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Abstract. In this article, we study the universal Teichmiiller space T'(1) and give relation-
ship between Tx C T(1) and a more general function space Qg. Our results extend Astala and
Zinsmeister’s BMO-Teichmiiller theory to the Qg-Teichmiiller theory.

1. Introduction

By results of Ahlfors—Bers [1, 2|, Gehring [9] and Astala—Gehring [3], the universal
Teichmiiller space, denoted by T'(1), can be defined as a set of all functions log f’ in
the unit disc D, where f is conformal in D and has a quasiconformal extension to the
complex plane C. Denote by S the set of all mappings log f/(z), where f is conformal
in D. By the Koebe distortion theorem, S is a bounded subset of the Bloch space B
which consists of all functions f analytic in D with

I flls = sup(1 — |2]*)|f'(2)| < oo.
zeD

We know that the universal Teichmiiller space T'(1) is the interior of S in B and as a
bridge between space of univalent functions and general Teichmiiller spaces, it is the
simplest Teichmiiller space. More characterizations of T'(1), see [1] and [10].

The Green function in the unit disc with singularity at a € D is given by g(z,a) =
log m—l(z)‘, where ,(2) = {== is the Mobius transformation of D. There are many
ways to define BMOA, the analytic space of bounded mean oscillation; see [5] and
[8]. For the purposes of this paper, a function f analytic in D is said to belong to

BMOA if

sup [ 1f/(2)g(z0) dA() < o
aeD JD
where dA(z) = dzdy, z = x + iy.

A very useful tool in the study of function spaces is the Carleson measure. For a
subarc I of the unit circle T with ¢(/) < 1, define the Carleson box by

Se(l) = {r¢eG:1-0I)<r<1,(el}, G=D,
STV ceGi1<r<140(),Cel}, G=C\D.
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For 0 < p < 0o, we say that a positive Borel measure v on G is a p-Carleson measure

' (S6(1)
v(Sa
SUp —
rer (D)
When p =1 and G = D, we get the (classical) Carleson measure.

Let f be a C! homeomorphism from one region to another. It is said to be
quasiconformal if

< 00

e
1= |pys(2)|

is bounded, where pf(2) = g—}[(z) is called the complex dilatation of f. Note that if

f is quasiconformal then

Dy (z)

[ lloo = sup |ps(2)] < 1.
zeC

Astala and Zinsmeister 4] introduced a new subset T of T'(1); that is, the set T
consists of all functions log f' € T'(1) and

g (2) (|2 = 1)7" dA(2)

is a Carleson measure on C\D. As important parts of their BMO-Teichmiiller theory,
Astala and Zinsmeister [4] gave the relations between BMOA and T as follows.

Theorem A. 7T is a subset of BMOA.

Theorem B. T is open in BMOA with T, = {logf’ € T; f(D) bounded}
connected. Furthermore, T, and Ty = {log f' € T; f(e?) = oo}, 0 € [0,27], are the
connected components of T .

The main goal of this paper is to introduce subsets, denoted by Tx with weight
K, of the universal Teichmiiller space T'(1) and to give relationship between Tx and
a more general function space Qg, which has attracted a lot of attention in recent
years. Of course, for choosing a special function K, our results are just Theorems A
and B above.

For a nonnegative and nondecreasing function K on [0, 00), the space Qk consists
of analytic functions in D for which

11 = sup /D FIPE (9(za) dA(z) < oo,

If K(t) =1t" for 0 < p < oo, the space Qk gives a Q, space. We refer to [19] and [20]
for the general theory of Q, spaces. In particular, if K(¢) = t, then Qx=BMOA.
Note that Qf spaces are always contained in the Bloch space. By [6], Qx = B if
and only if

/0 K(log(1/r)(1 — 12)2r dr < oo,

We know that Qj is nontrivial, containing non-constant functions, if and only if

L (1—1)? 1
sup / (723K <log—) rdr < oo.
e, Jo (1 —1tr?) r

Throughout this paper we always assume that the condition above is satisfied, so
that the space Qk here is nontrivial. We also assume that K(0) = 0. Otherwise, Qk
coincides with the Dirichlet space [6]. For more results about the spaces Qp, see [6]
and [7].
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To define Tg, we need the following K-Carleson measure. A positive Borel mea-
sure v on G =D or G = C\ D is said to be a K-Carleson measure if

|1—|Z||)
su K dv(z) < 0.
awf (Fy) e

Clearly, if K(t) = t?, then v is a K-Carleson measure on G if and only if |1—|z|[Pdv(z)
is a p-Carleson measure on G.
Define Tk the set of all functions log f’ € T'(1) such that

g () (|2 = 1)7* dA(2)

is a K-Carleson measure on C\ D. Our first observation is that T is not trivial. In
fact, let f(z) = e*. Then the Schwarzian derivative of f

o= (75) -3 (765) -

1 2
Sillo = sup|S ] ==
1S¢llp jlelgl £(2)] <1_|z|2) %

by Theorem I1.5.1 in [10], f is univalent in D and can be extended to a quasiconformal
mapping of the complex plane and the complex dilatation

