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Abstract. In this article, we study the universal Teichmüller space T (1) and give relation-

ship between TK ⊂ T (1) and a more general function space QK . Our results extend Astala and

Zinsmeister’s BMO-Teichmüller theory to the QK-Teichmüller theory.

1. Introduction

By results of Ahlfors–Bers [1, 2], Gehring [9] and Astala–Gehring [3], the universal
Teichmüller space, denoted by T (1), can be defined as a set of all functions log f ′ in
the unit disc D, where f is conformal in D and has a quasiconformal extension to the
complex plane C. Denote by S the set of all mappings log f ′(z), where f is conformal
in D. By the Koebe distortion theorem, S is a bounded subset of the Bloch space B
which consists of all functions f analytic in D with

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| <∞.

We know that the universal Teichmüller space T (1) is the interior of S in B and as a
bridge between space of univalent functions and general Teichmüller spaces, it is the
simplest Teichmüller space. More characterizations of T (1), see [1] and [10].

The Green function in the unit disc with singularity at a ∈ D is given by g(z, a) =
log 1

|ϕa(z)|
, where ϕa(z) =

a−z
1−āz

is the Möbius transformation of D. There are many

ways to define BMOA, the analytic space of bounded mean oscillation; see [5] and
[8]. For the purposes of this paper, a function f analytic in D is said to belong to
BMOA if

sup
a∈D

ˆ

D

|f ′(z)|2g(z, a) dA(z) <∞,

where dA(z) = dx dy, z = x+ iy.
A very useful tool in the study of function spaces is the Carleson measure. For a

subarc I of the unit circle T with ℓ(I) < 1, define the Carleson box by

SG(I) =

{

{rζ ∈ G : 1− ℓ(I) < r < 1, ζ ∈ I}, G = D,

{rζ ∈ G : 1 < r < 1 + ℓ(I), ζ ∈ I}, G = C \D.
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For 0 < p <∞, we say that a positive Borel measure ν on G is a p-Carleson measure
if

sup
I⊂T

ν(SG(I))

(ℓ(I))p
<∞.

When p = 1 and G = D, we get the (classical) Carleson measure.
Let f be a C1 homeomorphism from one region to another. It is said to be

quasiconformal if

Df(z) =
1 + |µf(z)|

1− |µf(z)|

is bounded, where µf(z) =
∂f
∂f
(z) is called the complex dilatation of f . Note that if

f is quasiconformal then
‖µf‖∞ = sup

z∈C
|µf(z)| < 1.

Astala and Zinsmeister [4] introduced a new subset T of T (1); that is, the set T
consists of all functions log f ′ ∈ T (1) and

|µf(z)|
2(|z|2 − 1)−1 dA(z)

is a Carleson measure on C\D. As important parts of their BMO-Teichmüller theory,
Astala and Zinsmeister [4] gave the relations between BMOA and T as follows.

Theorem A. T is a subset of BMOA.

Theorem B. T is open in BMOA with Tb = {log f ′ ∈ T ; f(D) bounded}
connected. Furthermore, Tb and Tθ = {log f ′ ∈ T ; f(eiθ) = ∞}, θ ∈ [0, 2π], are the
connected components of T .

The main goal of this paper is to introduce subsets, denoted by TK with weight
K, of the universal Teichmüller space T (1) and to give relationship between TK and
a more general function space QK , which has attracted a lot of attention in recent
years. Of course, for choosing a special function K, our results are just Theorems A
and B above.

For a nonnegative and nondecreasing function K on [0,∞), the space QK consists
of analytic functions in D for which

‖f‖2QK
= sup

a∈D

ˆ

D

|f ′(z)|
2
K (g(z, a)) dA(z) <∞.

If K(t) = tp for 0 ≤ p <∞, the space QK gives a Qp space. We refer to [19] and [20]
for the general theory of Qp spaces. In particular, if K(t) = t, then QK=BMOA.
Note that QK spaces are always contained in the Bloch space. By [6], QK = B if
and only if

ˆ 1

0

K(log(1/r))(1− r2)−2r dr <∞.

We know that QK is nontrivial, containing non-constant functions, if and only if

sup
t∈(0,1)

ˆ 1

0

(1− t)2

(1− tr2)3
K

(

log
1

r

)

r dr <∞.

Throughout this paper we always assume that the condition above is satisfied, so
that the space QK here is nontrivial. We also assume that K(0) = 0. Otherwise, QK

coincides with the Dirichlet space [6]. For more results about the spaces QK , see [6]
and [7].
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To define TK , we need the following K-Carleson measure. A positive Borel mea-
sure ν on G = D or G = C \D is said to be a K-Carleson measure if

sup
I⊂T

ˆ

SG(I)

K

(

|1− |z||

ℓ(I)

)

dν(z) <∞.

Clearly, if K(t) = tp, then ν is a K-Carleson measure on G if and only if |1−|z||pdν(z)
is a p-Carleson measure on G.

Define TK the set of all functions log f ′ ∈ T (1) such that

|µf(z)|
2(|z|2 − 1)−2 dA(z)

is a K-Carleson measure on C \D. Our first observation is that TK is not trivial. In
fact, let f(z) = ez. Then the Schwarzian derivative of f

Sf(z) =

(

f ′′(z)

f ′(z)

)′

−
1

2

(

f ′′(z)

f ′(z)

)2

= −
1

2
.

Since

‖Sf‖D = sup
z∈D

|Sf(z)|

(

1

1− |z|2

)−2

=
1

2
,

by Theorem II.5.1 in [10], f is univalent in D and can be extended to a quasiconformal
mapping of the complex plane and the complex dilatation

µf

(

1

z̄

)

= −
1

2

(z

z̄

)2

(1− |z|2)2Sf(z) =
1

4

(z

z̄

)2

(1− |z|2)2

for z in D. This implies
ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C

ˆ

SD(I)

∣

∣

∣

∣

µf

(

1

z̄

)
∣

∣

∣

∣

2

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z) ≤ CK(1).

