 for f ∈ S⋆(1,−1) := S⋆.

As remarked in the beginning, we may now include an application of Lemma A.

Corollary 3. Let f ∈ S⋆(A,B) for some −1 ≤ B < A ≤ 1. Then for λ ∈ R, we
have

1

2π

ˆ π

−π

|f(reiθ)|λ dθ ≤
rλ

2π

ˆ π

−π

dθ

|qA,B(reiθ)|λ
, 0 < r < 1,

where qA,B(z) is defined by (6). The estimate is sharp.
In particular, for f ∈ S⋆(β) (0 ≤ β < 1), one has

1

2π

ˆ π

−π

|f(reiθ)|λ dθ ≤
rλ

2π

ˆ π

−π

dθ

|1− reiθ|2(1−β)λ
, 0 < r < 1.

Moreover, for 2(1− β)λ > 1, we have

1

2π

ˆ π

−π

|f(reiθ)|λ dθ = O
(

(1− r)1−2(1−β)λ−ǫ
)

as r → 1−

for every ǫ > 0.

In the following theorem we prove the analog of Theorem 1 for functions that are
α-spirallike of order β.

Theorem 2. Let f ∈ Sα(β) for some 0 ≤ β < 1 and α ∈ (−π/2, π/2). Then we
have

L1(r, f) := r2I1(r, f) ≤ 1 +
∞
∑

k=1

∣

∣

∣

∣

(

γ

k

)
∣

∣

∣

∣

2

,

where γ = 2(1 − β)eiα cosα. In particular, L1(r, f) ≤ 6 for f ∈ S⋆(1,−1) := S⋆.
Both inequalities are sharp.

Proofs of Theorems 1 and 2 will be presented in Section 2.
For g ∈ H, we denote the image of |z| < r under g by ∆(r, g), where 0 < r ≤ 1.

Thus for g(z) =
∑∞

n=0 bnz
n, we have

(3) ∆(r, g) =

ˆ ˆ

|z|<r

|g′(z)|2 dx dy = π
∞
∑

n=1

n|bn|
2r2n (z = x+ iy).



On the problem of Gromova and Vasil’ev on integral means, and Yamashita’s conjecture 725

We call g a Dirichlet-finite function whenever ∆(1, g), the area covered by the map-
ping z → g(z) for |z| < 1, is finite. Yamashita [21, p. 439] conjectured that

max
f∈C

∆

(

r,
z

f(z)

)

= πr2, for 0 < r ≤ 1,

where the maximum is attained only by the rotations of the function j(z) = z/(1−z).
Recently, this conjecture was settled by Obradović et al. in [11, Theorem 3] in the
following general form.

Theorem B. Let f ∈ S⋆(β) for some 0 ≤ β < 1. Then we have

max
f∈S⋆(β)

∆

(

r,
z

f(z)

)

= Aβ(r), for 0 < r ≤ 1,

where Aβ(r) = 4π(1−β)2r2F (2β− 1, 2β− 1; 2; r2), and the maximum is attained by
the rotations of fβ(z) = z/(1− z)2(1−β).

Next we state the following general result which proves Yamashita’s extremal
problem for the class Sα(β).

Theorem 3. Let f ∈ Sα(β), i.e., f is α-spirallike function of order β (0 ≤ β < 1
and α ∈ (−π/2, π/2)). Then we have

(4) max
f∈Sα(β)

∆

(

r,
z

f(z)

)

= Aα,β(r), for 0 < r ≤ 1,

where Aα,β(r) = π|γ|2r2F (1 − γ, 1 − γ; 2; r2) and the maximum is attained by the
rotations of fα,β(z) = z/(1− z)γ . Here γ = 2(1− β)eiα cosα.

In [11], the authors have proved Theorem 3 for α = 0 and thus, Theorem 3 implies
Theorem B if we take α = 0. Consequently, we just provide some basic steps of the
proof of Theorem 3 in Section 3. Also, it is important to observe that functions in
Sα(β) are not necessarily belonging to S⋆(β). This observation shows that Theorem
3 covers many other situations. However, it is an open problem to derive Yamashita’s
conjecture for convex functions of order β and more generally, for functions in the
class S⋆(A,B) and also for the class of functions f for which zf ′(z) in S⋆(A,B).

We end this section with the following special case β = 0 of Theorem 3.