‘”C):‘%GYO—VW%w@:iGYu—pmz

z

Since

for z in D. This implies
201,12 -2
wr(2)|*(lz|* = 1)*K < ) dA(z
/SC\DU)I @7 =1) 0 (2)

1 2
< C/ Ly <—)
Sp(I) <

Hence, z = log(e®)’ € Tk.
Remark 1. If K;(t) =t, then Tx, = T.

2| -1

(1—M%4K<£U))¢M@g0Kay

Remark 2. Let Ky(t) = t? for 0 < p < oo. By the definition we have that
Tk, = T, coincides with the universal Teichmiiller space T'(1) for 1 < p < co. In
fact, suppose that f is conformal on D and admits a quasiconformal extension to C.
Since ||pf||co < 1, for any I C T, we have

2| — 1 (2 + 27)r

[ mstrer - v (B 5 ) e < G2

Seve()

It is easy to see that 7, C T =T, C T, =T(1) for 0 < p < 1 < ¢ < co. For more
general case, we give a sufficient and necessary condition for Tx = T'(1) in Section 2.
To study Tx we consider the auxiliary function

B K(st)
picls) = oeior K(1)

0 <s < oo,
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which plays a key role in the study of Qk spaces; see [7], [17] and [18] for example.
Our methods require two more constraints on K as follows:

(1.1) /Olwds<oo

S

and

(1.2) / P(5) e s 0<p<a.
1

Sl—i—p

The main results provided in this paper are the following Theorems 1.1 and 1.2,
which not only generalize Theorems A and B, but also the classical theory related to
the Bloch space and the universal Teichmiiller space. In particular, our results are
also new for Q, spaces.

Theorem 1.1. Let K satisfy (1.1) and (1.2). Then Ty is a subset of Qk space.

Theorem 1.2. Let K satisfy (1.1) and (1.2). Then Ty is open in Q. Further-
more, Tgp = {log f’ € Tre: f(D) is bounded} and T ¢ = {log f' € Tx: f(e”) = o},
0 € [0, 27|, are the connected components of T.

In this paper, the letter C' denotes a positive constant whose value may change
from one occurrence to another.

2. Basic properties of Tx spaces
Theorem 2.1. Assume that K(c) > 0 for 0 < ¢ < oo and define K;(t) =
inf(K(t), K(c)). Then Tx = Tk,
Proof. Since K; < K and K; is nondecreasing, it is clear that Tx C Tg,. It
remains to prove that Tx, C Tx.
Let log f' € Tk,. If ¢ > 1, the result is clear. For ¢ < 1 and I C T,

/ 2] =1
S

P 12 (550 ) aac)

)

) /Scmum{z;;(_;@} o (el = 1=K (@(})1) dA(2)
" /SC\DUW{Z:Zufzc} sl (=" = 17K (@(})1) dA(2)

= [ e WP = () aate
! LC\ﬁ(I)ﬂ{z:z(,)l>c} s (= = 7K <|Zg|(;)1) dA(z)

P = 172 (B ) aac)

).
SC\B(I)

+ /év‘C\D(I)ﬂ{Z'lec}(CE(I))_ K(1)dA(z)
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<on [ ustapeer - v (B ) aac)

c\ﬁ(
Hence, log f" € Tx. This proves the theorem. O
The significance of Theorem 2.1 is that the space Tx only depends on the behavior
of K(t) for t close to 0. In particular, when studying Ty spaces, we can always assume
that K(t) = K(c) for t > c.
The following result gives a sufficient and necessary condition for Tx = T'(1).
This result also shows that T # T'(1).

Theorem 2.2. The following are equivalent:

(i) Tic = T(1);
(i) f 20 dt < oo.

Proof. Let us first assume that fol tht) dt < oo. To show Tx = T'(1), we need
only to prove T'(1) C Tk. Indeed,

sup/
ICT JSq\5(1)

< Csup /Sp(l)(l — 22K (15_@')2‘) dA(z).