Hence, z = log(ez)′ ∈ TK .

Remark 1. If K1(t) = t, then TK1 = T .

Remark 2. Let K2(t) = tp for 0 < p < ∞. By the definition we have that
TK2 = Tp coincides with the universal Teichmüller space T (1) for 1 < p < ∞. In
fact, suppose that f is conformal on D and admits a quasiconformal extension to C.
Since ‖µf‖∞ < 1, for any I ⊂ T, we have

ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K2

(

|z| − 1

ℓ(I)

)

dA(z) ≤
(2 + 2π)p−1

2(p− 1)
.

It is easy to see that Tp ⊂ T = T1 ⊂ Tq = T (1) for 0 < p < 1 < q < ∞. For more
general case, we give a sufficient and necessary condition for TK = T (1) in Section 2.

To study TK we consider the auxiliary function

ϕK(s) = sup
0≤t≤1

K(st)

K(t)
, 0 < s <∞,
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which plays a key role in the study of QK spaces; see [7], [17] and [18] for example.
Our methods require two more constraints on K as follows:

(1.1)

ˆ 1

0

ϕK(s)

s
ds <∞

and

(1.2)

ˆ ∞

1

ϕK(s)

s1+p
ds <∞, 0 < p < 2.

The main results provided in this paper are the following Theorems 1.1 and 1.2,
which not only generalize Theorems A and B, but also the classical theory related to
the Bloch space and the universal Teichmüller space. In particular, our results are
also new for Qp spaces.

Theorem 1.1. Let K satisfy (1.1) and (1.2). Then TK is a subset of QK space.

Theorem 1.2. Let K satisfy (1.1) and (1.2). Then TK is open in QK . Further-
more, TK,b = {log f ′ ∈ TK : f(D) is bounded} and TK,θ = {log f ′ ∈ TK : f(eiθ) = ∞},
θ ∈ [0, 2π], are the connected components of TK .

In this paper, the letter C denotes a positive constant whose value may change
from one occurrence to another.

2. Basic properties of TK spaces

Theorem 2.1. Assume that K(c) > 0 for 0 < c < ∞ and define K1(t) =
inf(K(t), K(c)). Then TK = TK1 .

Proof. Since K1 ≤ K and K1 is nondecreasing, it is clear that TK ⊂ TK1. It
remains to prove that TK1 ⊂ TK .

Let log f ′ ∈ TK1. If c ≥ 1, the result is clear. For c < 1 and I ⊂ T,
ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

=

ˆ

S
C\D(I)∩{z: |z|−1

ℓ(I)
<c}

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

+

ˆ

S
C\D(I)∩{z: |z|−1

ℓ(I)
≥c}

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

=

ˆ

S
C\D(I)∩{z: |z|−1

ℓ(I)
<c}

|µf(z)|
2(|z|2 − 1)−2K1

(

|z| − 1

ℓ(I)

)

dA(z)

+

ˆ

S
C\D(I)∩{z: |z|−1

ℓ(I)
≥c}

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤

ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K1

(

|z| − 1

ℓ(I)

)

dA(z)

+

ˆ

S
C\D(I)∩{z: |z|−1

ℓ(I)
≥c}

(cℓ(I))−2K(1) dA(z)
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≤ C +

ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K1

(

|z| − 1

ℓ(I)

)

dA(z).

Hence, log f ′ ∈ TK . This proves the theorem. �

The significance of Theorem 2.1 is that the space TK only depends on the behavior
ofK(t) for t close to 0. In particular, when studying TK spaces, we can always assume
that K(t) = K(c) for t ≥ c.

The following result gives a sufficient and necessary condition for TK = T (1).
This result also shows that T 6= T (1).

Theorem 2.2. The following are equivalent:

(i) TK = T (1);

(ii)
´ 1

0
K(t)
t2

dt <∞.

Proof. Let us first assume that
´ 1

0
K(t)
t2

dt < ∞. To show TK = T (1), we need
only to prove T (1) ⊂ TK . Indeed,

sup
I⊂T

ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C sup
I⊂T

ˆ

SD(I)

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z).

Let a = (1− ℓ(I))eiθ for the middle point eiθ of I. Then

1− |a|2

|1− āz|2
≈

1

ℓ(I)

for all z ∈ SD(I). Thus

sup
I⊂T

ˆ

S
C\D(I)

|µf(z)|
2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C sup
a∈D

ˆ

D

(1− |z|2)−2K(1− |ϕa(z)|
2) dA(z) = πC

ˆ 1

0

K(t)

t2
dt <∞.

Hence log f ′ ∈ TK and TK = T (1).
Conversely, we assume that TK = T (1). Define a measurable function µ in C as

follows:

|µ(z)| =

{

1
2
, 1 < |z| < 10,

0, others.

By Existence Theorem in [10], there is a quasiconformal mapping f in C whose
complex dilatation agrees with µ almost everywhere. In this way, f is conformal in
D and admits a quasiconformal extension in C. Hence log f ′ ∈ T (1) and

sup
I⊂T

ˆ

S
C\D(I)

|µ(z)|2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z) <∞.

Since
ˆ 1/2

0

K(t)

t2
dt ≤ 2

ˆ 1/2

0

K(t)

t2
(1− t) dt,
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we have

ˆ 1/2

0

K(t)

t2
dt ≤ 2

ˆ 1

0

K(t)

t2
(1− tℓ(I)) dt

≤ 2

ˆ 1

1−ℓ(I)

ℓ(I)

(1− |z|)2
K

(

1− |z|

ℓ(I)

)

d|z|

≤
C

π
sup
I⊂T

ˆ

SD(I)

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C sup
I⊂T

ˆ

SD(I)∩{z∈D:|z|≤ 1
2
}

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z)

+ C sup
I⊂T

ˆ

SD(I)∩{z∈D:|z|> 1
2
}

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C + C sup
ℓ(I)≤ 1

2

ˆ

SD(I)

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C + C sup
I⊂T

ˆ

S
C\D(I)

(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

= C + 4C sup
I⊂T

ˆ

S
C\D(I)

|µ(z)|2(|z|2 − 1)−2K

(

|z| − 1

ℓ(I)

)

dA(z)

<∞.