Corollary 4. Let f ∈ Sα(0), i.e., f is α-spirallike function for some α ∈
(−π/2, π/2). Then we have

max
f∈Sα(0)

∆

(

r,
z

f(z)

)

= Aα,0(r), for 0 < r ≤ 1,

where

Aα,0(r) ≤ Aα,0(1) =
π Γ(4 cos2 α)

Γ(2eiα cosα)Γ(2e−iα cosα)

and the maximum is attained by the rotations of fα,0(z) = z/(1 − z)2e
iα cosα.

2. Solution to the problem of Gromova and Vasil’ev

Proof of Theorem 1. Let f ∈ S⋆(A,B) and p(z) = z/f(z). Then p(z) is analytic
in D, p(0) = 1, p(z) 6= 0 in D and

zf ′(z)

f(z)
= 1−

zp′(z)

p(z)
≺

1 + Az

1 +Bz
, z ∈ D,
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so that
zp′(z)

p(z)
≺

−(A−B)z

1 +Bz
=: ϕ(z), z ∈ D.

Note that ϕ(z) is convex in D and ϕ(0) = 0. It follows that (see for example [10,
Corollary 3.1d.1, p. 76])

(5) p(z) ≺ qA,B(z) = exp

(
ˆ z

0

ϕ(t)

t
dt

)

.

It is a simple exercise to compute that

(6) qA,B(z) =

{

(1 +Bz)1−(A/B) for B 6= 0,

e−Az = lim
B→0

(1 +Bz)1−(A/B) for B = 0,

or equivalently

qA,B(z) =

{

F (1, δ; 1, Bz) for B 6= 0,

e−Az for B = 0,

with δ = (A/B)− 1. In particular, for 0 < A ≤ 1, we have qA,−A(z) = (1−Az)2.
We now apply to (5) the theorem of Rogosinski [13]. According to this if

p(z) =
z

f(z)
=

∞
∑

k=0

bkz
k

and qA,B(z) =
∑∞

k=0 ckz
k are two analytic functions such that p(z) ≺ qA,B(z), then

n
∑

k=0

|bk|
2r2k ≤

n
∑

k=0

|ck|
2r2k

for each n ∈ N and for each r ∈ (0, 1). Thus, by (5) we have

n
∑

k=0

|bk|
2r2k ≤























n
∑

k=0

(

(δ)k
k!

)2

|B|2kr2k for B 6= 0,

n
∑

k=0

|A|2k

(k!)2
r2k < J0(2i|A|r) for B = 0,

where J0 is the Bessel function of order zero. In this inequality, we can take r = 1
and allow n → ∞ (as the above estimate is finite). This gives the inequality

∞
∑

k=0

|bk|
2 ≤

{

F (δ, δ; 1; |B|2) for B 6= 0,

J0(2i|A|) for B = 0.

Finally, the desired conclusion follows from the last estimates and the following

r2I1(r, f) =
1

2π

ˆ π

−π

r2

|f(reiθ)|2
dθ = 1 +

∞
∑

k=1

|bk|
2r2k ≤ 1 +

∞
∑

k=1

|bk|
2.

Equality occurs in the above inequalities if f(z) = z/qA,B(z). �

Proof of Corollary 3. Let f ∈ S⋆(A,B) for some −1 ≤ B < A ≤ 1. Since
S⋆(A,B) ⊂ S⋆ and f is univalent in D, we obtain that f(z) 6= 0 in 0 < |z| < 1. Also,
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by (6), we have

√

z

f(z)
≺

√

z

q(z)
, q(z) =







z

(1 +Bz)1−(A/B)
for B 6= 0,

zeAz for B = 0.

The desired conclusion follows from Lemma A and the fact that, for p > 1,
ˆ π

−π

dθ

|1− reiθ|p
= O

(

(1− r)1−p
)

as r → 1−.

The special case follows if we choose A = 1− 2β and B = −1. �

Proof of Theorem 2. Let f ∈ Sα(β). Then

e−iα zf
′(z)

f(z)
≺

e−iα + (eiα − 2β cosα)z

1− z
, z ∈ D,

and it is a simple exercise to see that the function F defined by

F (z) = z

(

f(z)

z

)2/[(1−β)(1+e2iα)]

belongs to S⋆. Further, F ∈ S⋆ implies that

z

F (z)
=

(

z

f(z)

)2/[(1−β)(1+e2iα)]

≺ (1− z)2,

or equivalently,
z

f(z)
≺

z

fα,β(z)
:= (1− z)(1−β)(1+e2iα) = (1− z)γ ,

where γ = 2(1 − β)eiα cosα. It is easy to see that fα,β ∈ Sα(β). As in the proof of
Theorem 1, this gives the inequality