Let a = (1 — £(I))e® for the middle point e? of I. Then
1—|af> 1
11 —az2 "~ (1)

P 12 (550 ) i)

for all z € Sp(I). Thus

V21212 — 1)2 2] -1 5
?ﬁﬁmwmﬂ”“'l’K<an)M”
< Cilelg/D(l — 22K (1 — |pa(2)?) dA(2) = 7TC/0 tht) dt < oo.

Hence log f' € T and Tx = T'(1).
Conversely, we assume that Tx = T'(1). Define a measurable function p in C as

follows:
I 1<z <10
— 27 Y
()] {O, others.
By Existence Theorem in [10], there is a quasiconformal mapping f in C whose

complex dilatation agrees with p almost everywhere. In this way, f is conformal in
D and admits a quasiconformal extension in C. Hence log f’ € T'(1) and

/ 2| -1
sup
IcTJs

|M@WVF—U*K(€U))mu@<m»

C\ﬁ(I)

1/2 K(t) 1/2 K(t)
5 ﬁ§2A o (1=t

Since

0
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we have

v Kt@ it < 2/01 tht) (1 — (D)) dt

0

C 1—1z
< —sup 1—22_2K<7)dAz
T IcT SD(I)( 1<F) (1) )
< C’sup/ (1—12|))2K (1 _ |Z‘) dA(z)
ICT JSp(I)n{zeD:|z|<1} g(])
+ Csup/ (1— |2]))2K (1 _ ‘Z|) dA(z)
ICT J S$p(Dn{zeD:|2|> 1} (1)
<C+C sup / (1—|z|2)_2K<1_ ‘z|) dA(2)
an<t Jsom) 1)
<C+ C’sup/ (|22 = 1)K <|Z| — 1) dA(z)
ICT J$6 5(1) (1)
-1
—C+ 4Csup/ (2)[2()2)2 — 1) 2K (‘Z| ) dA(z)
ICT J 5o 5(1) (1)
< 0.
The proof of Theorem 2.2 is complete. O

3. Proof of Theorem 1.1

By [15] if K satisfies condition (1.2), we may assume that there exists ¢ > 0 such
that K(t)/tP~¢ is non-increasing and K(2t) ~ K(t) for 0 < t < oco. The following
results will be used in the proof of Theorem 1.1.

Theorem C. [21| Let K satisfy the condition (1.1). If f is conformal on D,
then the following are equivalent:

(i) log f" € Qx;

(ii) (1 —]2%)?]S¢(2)|* dA(z) is a K-Carleson measure on D.

Lemma D. [16] Let K satisfy the conditions (1.1) and (1.2). Let b+a > 1+ p,
b>p and a > 0. There exists € (0,1) and constant C' such that

/ K (1[(—5‘) (1= Jw)*! dA(2) < C’@
D (

1— |2))\-ot8 |1 — w2t S e

for allw € D and arc I on T.
Proof of Theorem 1.1. We prove the result by two steps.
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Step 1. Suppose that f is defined in C \ D instead of D for technical purposes.
Denote by the same notation f for its extension to C. We will show that

sup /
I JSq )

N W(OF . (1-1¢
<0 Ip/st <1—|<\2>2K< ) )d"‘“)'

Note that f is conformal in C \ D. We normalize f such that

fR) =t e

2]

(= Py () dae

at infinity. By the proof of Theorem 1 in [4], we know that
2

(3.1) (lz0f* = 1)?[Ss(20)]* < C o ||£Lf_(2|4

for any zy € C\ D. To prove that (|z|> — 1)?|S;(2)|? dA(2) is a K-Carleson measure
on C\ D, by (3.1), we have to estimate

Jop 2o ()

C\D

dA(C)

We cut the integral above into two parts as follows:

/C\ﬁ(l /SD(z.r ||,Zf— z[4 A(OK<|Z€|(;)1>CM(Z)

e / /D\SD " ||§f—z|4 dA(OK@(;)l)dA(Z"

C\D
Here 21 is the arc with the same center as I but with double length.
Note that if 2 € Sq\5(I), then 1 < [z[ < 1+ 27 and w = 1 € Sp(I). For the
first part, we have

/s =7 <|Zf|(;)1) dd(e) < C/st R (15_(};0') dAw)

< —|C)2K (15?))(') |

The last inequality above holds by taking « = f+ 1 and b = 3 — 8 in Lemma D.