The proof of Theorem 2.2 is complete. �

3. Proof of Theorem 1.1

By [15] if K satisfies condition (1.2), we may assume that there exists c > 0 such
that K(t)/tp−c is non-increasing and K(2t) ≈ K(t) for 0 < t < ∞. The following
results will be used in the proof of Theorem 1.1.

Theorem C. [21] Let K satisfy the condition (1.1). If f is conformal on D,
then the following are equivalent:

(i) log f ′ ∈ QK ;
(ii) (1− |z|2)2|Sf(z)|

2 dA(z) is a K-Carleson measure on D.

Lemma D. [16] Let K satisfy the conditions (1.1) and (1.2). Let b+α ≥ 1+ p,
b ≥ p and α > 0. There exists β ∈ (0, 1) and constant C such that

ˆ

D

K
(

1−|z|
ℓ(I)

)

(1− |w|2)b−1

(1− |z|)1−α+β |1− w̄z|b+α
dA(z) ≤ C

K
(

1−|w|
ℓ(I)

)

(1− |w|)β

for all w ∈ D and arc I on T.

Proof of Theorem 1.1. We prove the result by two steps.
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Step 1. Suppose that f is defined in C \D instead of D for technical purposes.
Denote by the same notation f for its extension to C. We will show that

sup
I

ˆ

S
C\D(I)

(|z|2 − 1)2|Sf(z)|
2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C sup
I

ˆ

SD(I)

|µf(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ).

Note that f is conformal in C \D. We normalize f such that

f(z) = z +
b1
z
+ · · ·

at infinity. By the proof of Theorem 1 in [4], we know that

(3.1) (|z0|
2 − 1)2|Sf(z0)|

2 ≤ C

ˆ

D

|µf(ζ)|
2

|ζ − z0|4
dA(ζ)

for any z0 ∈ C \D. To prove that (|z|2 − 1)2|Sf(z)|
2 dA(z) is a K-Carleson measure

on C \D, by (3.1), we have to estimate
ˆ

S
C\D(I)

ˆ

D

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z).

We cut the integral above into two parts as follows:

P1 =

ˆ

S
C\D(I)

ˆ

SD(2I)

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z)

and

P2 =

ˆ

S
C\D(I)

ˆ

D\SD(2I)

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z).

Here 2I is the arc with the same center as I but with double length.
Note that if z ∈ S

C\D(I), then 1 < |z| ≤ 1 + 2π and w = 1
z̄
∈ SD(I). For the

first part, we have
ˆ

S
C\D(I)

|ζ − z|−4K

(

|z| − 1

ℓ(I)

)

dA(z) ≤ C

ˆ

SD(I)

|1− w̄ζ |−4K

(

1− |w|

ℓ(I)

)

dA(w)

≤ C(1− |ζ |)−2K

(

1− |ζ |

ℓ(I)

)

.

The last inequality above holds by taking α = β + 1 and b = 3 − β in Lemma D.
Therefore,

P1 =

ˆ

S
C\D(I)

ˆ

SD(2I)

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C

ˆ

SD(2I)

|µf(ζ)|
2

(1− |ζ |)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ)

≤ C sup
I

ˆ

SD(I)

|µf(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ).

To handle the other part, denote by zI the center of I. Set

Sn = SD(2
nI) = {rξ ∈ D : 1− 2nℓ(I) < r < 1, ξ ∈ 2nI}, n = 1, 2, · · · .
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Let nI be the minimum such that 2nIℓ(I) ≥ 1. Then Sn = D when n ≥ nI . Write
z1 = (1 + ℓ(I)/2)zI . If z ∈ S

C\D(I) and ζ ∈ Sn \ Sn−1, 1 < n < nI , then

2

π
2n−2ℓ(I) ≤ |ζ − zI | ≤

3

2
2nℓ(I).

Hence,

|ζ − z1| ≤ |ζ − zI |+ |zI − z1| ≤
3

2
2nℓ(I) +

ℓ(I)

2
≤ 3 · 2nℓ(I)

and

|ζ − z1| ≥ |ζ − zI | − |zI − z1| ≥
2

π
2n−2ℓ(I)−

ℓ(I)

2
≥

4− π

8π
2nℓ(I).

Thus,
|z| − 1 < ℓ(I) ≤ 8π(4− π)−12−n|ζ − z1|

and
1− |ζ | < 2nℓ(I) ≤ 8π(4− π)−1|ζ − z1|.

Note that

|ζ − z1| ≤ |ζ − z| + |zI − z|+ |zI − z1|

≤ |ζ − z| +
3

2
ℓ(I) +

1

2
ℓ(I) ≤ |ζ − z| + 2π|ζ − z|.

Since K satisfies (1.2), we can assume that K(t)/tp−c is non-increasing for some small
c > 0. Thus

P2 =

ˆ

S
C\D(I)

ˆ

D\SD(2I)

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z)

=

ˆ

S
C\D(I)

nI
∑

n=2

ˆ

Sn\Sn−1

|µf(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C

ˆ

S
C\D(I)

dA(z)

nI
∑

n=2

ˆ

Sn\Sn−1

K
(

|ζ−z1|
2nℓ(I)

)

|µf(ζ)|
2

|ζ − z1|4
dA(ζ)

≤ C(ℓ(I))2
∞
∑

n=2

ˆ

Sn\Sn−1

K
(

1−|ζ|
2nℓ(I)

)

|µf(ζ)|
2

(1− |ζ |)p−c|ζ − z1|4−p+c
dA(ζ)

≤ C(ℓ(I))2
∞
∑

n=2

1

(2nℓ(I))2

ˆ

Sn

K
(

1−|ζ|
2nℓ(I)

)

|µf(ζ)|
2

(1− |ζ |)2
dA(ζ)

≤ C sup
I

ˆ

SD(I)

|µf(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ).