1 +

∞
∑

k=1

|bk|
2 ≤ 1 +

∞
∑

k=1

∣

∣

∣

∣

(

γ

k

)
∣

∣

∣

∣

2

,

where z
f(z)

= 1 +
∑∞

k=1 bkz
k. It follows that for f ∈ Sα(β),

L1(r, f) ≤ 1 +
∞
∑

k=1

|bk|
2 ≤ 1 +

∞
∑

k=1

∣

∣

∣

∣

(

γ

k

)
∣

∣

∣

∣

2

and the desired conclusion follows. Equality occurs in the above inequalities if f(z) =
fα,β(z). �

3. Yamashita’s conjecture for spirallike functions

In order to prove the Yamashita’s conjecture for the class Sα(β), we need to
investigate the function

fα,β(z) =
z

(1− z)γ
=

z

F (1,−γ; 1; z)
,

where γ = 2(1− β)eiα cosα. As in [11], it follows easily that

∆

(

r,
z

fα,β(z)

)

= π
∞
∑

n=1

n

∣

∣

∣

∣

(−γ)n
(1)n

∣

∣

∣

∣

2

r2n = π|γ|2r2F (1− γ, 1− γ; 2; r2) =: Aα,β(r).
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Also, for r ∈ (0, 1], we observe that

Aα,β(r) = π|γ|2
∞
∑

n=1

|(1− γ)n−1|
2

(2)n−1(1)n−1
r2n.

Since the coefficients of the series on the right are all positive (except for the case
α = 0 and β = 1/2 for which A0,1/2(r) = πr2), the function Aα,β(r) is an increasing
and convex function of the real variable r, 0 < r ≤ 1. This observation shows that

Aα,β(r) ≤ Aα,β(1) = π|γ|2F (1− γ, 1− γ; 2; 1).

According to the well-known Gauss formula (2), the last expression becomes

Aα,β(r) ≤ Aα,β(1) = π

(

Γ(2Re γ)

Γ(γ)Γ(γ)

)

.

Proof of Theorem 3. Since the theorem for the case of α = 0 has been proved in
[11], we may exclude the case α = 0 throughout the discussion below. Let f ∈ Sα(β)
for some 0 ≤ β < 1 and α ∈ (−π/2, π/2). Set further

g(z) =
z

f(z)
= 1 +

∞
∑

k=1

bkz
k and (1 + z)2(1−β)eiα cosα = 1 +

∞
∑

k=1

(−1)kckz
k,

and r ∈ (0, 1). As in [11], it suffices to show that for each N ∈ N,

(7)

N
∑

k=1

k|bk|
2r2k ≤

N
∑

k=1

k|ck|
2r2k

holds. In order to prove the inequality (7), we begin to observe that

e−iα zg
′(z)

g(z)
= e−iα − e−iα zf

′(z)

f(z)
, z ∈ D.

Since f ∈ Sα(β), there exists an analytic function ω : D → D such that

e−iα zg
′(z)

g(z)
= 2(1− β) cosα

zω(z)

1 + zω(z)
, z ∈ D,

or, equivalently

g′(z) = (γg(z) − zg′(z))ω(z), z ∈ D,

where γ = 2(1− β)eiα cosα. In terms of power series, this is same as

∞
∑

k=1

kbkz
k−1 =

(

γ +

∞
∑

k=1

(γ − k)bkz
k

)

ω(z), z ∈ D.

But then by the method of Clunie [2] (see also [3, 12, 13]), it follows that

(8)

n−1
∑

k=1

|bk|
2r2(k−1)(k2 − |k − γ|2r2) + |bn|

2r2(n−1)n2 ≤ |γ|2

which upon multiplication by r2 shows that

(9)
n−1
∑

k=1

|bk|
2r2k(k2 − |k − γ|2r2) + |bn|

2r2nn2 ≤ r2|γ|2.
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As the function b(z) = (1 + z)γ satisfies the differential equation

b′(z) = γb(z) − zb′(z), z ∈ D,

it is clear that in the inequalities (9) equality is attained for bk = (−1)kck. We only
have to give the crucial steps and appropriate replacements from [11] as the rest of
proof follows from there.