Therefore,
lus (O <|z| _ 1)
e dAQ)K | == | dA
b /C\D(I /SD(21 |C - Z|4 (C) f([) (Z>

WO - (1-1¢
S A K( ) )d““o

s (O ( —|C|)
< C’sup/ K dA(Q).
P oo 01" ey )9
To handle the other part, denote by z; the center of I. Set

S, =Sp(2")={ré¢ eD:1-2%(I)<r<1, £€2"I}, n=1,2,--

and

C\ﬁ(l)
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Let n; be the minimum such that 2"¢(I) > 1. Then S,, = D when n > n;. Write
2= (1+4L(1)/2)z1. If 2 € Sg\p(I) and ¢ € S, \ S;—1, 1 <n < ny, then

2 _9 3
2" < | — 2] 22 (1)

Hence,
3 o1
C—al <l -zl + | - =l < s2ven + ) < 5200
and 2 o _ 4
— T
=zl 2zl =la—al> 270 - == > 5 2 L)

Thus,

2| =1 < () < 8m(4 —7)"127"|¢ — 2]
and

1—[¢| < 2™(I) < 8n(4—m) 7Y ¢ — ).
Note that

==l S IC— 2l +ler — 2l + |21 — 2
3 1
<[C =2l + SUD) + SUT) < |¢ = 2] +27C — 2]

Since K satisfies (1.2), we can assume that K (t)/t?~¢ is non-increasing for some small
¢ > 0. Thus

pef - a0 () i)
-/ 2 [ R aaon ()
C

21|
so/
S

dA(z)
(5 s (O
Z/n\sn 1 dA(C)

|<_Zl|4

Z / K () O
S\Sn_y (1= [C])P7e|C — 2q[#7PFe

R K (3255 ) s (O
DY g MO

(1—1ch)?

W OF . (1-1]
< Csup /st ol < ) ) a4l

Combining our estimates for P, and P», we obtain
2] —

S‘%p/sc\ﬁm('z' 2isy P (B

I
g (€) ( |C|)
< Csup /( - |c\

Therefore, if |y (2)]?(1 — |2]?)"2dA(z) is a K-Carleson measure on D, then (|z]* —
1)2|S4(2)|>dA(z2) is a K-Carleson measure on C \ D.

C\D(I

)dA()
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Step 2. We will prove that if
g (2) P (|2* = 1)72 dA(2)
is a K-Carleson measure on C\ D, then
(1= 12%)%1S(2)|* dA(2)

is a K-Carleson measure on D.
It is well known that, for all univalent functions f,

sup(1 — |2[*)?|Sy(2)] < 6.

zeD

For I C T, if {(I) > %, we have

s S0P (T ) 40
< /{ o (= PSR (S ) dae

1 -2

/{zesDun >2 }(1_|Z‘ 181 K( (1) )dA( )

< 36 / (1= |2]2)- < )
{z€Sp(I):|2[<3}

Ssu — |2 | | V4
+87TJCTZ£) 1 SD(J)(1 271512) K( ((J) )dA( )

4

<C+8m sup / (1—121%?S¢(2)]PK (1 _ ‘Z|) dA(z).
JCT(J)<% J Sp(J) E(J)

699

Thus, it suffices to consider the case ¢(I) < %. Let z € Sp(/) and then g(z) =

3

le Sovp(l') where ((I") = 2((I). If z € Sp(I'), then g(2) € Sg\p(/") where
¢(1") = 6{(I) and I” has the same middle point with I. Clearly, Sp(I) and Sp(I’)

do not contain the center of D. By Step 1,
1—|z]
1—222522K( )dAz
[ Q= ERIsrK () A
2\ 2 2
e
S w w
1 1y’
G ON(G)
Seve’) w w

<cf (uP- 1>2|Sfog<w>|2f<(

C\ﬁ(ll)

el QF - (1-1¢
SCS}%pfsﬂp TEE K( ar) )dA(O‘
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Note that

el OF . (1— ] OB, (1- ¢
Aﬂmu—«va(ﬁu»)dA“*iﬁmmu—wva(euo)dA“>
w11 dAe)
: /Sc\ﬁw (1- };}Q)QK (“I")ﬂ) J2I*

. D (=1
<cap | mmw—wK<w0%W)

C\D
Therefore,
s [ (= BRI R () aac)
1 Jspn (1)
I (1)
< C+Csup / K dA(z2).
W Sy s T — 0 ) 446

We have proved that if log f’ € Tk, then
(1= [21%)%1S¢(2)]* dA(2)

is a K-Carleson measure on D. By Theorem C, log f' € Q. The proof of Theo-
rem 1.1 is complete. O

4. Proof of Theorem 1.2

Before embarking into the details of our proof, let us recall that Of = udf
is called a Beltrami equation if p is measurable and ||| < 1, where p is called
Beltrami coefficient.