Combining our estimates for P1 and P2, we obtain

sup
I

ˆ

S
C\D(I)

(|z|2 − 1)2|Sf(z)|
2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C sup
I

ˆ

SD(I)

|µf(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ).

Therefore, if |µf(z)|
2(1 − |z|2)−2dA(z) is a K-Carleson measure on D, then (|z|2 −

1)2|Sf(z)|
2dA(z) is a K-Carleson measure on C \D.
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Step 2. We will prove that if

|µf(z)|
2(|z|2 − 1)−2 dA(z)

is a K-Carleson measure on C \D, then

(1− |z|2)2|Sf(z)|
2 dA(z)

is a K-Carleson measure on D.
It is well known that, for all univalent functions f ,

sup
z∈D

(1− |z|2)2|Sf(z)| ≤ 6.

For I ⊂ T, if ℓ(I) > 1
3
, we have

ˆ

SD(I)

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤

ˆ

{z∈SD(I):|z|≤ 3
4
}

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

+

ˆ

{z∈SD(I):|z|> 3
4
}

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ 36

ˆ

{z∈SD(I):|z|≤ 3
4
}

(1− |z|2)−2K

(

1− |z|

ℓ(I)

)

dA(z)

+ 8π sup
J⊂T,ℓ(J)≤ 1

4

ˆ

SD(J)

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(J)

)

dA(z)

≤ C + 8π sup
J⊂T,ℓ(J)≤ 1

4

ˆ

SD(J)

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(J)

)

dA(z).

Thus, it suffices to consider the case ℓ(I) ≤ 1
3
. Let z ∈ SD(I) and then g(z) =

1
z
∈ S

C\D(I
′) where ℓ(I ′) = 2ℓ(I). If z ∈ SD(I

′), then g(z) ∈ S
C\D(I

′′) where

ℓ(I ′′) = 6ℓ(I) and I ′′ has the same middle point with I. Clearly, SD(I) and SD(I
′)

do not contain the center of D. By Step 1,
ˆ

SD(I)

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤

ˆ

S
C\D(I′)

(

1−

∣

∣

∣

∣

1

w

∣

∣

∣

∣

2
)2 ∣
∣

∣

∣

Sf

(

1

w

)
∣

∣

∣

∣

2

K

(

1−
∣

∣

1
w

∣

∣

ℓ(I ′)/2

)

dA(w)

|w|4

=

ˆ

S
C\D(I′)

(|w|2 − 1)2

∣

∣

∣

∣

∣

Sf

(

1

w

)((

1

w

)′)2
∣

∣

∣

∣

∣

2

K

(

|w| − 1

ℓ(I ′)/2

∣

∣

∣

∣

1

w

∣

∣

∣

∣

)

dA(w)

≤ C

ˆ

S
C\D(I′)

(|w|2 − 1)2|Sf◦g(w)|
2K

(

|w| − 1

ℓ(I ′)

)

dA(w)

≤ C sup
I′

ˆ

SD(I′)

|µf◦g(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I ′)

)

dA(ζ).
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Note that
ˆ

SD(I′)

|µf◦g(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I ′)

)

dA(ζ) =

ˆ

SD(I′)

|µf(1/ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I ′)

)

dA(ζ)

≤

ˆ

S
C\D(I′′)

|µf(z)|
2

(

1−
∣

∣

1
z

∣

∣

2
)2K

(

1−
∣

∣

1
z

∣

∣

ℓ(I ′′)/2

)

dA(z)

|z|4

≤ C sup
I′′

ˆ

S
C\D(I′′)

|µf(z)|
2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I ′′)

)

dA(z).

Therefore,

sup
I

ˆ

SD(I)

(1− |z|2)2|Sf(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C + C sup
I′′

ˆ

S
C\D(I′′)

|µf(z)|
2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I ′′)

)

dA(z).

We have proved that if log f ′ ∈ TK , then

(1− |z|2)2|Sf(z)|
2 dA(z)

is a K-Carleson measure on D. By Theorem C, log f ′ ∈ QK . The proof of Theo-
rem 1.1 is complete. �

4. Proof of Theorem 1.2

Before embarking into the details of our proof, let us recall that ∂f = µ∂f
is called a Beltrami equation if µ is measurable and ‖µ‖∞ < 1, where µ is called
Beltrami coefficient.

Proof of Theorem 1.2. If log f ′ ∈ TK , then f has an extension F with

|µF (z)|
2(|z|2 − 1)−2 dA(z)

is a K-Carleson measure on C \ D. Moreover, ∂f(D) is a quasicircle. For the
convenience of calculating, we assume that ∞ ∈ ∂f(D). Otherwise, it involves a
Möbius transformation. By Theorem I.6.1 and Lemma I.6.2 in [10], ∂f(D) admits a
quasiconformal reflection which is defined as

λ(z) = F
(

1/f−1(z)
)

, z ∈ f(D).

Hence F
(

1
z̄

)

= λ ◦ f(z).

For an analytic function ψ on D, set φ(z) =
´ z

0
eψ(w) dw. Then ψ = log φ′.

It means that any analytic function has the form of log φ′. Since log f ′ ∈ TK , by
Theorem 1.1, log f ′ ∈ QK . For some enough small ε > 0, set

O = {log g′ : ‖ log g′ − log f ′‖QK
< ε}.
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To show TK is open in QK , it suffices to show O ⊂ TK . Clearly, if log g′ ∈ O, then
log g′ ∈ QK . Write h = g ◦ f−1. Hence,

‖Sh‖f(D) = sup
z∈f(D)

|Sh(z)|
(1− |f−1(z)|2)2

|(f−1(z))′|2

= sup
z∈f(D)

|Sg◦f−1(z)− Sf◦f−1(z)|
(1− |f−1(z)|2)2

|(f−1(z))′|2

= sup
z∈f(D)

|Sg(f
−1(z))− Sf(f

−1(z))||(f−1(z))′|2
(1− |f−1(z)|2)2

|(f−1(z))′|2

= sup
z∈D

|Sg(z)− Sf (z)|(1− |z|2)2

≤ sup
z∈D

|(log g′ − log f ′)′′|(1− |z|2)2

+
1

2
sup
z∈D

|((log g′)′)2 − ((log f ′)′)2|(1− |z|2)2.