As in [11], we consider the inequalities (9) for n = 1, . . . , N and multiply the
n-th inequality by a factor λn,N such that the addition of the modified inequalities
results in the left hand side of (7). For the calculation of the factors λn,N , we get the
following system of linear equations

k = k2 λk,N +

N
∑

n=k+1

λn,N(k
2 − |k − γ|2r2), k = 1, . . . , N,

which may be rewritten as

(10)
1

k
= λk,N + (1− a(k))

N
∑

n=k+1

λn,N , k = 1, . . . , N,

with a(k) = |1 − γ
k
|2r2. Here k = N gives λN,N = 1/N . Again, since the matrix of

this system is an upper triangular matrix with positive integers as diagonal elements,
the solution of this system is uniquely determined. Following the method of proof of
[11, Lemma 2], this leads to the following formula for k ≤ N − 1:

(11) λk,N = λk,N−1 −
1

N
(1− a(k))

N−1
∏

m=k+1

a(m).

In order to present a self-contained proof of it without using Cramer’s rule, we would
like to include here a direct and an alternate proof of the last relation. In fact a
comparison of (10) by itself with N replaced by N − 1 shows that

(12) λk,N−1 − λk,N = (1− a(k))

[

N−1
∑

n=k+1

(λn,N − λn,N−1) +
1

N

]

which for k = N − 1 means

λN−1,N−1 − λN−1,N =
1

N
(1− a(N − 1)) =

1

N

(

1−

∣

∣

∣

∣

1−
γ

N − 1

∣

∣

∣

∣

2

r2

)

.

Now, we assume that (11) is true for k = l with l = N − 1, N − 2, . . . , k+1. That is,

(13) λl,N − λl,N−1 = −
1

N
(1− a(l)) Tl+1, Tl+1 =

N−1
∏

m=l+1

a(m),

for l = N − 1, N − 2, . . . , k + 1. Then, by (12), we find that

λk,N−1 − λk,N = (1− a(k))

[

N−1
∑

n=k+1

(λn,N − λn,N−1) +
1

N

]

= (1− a(k))

[

−
1

N

N−1
∑

n=k+1

(1− a(n)) Tn+1 +
1

N

]
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=
1

N
(1− a(k)) [− (1− Tk+1) + 1] =

1

N
(1− a(k))Tk+1

and thus, we have proved (11).
We see that for fixed k ∈ N, N ≥ k, the sequence {λk,N} is a strictly decreasing

sequence with

λk := lim
N→∞

λk,N =
1

k
−

(

1−
∣

∣

∣
1−

γ

k

∣

∣

∣

2

r2
)

Sk

where

Sk =

∞
∑

n=k+1

1

n

n−1
∏

m=k+1

(

∣

∣

∣
1−

γ

m

∣

∣

∣

2

r2
)

, for k ∈ N ∪ {0}.

To prove that λk,N > 0 for all N ∈ N, 1 ≤ k ≤ N, it is sufficient to prove λk ≥ 0
for k ∈ N. The last step concerning non-negativity of the multipliers λk for k ∈ N

is equivalent to proving that

(14) Sk ≤
1

k
(

1−
∣

∣1− γ
k

∣

∣

2
r2
) .

But before that we want to remark that the proof of the said inequality is sufficient
for the proof of the assertion of the theorem, since, as we remarked above, equality
is attained for bk = (−1)kck.

Following the ideas from [11, Proof of Lemma 2], the identity

Sk−1 =
1

k
+
∣

∣

∣
1−

γ

k

∣

∣

∣

2

r2Sk

implies that (14) is equivalent with

(15) Sk−1 ≤
1

k
(

1−
∣

∣1− γ
k

∣

∣

2
r2
) .

To prove (15) we use the inequality

(16)
1

n
(

1−
∣

∣1− γ
n

∣

∣

2
r2
) >

1

(n+ 1)
(

1−
∣

∣1− γ
n+1

∣

∣

2
r2
)

and the identity

(17)
1

n
(

1−
∣

∣1− γ
n

∣

∣

2
r2
) =

1

n
+

∣

∣1− γ
n

∣

∣

2
r2

n
(

1−
∣

∣1− γ
n

∣

∣

2
r2
) ,

which are valid for each n ∈ N. Repeated application of (16) and (17) for n =
k, k + 1, . . . , K results in the inequality

1

k
(

1−
∣

∣1− γ
k

∣

∣

2
r2
) >

K
∑

n=k

1

n

n−1
∏

m=k

(

∣

∣

∣
1−

γ

m

∣

∣

∣

2

r2
)

+

∏K
m=k

(

∣

∣1− γ
m

∣

∣

2
r2
)

K
(

1−
∣

∣1− γ
K

∣

∣

2
r2
)

=: sk,K + Rk,K.

Since 0 < Rk,K < 1/(K(1 − r2)) and limK→∞ sk,K = Sk−1, these inequalities for
k ≤ K imply the inequality (15). The proof of the theorem is complete. �
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