Proof of Theorem 1.2. If log f' € Tk, then f has an extension F' with
r(2)[* (|27 = 1) dA(2)

is a K-Carleson measure on C \ D. Moreover, df(D) is a quasicircle. For the
convenience of calculating, we assume that co € df(D). Otherwise, it involves a
Mébius transformation. By Theorem 1.6.1 and Lemma 1.6.2 in [10], f(D) admits a
quasiconformal reflection which is defined as

Az)=F (1/%) . z€ f(D).

Hence F (1) = Ao f(2).

For an analytic function ¢ on D, set ¢(z) = foz e dw. Then ¢ = log¢'.
It means that any analytic function has the form of log¢’. Since log f' € Tk, by
Theorem 1.1, log f' € Q. For some enough small € > 0, set

O ={logg’: |[logg’ —log f'||ox <€}
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To show Tx is open in Q, it suffices to show O C Tg. Clearly, if logg’ € O, then
log g’ € Qk. Write h = go f~'. Hence,
(1=[f'(=)P)?
S = sup |Su(z
15l £ |Sn(2)] EIBE

ze f(D)

. R L A Gl WK
= p |Sg<>f () SfOf ()| |(f_1(z))’|2

z€ f(D)
- su “1(,)) — -1, -1, ,2(1—|f_1(z)|2)2
—Zef(%)|59(f (2)) = S (DI (2)] EIBE
= sup 5,(2) = Sy(2)|(1 = |-

< sup|(log g’ —log f)"|(1 — |2[*)?
zeD

+ 5 supl(og ) )? — ((log FYPI(L — |2

By Lemma 1.3 in [12], we have (1 — |z|?)|(log f’)’| < 6 since f is conformal on D.
Thus,

[log g' + log f'l|ls < [[log g’ — log f'||s + 2| log f[|5
< C|logg" —log f'||ox + 12 < Ce + 12.
Therefore,
1Sull 70y < Clllogg’ —log f'|ls + (Ce + 12) Sup (log g")" = (log f')'1(1 = |2[)
1S
< (Ce+C+12)||logg” —log f'ls
< (Ce+C)||logg" —log f'llox < (Ce+ CO)e.

Note that ¢ is enough small. By Theorem I1.4.1 in [10], & is conformal in f(D) and
there exists an extension H of h to the complex plane C with

L BHQ| | SaE)C = 2PBu(0)
) = ()] = '8H<c>' - ‘2 5. (5 = 2700

for all z € f(D), where ¢ = A\(2) and w = A~!. Since oo € df(D), by formulas (1.6.1)
and (1.6.4) in [10], we have

L (@)
=@l = G
and
aw(0)| < C.
Hence,

512 = 2] ISuEIIC = w(QPlalQl10w ()]
A < 5 g e 2P0u(Q)] ~ 2= [Su@O)E — w(Q)Plow(©)|
C154(2)] el (1= 1f ()P
SR e T e S T ST
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for all z € f(D). Therefore, g = h o f is conformal on D and has a quasiconformal
extension G = H o F' with

MF NH(F>W/8F | + | (F )‘
1+ mppn(F)OF)JoF | — 1 — |ppl|lpa(F )I -

el = Cllpel + (D).

where C' depends only on ||pz||oo and ||y ||eo. Since

e (F(1/2)] = [pa (Ao f(2))] < C[Su(f(2))]

= C|Syor1(f(2)) = Spop1(f(2))]
= C|S,(2) = S4(2)](1 = |22,

we have
[ (F(1/2))]2(1 = |2*)72 < C[Sy(2) = Sp(2)[P(1 = |2*)*.

Since log ¢" and log f’ belong to Q, by Theorem C, |S,(z) — S¢(2)[*(1 — |2]?)*d A(z)
is a K-Carleson measure on D. Then |ug(F(1/2))]2(1 — |z|? ) 2dA(z) is also a K-
Carleson measure on D. Hence, for any arc I,

/. \;Z|Z|<2£c1>)>\2K<\<|(;)1) AK)

C\D(I

SC/M |?|§I/Z & <1f )|z|4
e

:C’/ | ( (1/2 1| Z|) y<c
Sp () (1—1z?)?

o1
which deduces that |py (F(2))[3(]2|? —1)2dA(z) is a K-Carleson measure on C\ D.
Therefore, |ua(2)]?(]z|>—1)72 dA(z) is a K-Carleson measure on C\D. Thus log g’ €
Tix and Tx is open in Q.