By Lemma 1.3 in [12], we have (1 − |z|2)|(log f ′)′| ≤ 6 since f is conformal on D.
Thus,

‖ log g′ + log f ′‖B ≤ ‖ log g′ − log f ′‖B + 2‖ log f ′‖B

≤ C‖ log g′ − log f ′‖QK
+ 12 ≤ Cε+ 12.

Therefore,

‖Sh‖f(D) ≤ C‖ log g′ − log f ′‖B + (Cε+ 12) sup
z∈D

|(log g′)′ − (log f ′)′|(1− |z|2)

≤ (Cε+ C + 12)‖ log g′ − log f ′‖B

≤ (Cε+ C)‖ log g′ − log f ′‖QK
≤ (Cε+ C)ε.

Note that ε is enough small. By Theorem II.4.1 in [10], h is conformal in f(D) and
there exists an extension H of h to the complex plane C with

|µH(λ(z))| = |µH(ζ)| =

∣

∣

∣

∣

∂H(ζ)

∂H(ζ)

∣

∣

∣

∣

=

∣

∣

∣

∣

Sh(z)(ζ − z)2∂ω(ζ)

2 + Sh(z)(ζ − z)2∂ω(ζ)

∣

∣

∣

∣

for all z ∈ f(D), where ζ = λ(z) and ω = λ−1. Since ∞ ∈ ∂f(D), by formulas (I.6.1)
and (I.6.4) in [10], we have

|ζ − ω(ζ)| ≤ C
1− |(f−1(ω(ζ)))|2

|(f−1(ω(ζ)))′|

and

|∂ω(ζ)| ≤ C.

Hence,

|µH(λ(z))| ≤
|Sh(z)(ζ − z)2∂ω(ζ)|

2− |Sh(z)(ζ − z)2∂ω(ζ)|
=

|Sh(z)||ζ − ω(ζ)|2|µω(ζ)||∂ω(ζ)|

2− |Sh(ω(ζ))||ζ − ω(ζ)|2|∂ω(ζ)|

≤
C|Sh(z)|

(1−|f−1(ω(ζ))|2)2

|(f−1(ω(ζ)))′ |2

2− C‖Sh‖f(D)

≤ C|Sh(z)|
(1− |f−1(z)|2)2

|(f−1(z))′|2
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for all z ∈ f(D). Therefore, g = h ◦ f is conformal on D and has a quasiconformal
extension G = H ◦ F with

|µG| =

∣

∣

∣

∣

∣

µF + µH(F )(∂F )/∂F

1 + µFµH(F )(∂F )/∂F

∣

∣

∣

∣

∣

≤
|µF |+ |µH(F )|

1− |µF ||µH(F )|
≤ C(|µF |+ |µH(F )|),

where C depends only on ‖µF‖∞ and ‖µH‖∞. Since

|µH(F (1/z̄))| = |µH(λ ◦ f(z))| ≤ C|Sh(f(z))|
(1− |f−1(f(z))|2)2

|(f−1)′(f(z))|2

= C|Sg◦f−1(f(z))− Sf◦f−1(f(z))|
(1− |z|2)2

|(f−1)′(f(z))|2

= C|Sg(z)− Sf (z)|(1− |z|2)2,

we have

|µH(F (1/z̄))|
2(1− |z|2)−2 ≤ C|Sg(z)− Sf(z)|

2(1− |z|2)2.

Since log g′ and log f ′ belong to QK , by Theorem C, |Sg(z)−Sf (z)|
2(1− |z|2)2dA(z)

is a K-Carleson measure on D. Then |µH(F (1/z̄))|
2(1 − |z|2)−2dA(z) is also a K-

Carleson measure on D. Hence, for any arc I,

ˆ

S
C\D(I)

|µH(F (ζ))|
2

(|ζ |2 − 1)2
K

(

|ζ | − 1

ℓ(I)

)

dA(ζ)

≤ C

ˆ

SD(I)

|µH(F (1/z̄))|
2

(|1/z̄|2 − 1)2
K

(

1− |z|

ℓ(I)

)

dA(z)

|z|4

= C

ˆ

SD(I)

|µH(F (1/z̄))|
2

(1− |z|2)2
K

(

1− |z|

ℓ(I)

)

dA(z) ≤ C,

which deduces that |µH(F (z))|
2(|z|2−1)−2 dA(z) is a K-Carleson measure on C \D.

Therefore, |µG(z)|
2(|z|2−1)−2 dA(z) is a K-Carleson measure on C\D. Thus log g′ ∈

TK and TK is open in QK .
Now we consider the connectivity of TK . As the first step, let µ be a Beltrami

coefficient with ‖µ‖∞ < 1 and vanishing outside the unit disk D. Then there exists
a unique mapping f = fµ which is conformal in C \ D with expansion f(z) =
z+ b1z

−1+ · · · at ∞ and satisfies Beltrami equation ∂f = µ∂f in D. Then ∂f − 1 =
H(∂f) = H(µ∂f), where H is the Hilbert transformation. Since H is an isometry
on L2(C),

‖H(µ∂f)‖2 = ‖µ∂f‖2 ≤ ‖µ‖∞‖∂f‖2,

where ‖ · ‖2 denotes the L2-norm on D. Suppose that µ is such a coefficient and
|µ(z)|2(1− |z|2)−2dA(z) is a K-Carleson measure on D. For convenience, denote by
g = f tµ, h = f sµ, 0 ≤ s, t ≤ 1. Checking the proof of Theorem 2 in [4], we have

Sg(z)− Sh(z) = −
6

π
(|z|2 − 1)−2

ˆ

D

(µg◦B(ζ)∂Φ1(ζ)− µh◦B(ζ)∂Φ2(ζ)) dA(ζ),
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where B is the Möbius transformation of C \ D sending ∞ to z, Φ1 and Φ2 are
conformal on C \D, and ∂Φ1 = µg◦B∂Φ1, ∂Φ2 = µh◦B∂Φ2. We show that