Now we consider the connectivity of Tx. As the first step, let u be a Beltrami
coefficient with |||/ < 1 and vanishing outside the unit disk D. Then there exists
a unique mapping f = f* which is conformal in C \ D with expansion f(z) =
z+biz7' + -+ at co and satisfies Beltrami equation 0f = udf in D. Then 9f —1 =
H(0f) = H(udf), where H is the Hilbert transformation. Since H is an isometry
on L*(C),

[H (uOf)l2 = [|10f |2 < llllocl|OF 2,

where || - ||o denotes the L?norm on D. Suppose that u is such a coefficient and
l(2)[*(1 — |2]?)"2dA(z) is a K-Carleson measure on D. For convenience, denote by
g=f" h=f* 0<s,t<1. Checking the proof of Theorem 2 in [4], we have

() = Sh(2) = =2 (2P = 17 [ (1,8(01(C) = o (€)002(0) AA(C)
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where B is the Mgbius tr_ansformation of_C \ D sending oo to z, ®; and ®, are
conformal on C\ D, and 0®1 = 156050P1, 0Ps = p14050P2. We show that

[0®1 — 0P2||2 = [[H (11go50P1) — H (1no50P2) |2 = [[HgopOP1 — pnopOPal|2
< [|pgoBllocl|0P1 — 0Dol2 + |0P2]|2][1gon — Hhoslloo
= || 119l o[ 01 — ODo][2 + [[0Da]|2]|1tg — tinl oo
= t||lloo|0OP1 — 0Py |2 + |0P2 2|t — s|[|4]] -

By the proof of Koebe area theorem in [10],
/ 092(2)PdAGz) < (1 — llnos]2) ™" / Jan(2) dA(2)
D D

— (=) [ dae) < el )
Dy (D)
where Jg, is the Jacobian of ®,. Thus
0P 00
||aq)1 _aq)2||2 < H QHQH/J’H
1= t[pl

where C' depends only on p. Therefore,

15,(2) = S = 01 =17 | [ (40 O001(0) = prenl€)02(0) 4A(C)

[t —s| < Clt —s|,

2

< (e - >—4{ | iesl€) = e >||a<1>1<<>|dA<<>}

22 el 1) {/ 105 (Q)10%: () — acl>2<<>|dA<<>}2

< D0 - / g5 (C) = pines ()P A(C) /D 109,(0)[? dA(C)
20 =107 [ lnen(QP aAQ) [ [01(0) = 002() P dAQ)

< C(=P — 1) {/ LA = “h I 4a(c) + 9, — 90, “‘gh( >|' dA(C)}

< O{Jsf = 1) of |'g*<_ l'|4 4A(Q)

C 2 |IU“9 |2 dA
For any I C T,

2 2 2 2] -1
sup [ (= 715,00) - suaPx (B ) aace

an()

<CS“p/ ot / i aai (Gt ) aace)

Next, let log f' € Tx. Then f has a quasiconformal extension F' in C and its
complex dllatatlon p = pp satisfies that |u(2)|?(|z]? — 1)72dA(z) is a K-Carleson
measure on C\ D. If f* is the mapping with 0 f* = tudf* in C and (f*)~'(c0) =
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f7Y(0), in our second step mainly is to prove that t — log(f*)’, 0 <t <1, isa
continuous path in Q. We also write g = f*, h = f**. By [10] or [4],

[log g’ —log h'|[s < C|t — 5.

Since |u(2)]2(]z)> —1)"2dA(z) is a K-Carleson measure on C\ D, a similar technique
of Step 2 in the proof of Theorem 1.1 shows that (1 — |z|*)?|S,(2) — Su(2)[* dA(z) is
a K-Carleson measure on D. We give some details as follows. Note that

(1= 15 21S,(2) ~ Su(2)]
-2 |(Z) @- (%) -3 ((%) a- (5 <z>) ’
< (1= [+ (logg)(2) ~ (og ()

+ %(1 — [21")*|[((log ¢'(2))")* — ((log ' (2))')?|

< Clllogg’ —logW'||5 + C|llog g’ —log I'|[5(1 — |2[*) (|(log g')'| + | (log 1')'])
< C|llogg —logh'||s < C|t — s|.

If ((I) > %, then

1— 2|

[0 1) = SR (S ) aac
<O [ 0 1PRIS ) — SR dA)

<Clt— s|2/ (1= 222 dA(z) < Clt — |-
|z

Thus, for (1) >

37

—222 z) — 22 1_7|Z| =
[ QeI = sorK () dae

_14]2)2 2 — 2|2 1 — 2] 5
< /{zest:zq}“ 12P)215,(2) — Sa2)] K( = )dA()

—152)2 2) — 2|2 1 —|2] 5
n /{zestwg}“ 12P)215,(2) — S >\K< = )dA()

<Clt—s|*+8r sup / (1= |21%)?S4(2) — Su(2)]PK (1 _ |Z|) dA(z).
JCTU(J)<L JSp () 0(J)

% using the first step and checking the proof of Theorem 1.1, we have

<
[ a1 - SiPK (S ) dac)
<

2 9 lw] —1
¢ / C\Dm(w ~ Sy (0) = S )R (7t ) da(w)

a
< Csup/ / |90 (€) uhw(C)IQdA(OK (Iw\ - 1) dA(w)

¢ — w|* a0y

For ¢(I)

Sos()
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T sl = O . (1=

=0 zp/SDm 11 K( ) )d“““)
a2 — ()2 (1] 1
<omp [ K ( 0 )dA(Z)

o)

2 -1
=Cl|t—s|*s / I1(2) K(M )dA <C|t-s|*
| | 122 Sens(l (]z]2 — 1) o1) (2) <C| |

where ¢(z) = 1. Therefore,

212 2 1 —|z| 2
ap [ (= 1PFIS () - 512) () aAG) < Cle o

ICT

By Corollary 3.2 in [7], we have
sup [ (1= [2P15,(2) = SPK (1= u(2)) dAG) < Cle = s

Thus, for any a € D,

| 0089’ = 1og Y () K (9(2,0)) dAC:)

<C [ logg ~1og Y (PR (1~ () dAC)

<€ [ (= sPPllogg ~ 1o ) P (1 =~ ea(:)) dAC)

<C [ (1= RIS, e) - S1()PK( = o)) dAG)

vo [a-kre|(Z) @-(5) @

g// h”
< Cle— s+ Cltogg’ gl [ | £2)+55(2)
D|Y h

K(1 = ¢a(2)*) dA(2)

K(1 = |¢a(2)[*) dA(2)

2 h//

§C|t—s|2+C’|t—s|2/ g—,(z)+—,(z)
DY h

K(1 = |pa(2)[*) dA(2).

By the proofs of Theorem C and Theorem 1.1,

2

K(1— ga(=)P) dA(2)
§C+C’sup/s()( |z|>|s<>|f<(1 ")dA()

IcT (1)

+ C’sup/ (1—|2*)? ( )
ICT SD()

" "

S+ ()
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e ()
<C+ C’sup/ K dA(z
R S G- 2 Uy ) M)

. Csup/s |,Uh(2)|22K <|Z€|(;)1> dA(2)

ICT J 56 5(1) (2> = 1)

<C+ C’sup/s '“(Z)|2)2K <|Z| _ 1) dA(z).

ret Jsg s (27 — 1 (1)
Therefore,
sup/ |(log g’ — log 1) (2)|° K (g(z,a)) dA(2)
aeD JD
’ —1

SCt—82+Ct—stup/ ()| K<|Z| )dAz

SR E Sop(n (122 =12\ A1) )
< Ot — s/?,

where the constant C' depends only on p and K. We obtain that
[logg" —log I[lg, < Ct — s;

that is, t — log(f"*), 0 <t < 1, is a continuous path in Q. Thus, we have shown
that each log f’ € Tx can be connected with a path to an element logvy’ € Qp,
where 1) = f% is a Mobius transformation. If 1(D) is unbounded, then f(¢) = ¥(()
for some ¢ € T. If /(D) is bounded, then r — logv/(rz), joins logy’ to 0 € Q
and we know that there is a continuous path joins log f” and 0. Hence T, and each
Tk, 0 € [0,27], are connected. Since elements in different classes cannot be joined
even in the Bloch topology [22], we obtain that Tk, and the Tk ¢ are the connected
components of Tx. The proof of Theorem 1.2 is complete.

5. Results on Q¢ spaces

Denote by Qo the space of analytic functions f in D such that
im, [ 17/ K (g(z,0)) dAG:) =0,
‘[l|—)1 D

By [6], Qk o is contained in the little Bloch space By, which is defined as follows:
By ={f € H(D): lim (1~ [s)|f'(:)| = 0.

Moreover, a K-Carleson measure v is vanishing if

: 11— IZII)
lim K dv(z) = 0.
£(I)=0 /SG(I) < (1) )

Let f be conformal on D. By classifying the Carleson boxes to large boxes,
bad boxes and father boxes, Zhou proved Theorem C in [21]. Checking the proof of
Theorem C, we find that the technique to prove (ii) = (i) in Theorem C in [21] can
not be used to prove the similar result on Qg spaces. This section is to present a
short proof of the little version corresponding to Theorem C.