‖∂Φ1 − ∂Φ2‖2 = ‖H(µg◦B∂Φ1)−H(µh◦B∂Φ2)‖2 = ‖µg◦B∂Φ1 − µh◦B∂Φ2‖2

≤ ‖µg◦B‖∞‖∂Φ1 − ∂Φ2‖2 + ‖∂Φ2‖2‖µg◦B − µh◦B‖∞

= ‖µg‖∞‖∂Φ1 − ∂Φ2‖2 + ‖∂Φ2‖2‖µg − µh‖∞

= t‖µ‖∞‖∂Φ1 − ∂Φ2‖2 + ‖∂Φ2‖2|t− s|‖µ‖∞.

By the proof of Koebe area theorem in [10],
ˆ

D

|∂Φ2(z)|
2dA(z) ≤ (1− ‖µh◦B‖

2
∞)−1

ˆ

D

JΦ2(z) dA(z)

= (1− ‖µh‖
2
∞)−1

ˆ

Φ2(D)

dA(z) ≤ π(1− ‖µ‖2∞)−1,

where JΦ2 is the Jacobian of Φ2. Thus

‖∂Φ1 − ∂Φ2‖2 ≤
‖∂Φ2‖2‖µ‖∞
1− t‖µ‖∞

|t− s| ≤ C|t− s|,

where C depends only on µ. Therefore,

|Sg(z)− Sh(z)|
2 =

36

π2
(|z|2 − 1)−4

∣

∣

∣

∣

ˆ

D

(µg◦B(ζ)∂Φ1(ζ)− µh◦B(ζ)∂Φ2(ζ)) dA(ζ)

∣

∣

∣

∣

2

≤
72

π2
(|z|2 − 1)−4

{
ˆ

D

|µg◦B(ζ)− µh◦B(ζ)||∂Φ1(ζ)| dA(ζ)

}2

+
72

π2
(|z|2 − 1)−4

{
ˆ

D

|µh◦B(ζ)||∂Φ1(ζ)− ∂Φ2(ζ)| dA(ζ)

}2

≤
72

π2
(|z|2 − 1)−4

ˆ

D

|µg◦B(ζ)− µh◦B(ζ)|
2 dA(ζ)

ˆ

D

|∂Φ1(ζ)|
2 dA(ζ)

+
72

π2
(|z|2 − 1)−4

ˆ

D

|µh◦B(ζ)|
2 dA(ζ)

ˆ

D

|∂Φ1(ζ)− ∂Φ2(ζ)|
2 dA(ζ)

≤ C(|z|2 − 1)−2

{
ˆ

D

|µg(ζ)− µh(ζ)|
2

|ζ − z|4
dA(ζ) + ‖∂Φ1 − ∂Φ2‖

2
2

ˆ

D

|µh(ζ)|
2

|ζ − z|4
dA(ζ)

}

≤ C(|z|2 − 1)−2|t− s|2
ˆ

D

|µ(ζ)|2

|ζ − z|4
dA(ζ)

= C(|z|2 − 1)−2

ˆ

D

|µg(ζ)− µh(ζ)|
2

|ζ − z|4
dA(ζ).

For any I ⊂ T,

sup
I

ˆ

S
C\D(I)

(|z|2 − 1)2|Sg(z)− Sh(z)|
2K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C sup
I

ˆ

S
C\D(I)

ˆ

D

|µg(ζ)− µh(ζ)|
2

|ζ − z|4
dA(ζ)K

(

|z| − 1

ℓ(I)

)

dA(z).

Next, let log f ′ ∈ TK . Then f has a quasiconformal extension F in C and its
complex dilatation µ = µF satisfies that |µ(z)|2(|z|2 − 1)−2 dA(z) is a K-Carleson
measure on C \D. If f tµ is the mapping with ∂f tµ = tµ∂f tµ in C and (f tµ)−1(∞) =
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f−1(∞), in our second step mainly is to prove that t → log(f tµ)′, 0 ≤ t ≤ 1, is a
continuous path in QK . We also write g = f tµ, h = f sµ. By [10] or [4],

‖ log g′ − log h′‖B ≤ C|t− s|.

Since |µ(z)|2(|z|2−1)−2 dA(z) is a K-Carleson measure on C\D, a similar technique
of Step 2 in the proof of Theorem 1.1 shows that (1− |z|2)2|Sg(z)− Sh(z)|

2 dA(z) is
a K-Carleson measure on D. We give some details as follows. Note that

(1− |z|2)2|Sg(z)− Sh(z)|

= (1− |z|2)2

∣

∣

∣

∣

∣

(

g′′

g′

)′

(z)−

(

h′′

h′

)′

(z)−
1

2

(

(

g′′

g′

)2

(z)−

(

h′′

h′

)2

(z)

)
∣

∣

∣

∣

∣

≤ (1− |z|2)2 |(log g′)′′(z)− (log h′)′′(z)|

+
1

2
(1− |z|2)2

∣

∣((log g′(z))′)2 − ((log h′(z))′)2
∣

∣

≤ C‖ log g′ − log h′‖B + C‖ log g′ − log h′‖B(1− |z|2) (|(log g′)′|+ |(log h′)′|)

≤ C‖ log g′ − log h′‖B ≤ C|t− s|.

If ℓ(I) > 1
3
, then

ˆ

|z|≤ 3
4

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C

ˆ

|z|≤ 3
4

(1− |z|2)2|Sg(z)− Sh(z)|
2 dA(z)

≤ C|t− s|2
ˆ

|z|≤ 3
4

(1− |z|2)−2 dA(z) ≤ C|t− s|2.