Theorem 5.1. Let K satisfy (1.1). If f is conformal on D, then the following
are equivalent:
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(i) log f' € Qk;
(ii) [S;(2)|*(1 — |2|?)* dA(z) is a vanishing K-Carleson measure on D.

Proof. Suppose g = log f’ € Q. Then both
l9'(2)[?dA(2) and |g"(2)[*(1 — |2[*)* dA(2)
are vanishing K -Carleson measures (see 7] and [18]). Since g € Qi C B,
lg' ()" (1 = [2]*)* dA(=)

is also a vanishing K-Carleson measure. The facts above together with the inequality

Si)P <2(1g )P + 4lgG)), 2€D

imply that |S;(2)[*(1 — |2|*)2dA(z) is a vanishing K-Carleson measure.

On the other hand, suppose that |S;(2)[*(1 — |2]*)?dA(z) is a vanishing K-
Carleson measure on D. First we will show that ¢ = log f € By. For any a € D, let [
be the arc with center & and length ((I) = 2(1—al). Note that |Sy(2)[* is a subhar—

monic function and for a fixed 7(0 < r < 1), the disk E(a,r) = {z: |z—a| < r(1—|a|)}
is contained in Sp([/). If z € E(a,r), then
(I =7)(1—af) <1T—[z] < (1 +7)(1—a]).

Therefore,

[Sp(a)*(1 = la]*)* < 0/ [Sp(2)*(1 = [2[*)* dA(2)

<C/QTWf 0= FE () 40
201 _ [2]2)2 1_|| Py
< [ ISR K () dac)

which deduces that lim,_q [S¢(a)|(1 — |a|?)? = 0. By Theorem 11.1 in [13], g € By.
Next, we prove that g € Q. Recall that Sy = ¢" — %(g/)z, we have

vi= [ WGP PR gz @) dA
<0/W¢ 2P~ eul2)) dAG)
<C [ I8P~ PP = ()P dAC)

+C [ WG = PP~ o)) dAG).
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Note that g € By. For any & > 0, there exists 0 < r(¢) < 1 such that if |z| > r(g),
then (1 — |2]?)|¢'(2)| < e. Thus,

/||> ) |g/(z)l4(1 — |z\2)2K(1 — \%(2)‘2)6114(2)
c K(1 - |pa(2)]?) dA(z
< /br|<>|< (pal)[?) dA()

<80/W¢ 2PPE(1— |gu(2)P) dA(2) < £2CL,.

On the other hand, by Lemma 1.3 in [12],
/< o 9" ()" (1 = [2[) K (1 = Jga(2)*) dA()
<c [ @-BPRO- )P dAw
|z|<r(e)

~cx (<il(\)>) [ -

SCK<ﬁ{3@?)1—a@‘

Therefore,
(1-eC) < C/ 1S5 (2)P(1 = [2]*)* K (1 = |pa(2)]*) dA(2)
D
2(1—Ja?)y 1
K .
+C ( 1—r(e) )l—r(e)
Fix £ such that 1—£2C > 0. Since |S(2)[*(1—|2|?)? dA(z) is a vanishing K-Carleson
measure, by Corollary 3.2 in [7],

lim [ 15,1 = sFPR(L = pu(2)) dAG) =

la|]—1
These facts together with K(0) = 0, we obtain that I, — 0 as |a| — 1. By Corol-
lary 3.2 in |7] again, |¢”(2)[*(1—]2|*)? dA(z) is a vanishing K-Carleson measure which
means that g € Q. O

6. Final remark

In fact, the little versions of Theorems 1.1 and 1.2 are also true. Let T de-
note the set of all functions log f* on D where f is conformal on D and admits a
quasiconformal extension to C with a dilatation s such that

g (2)*(|2]* — 1)"*dA(z)
is a vanishing K-Carleson measure on C\D. Let K satisfy (1.1) and (1.2). Checking
the proof of Theorems 1.1 and 1.2, using Theorem 5.1, we obtain

Theorem 6.1. Let K satisfy (1.1) and (1.2). Then Tk, is a subset of Qg
space.
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Theorem 6.2. Let K satisfy (1.1) and (1.2). Then Tk, is open in Q.
Furthermore, T o = {logf' € Tko: f(D) is bounded} and Tk g0 = {logf €
Tro: f(e?) = oo}, 0 € [0,27], are the connected components of Ty .
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