Thus, for ℓ(I) > 1
3
,

ˆ

SD(I)

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤

ˆ

{z∈SD(I):|z|≤ 3
4
}

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

+

ˆ

{z∈SD(I):|z|> 3
4
}

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C|t− s|2 + 8π sup
J⊂T,ℓ(J)≤ 1

4

ˆ

SD(J)

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(J)

)

dA(z).

For ℓ(I) ≤ 1
3
, using the first step and checking the proof of Theorem 1.1, we have

ˆ

SD(I)

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

≤ C

ˆ

S
C\D(I)

(|w|2 − 1)2|Sg◦ψ(w)− Sh◦ψ(w)|
2K

(

|w| − 1

ℓ(I)

)

dA(w)

≤ C sup
I

ˆ

S
C\D(I)

ˆ

D

|µg◦ψ(ζ)− µh◦ψ(ζ)|
2

|ζ − w|4
dA(ζ)K

(

|w| − 1

ℓ(I)

)

dA(w)
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≤ C sup
I

ˆ

SD(I)

|µg◦ψ(ζ)− µh◦ψ(ζ)|
2

(1− |ζ |2)2
K

(

1− |ζ |

ℓ(I)

)

dA(ζ)

≤ C sup
I⊂T

ˆ

S
C\D(I)

|µg(z)− µh(z)|
2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z)

= C|t− s|2 sup
I⊂T

ˆ

S
C\D(I)

|µ(z)|2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z) ≤ C|t− s|2,

where ψ(z) = 1
z
. Therefore,

sup
I⊂T

ˆ

SD(I)

(1− |z|2)2|Sg(z)− Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z) ≤ C|t− s|2.

By Corollary 3.2 in [7], we have

sup
a∈D

ˆ

D

(1− |z|2)2|Sg(z)− Sh(z)|
2K
(

1− |ϕa(z)|
2
)

dA(z) ≤ C|t− s|2.

Thus, for any a ∈ D,
ˆ

D

|(log g′ − log h′)′(z)|2K(g(z, a)) dA(z)

≤ C

ˆ

D

|(log g′ − log h′)′(z)|2K(1− |ϕa(z)|
2) dA(z)

≤ C

ˆ

D

(1− |z|2)2|(log g′ − log h′)′′(z)|2K(1− |ϕa(z)|
2) dA(z)

≤ C

ˆ

D

(1− |z|2)2|Sg(z)− Sf (z)|
2K(1− |ϕa(z)|

2) dA(z)

+ C

ˆ

D

(1− |z|2)2

∣

∣

∣

∣

∣

(

g′′

g′

)2

(z)−

(

h′′

h′

)2

(z)

∣

∣

∣

∣

∣

2

K(1− |ϕa(z)|
2) dA(z)

≤ C|t− s|2 + C‖ log g′ − log h′‖2B

ˆ

D

∣

∣

∣

∣

g′′

g′
(z) +

h′′

h′
(z)

∣

∣

∣

∣

2

K(1− |ϕa(z)|
2) dA(z)

≤ C|t− s|2 + C|t− s|2
ˆ

D

∣

∣

∣

∣

g′′

g′
(z) +

h′′

h′
(z)

∣

∣

∣

∣

2

K(1− |ϕa(z)|
2) dA(z).

By the proofs of Theorem C and Theorem 1.1,

ˆ

D

∣

∣

∣

∣

g′′

g′
(z) +

h′′

h′
(z)

∣

∣

∣

∣

2

K(1− |ϕa(z)|
2) dA(z)

≤ C + C sup
I⊂T

ˆ

SD(I)

(1− |z|2)2|Sg(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)

+ C sup
I⊂T

ˆ

SD(I)

(1− |z|2)2|Sh(z)|
2K

(

1− |z|

ℓ(I)

)

dA(z)
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≤ C + C sup
I⊂T

ˆ

S
C\D(I)

|µg(z)|
2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z)

+ C sup
I⊂T

ˆ

S
C\D(I)

|µh(z)|
2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C + C sup
I⊂T

ˆ

S
C\D(I)

|µ(z)|2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z).

Therefore,

sup
a∈D

ˆ

D

|(log g′ − log h′)′(z)|2K(g(z, a)) dA(z)

≤ C|t− s|2 + C|t− s|2 sup
I⊂T

ˆ

S
C\D(I)

|µ(z)|2

(|z|2 − 1)2
K

(

|z| − 1

ℓ(I)

)

dA(z)

≤ C|t− s|2,

where the constant C depends only on µ and K. We obtain that

‖ log g′ − log h′‖QK
≤ C|t− s|;

that is, t → log(f tµ)′, 0 ≤ t ≤ 1, is a continuous path in QK . Thus, we have shown
that each log f ′ ∈ TK can be connected with a path to an element logψ′ ∈ QK ,
where ψ = f 0µ is a Möbius transformation. If ψ(D) is unbounded, then f(ζ) = ψ(ζ)
for some ζ ∈ T. If ψ(D) is bounded, then r → logψ′(rz), joins logψ′ to 0 ∈ QK

and we know that there is a continuous path joins log f ′ and 0. Hence TK,b and each
TK,θ, θ ∈ [0, 2π], are connected. Since elements in different classes cannot be joined
even in the Bloch topology [22], we obtain that TK,b and the TK,θ are the connected
components of TK . The proof of Theorem 1.2 is complete.

5. Results on QK,0 spaces

Denote by QK,0 the space of analytic functions f in D such that

lim
|a|→1

ˆ

D

|f ′(z)|
2
K (g(z, a)) dA(z) = 0.

By [6], QK,0 is contained in the little Bloch space B0, which is defined as follows:

B0 = {f ∈ H(D) : lim
|z|→1

(1− |z|2)|f ′(z)| = 0}.

Moreover, a K-Carleson measure ν is vanishing if

lim
ℓ(I)→0

ˆ

SG(I)

K

(

|1− |z||

ℓ(I)

)

dν(z) = 0.

Let f be conformal on D. By classifying the Carleson boxes to large boxes,
bad boxes and father boxes, Zhou proved Theorem C in [21]. Checking the proof of
Theorem C, we find that the technique to prove (ii) ⇒ (i) in Theorem C in [21] can
not be used to prove the similar result on QK,0 spaces. This section is to present a
short proof of the little version corresponding to Theorem C.

Theorem 5.1. Let K satisfy (1.1). If f is conformal on D, then the following
are equivalent:
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(i) log f ′ ∈ QK,0;
(ii) |Sf(z)|

2(1− |z|2)2 dA(z) is a vanishing K-Carleson measure on D.

Proof. Suppose g = log f ′ ∈ QK,0. Then both

|g′(z)|2 dA(z) and |g′′(z)|2(1− |z|2)2 dA(z)

are vanishing K-Carleson measures (see [7] and [18]). Since g ∈ QK,0 ⊂ B,

|g′(z)|4(1− |z|2)2 dA(z)

is also a vanishing K-Carleson measure. The facts above together with the inequality

|Sf(z)|
2 ≤ 2

(

|g′′(z)|2 +
1

4
|g′(z)|4

)

, z ∈ D,

imply that |Sf(z)|
2(1− |z|2)2dA(z) is a vanishing K-Carleson measure.

On the other hand, suppose that |Sf(z)|
2(1 − |z|2)2dA(z) is a vanishing K-

Carleson measure on D. First we will show that g = log f ′ ∈ B0. For any a ∈ D, let I
be the arc with center a

|a|
and length ℓ(I) = 2(1−|a|). Note that |Sf(z)|

2 is a subhar-

monic function and for a fixed r(0 < r < 1), the disk E(a, r) = {z : |z−a| < r(1−|a|)}
is contained in SD(I). If z ∈ E(a, r), then

(1− r)(1− |a|) ≤ 1− |z| ≤ (1 + r)(1− |a|).

Therefore,

|Sf(a)|
2(1− |a|2)4 ≤ C

ˆ

E(a,r)

|Sf(z)|
2(1− |z|2)2 dA(z)

≤ C

ˆ

E(a,r)

|Sf(z)|
2(1− |z|2)2K

(

1− |z|

2(1− |a|)

)

dA(z)

≤ C

ˆ

SD(I)

|Sf(z)|
2(1− |z|2)2K

(

1− |z|

ℓ(I)

)

dA(z),

which deduces that lim|a|→1 |Sf(a)|(1− |a|2)2 = 0. By Theorem 11.1 in [13], g ∈ B0.
Next, we prove that g ∈ QK,0. Recall that Sf = g′′ − 1

2
(g′)2, we have

Ia : =

ˆ

D

|g′′(z)|2(1− |z|2)2K(g(z, a)) dA(z)

≤ C

ˆ

D

|g′′(z)|2(1− |z|2)2K(1− |ϕa(z)|
2) dA(z)

≤ C

ˆ

D

|Sf(z)|
2(1− |z|2)2K(1− |ϕa(z)|

2) dA(z)

+ C

ˆ

D

|g′(z)|4(1− |z|2)2K(1− |ϕa(z)|
2) dA(z).
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Note that g ∈ B0. For any ε > 0, there exists 0 < r(ε) < 1 such that if |z| > r(ε),
then (1− |z|2)|g′(z)| < ε. Thus,

ˆ

|z|>r(ε)

|g′(z)|4(1− |z|2)2K(1− |ϕa(z)|
2) dA(z)

≤ ε2
ˆ

|z|>r(ε)

|g′(z)|2K(1− |ϕa(z)|
2) dA(z)

≤ ε2C

ˆ

D

|g′′(z)|2(1− |z|2)2K(1− |ϕa(z)|
2) dA(z) ≤ ε2CIa.

On the other hand, by Lemma 1.3 in [12],
ˆ

|z|≤r(ε)

|g′(z)|4(1− |z|2)2K(1− |ϕa(z)|
2) dA(z)

≤ C

ˆ

|z|≤r(ε)

(1− |z|2)−2K(1− |ϕa(z)|
2) dA(z)

≤ CK

(

2(1− |a|2)

1− r(ε)

)
ˆ

|z|≤r(ε)

(1− |z|2)−2 dA(z)

≤ CK

(

2(1− |a|2)

1− r(ε)

)

1

1− r(ε)
.

Therefore,

(1− ε2C)Ia ≤ C

ˆ

D

|Sf(z)|
2(1− |z|2)2K(1− |ϕa(z)|

2) dA(z)

+ CK
(2(1− |a|2)

1− r(ε)

) 1

1− r(ε)
.

Fix ε such that 1−ε2C > 0. Since |Sf(z)|
2(1−|z|2)2 dA(z) is a vanishing K-Carleson

measure, by Corollary 3.2 in [7],

lim
|a|→1

ˆ

D

|Sf(z)|
2(1− |z|2)2K(1− |ϕa(z)|

2) dA(z) = 0.

These facts together with K(0) = 0, we obtain that Ia → 0 as |a| → 1. By Corol-
lary 3.2 in [7] again, |g′′(z)|2(1−|z|2)2 dA(z) is a vanishing K-Carleson measure which
means that g ∈ QK,0. �

6. Final remark

In fact, the little versions of Theorems 1.1 and 1.2 are also true. Let TK,0 de-
note the set of all functions log f ′ on D where f is conformal on D and admits a
quasiconformal extension to C with a dilatation µf such that

|µf(z)|
2(|z|2 − 1)−2dA(z)

is a vanishing K-Carleson measure on C\D. Let K satisfy (1.1) and (1.2). Checking
the proof of Theorems 1.1 and 1.2, using Theorem 5.1, we obtain

Theorem 6.1. Let K satisfy (1.1) and (1.2). Then TK,0 is a subset of QK,0

space.
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Theorem 6.2. Let K satisfy (1.1) and (1.2). Then TK,0 is open in QK,0.
Furthermore, TK, b,0 = {log f ′ ∈ TK,0 : f(D) is bounded} and TK, θ,0 = {log f ′ ∈
TK,0 : f(e

iθ) = ∞}, θ ∈ [0, 2π], are the connected components of TK,0.
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