UNIVERSAL TEICHMÜLLER SPACE AND \mathcal{Q}_{K} SPACES

Hasi Wulan and Fangqin Ye
Shantou University, Department of Mathematics Shantou 515063, P. R. China; wulan@stu.edu.cn
Shantou University, Department of Mathematics
Shantou 515063, P. R. China; yefqah@163.com

Abstract

In this article, we study the universal Teichmüller space $T(1)$ and give relationship between $\mathcal{T}_{K} \subset T(1)$ and a more general function space \mathcal{Q}_{K}. Our results extend Astala and Zinsmeister's BMO-Teichmüller theory to the \mathcal{Q}_{K}-Teichmüller theory.

1. Introduction

By results of Ahlfors-Bers [1, 2], Gehring [9] and Astala-Gehring [3], the universal Teichmüller space, denoted by $T(1)$, can be defined as a set of all functions $\log f^{\prime}$ in the unit disc \mathbf{D}, where f is conformal in \mathbf{D} and has a quasiconformal extension to the complex plane C. Denote by S the set of all mappings $\log f^{\prime}(z)$, where f is conformal in D. By the Koebe distortion theorem, S is a bounded subset of the Bloch space \mathcal{B} which consists of all functions f analytic in \mathbf{D} with

$$
\|f\|_{\mathcal{B}}=\sup _{z \in \mathbf{D}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|<\infty
$$

We know that the universal Teichmüller space $T(1)$ is the interior of S in \mathcal{B} and as a bridge between space of univalent functions and general Teichmüller spaces, it is the simplest Teichmüller space. More characterizations of $T(1)$, see [1] and [10].

The Green function in the unit disc with singularity at $a \in \mathbf{D}$ is given by $g(z, a)=$ $\log \frac{1}{\left|\varphi_{a}(z)\right|}$, where $\varphi_{a}(z)=\frac{a-z}{1-\bar{a} z}$ is the Möbius transformation of \mathbf{D}. There are many ways to define BMOA, the analytic space of bounded mean oscillation; see [5] and [8]. For the purposes of this paper, a function f analytic in \mathbf{D} is said to belong to BMOA if

$$
\sup _{a \in \mathbf{D}} \int_{\mathbf{D}}\left|f^{\prime}(z)\right|^{2} g(z, a) d A(z)<\infty
$$

where $d A(z)=d x d y, z=x+i y$.
A very useful tool in the study of function spaces is the Carleson measure. For a subarc I of the unit circle \mathbf{T} with $\ell(I)<1$, define the Carleson box by

$$
S_{G}(I)= \begin{cases}\{r \zeta \in G: 1-\ell(I)<r<1, \zeta \in I\}, & G=\mathbf{D}, \\ \{r \zeta \in G: 1<r<1+\ell(I), \zeta \in I\}, & G=\mathbf{C} \backslash \overline{\mathbf{D}} .\end{cases}
$$

[^0]For $0<p<\infty$, we say that a positive Borel measure ν on G is a p-Carleson measure if

$$
\sup _{I \subset \mathbf{T}} \frac{\nu\left(S_{G}(I)\right)}{(\ell(I))^{p}}<\infty .
$$

When $p=1$ and $G=\mathbf{D}$, we get the (classical) Carleson measure.
Let f be a C^{1} homeomorphism from one region to another. It is said to be quasiconformal if

$$
D_{f}(z)=\frac{1+\left|\mu_{f}(z)\right|}{1-\left|\mu_{f}(z)\right|}
$$

is bounded, where $\mu_{f}(z)=\frac{\bar{\partial} f}{\partial f}(z)$ is called the complex dilatation of f. Note that if f is quasiconformal then

$$
\left\|\mu_{f}\right\|_{\infty}=\sup _{z \in \mathbf{C}}\left|\mu_{f}(z)\right|<1 .
$$

Astala and Zinsmeister [4] introduced a new subset \mathcal{T} of $T(1)$; that is, the set \mathcal{T} consists of all functions $\log f^{\prime} \in T(1)$ and

$$
\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-1} d A(z)
$$

is a Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. As important parts of their BMO-Teichmüller theory, Astala and Zinsmeister [4] gave the relations between BMOA and \mathcal{T} as follows.

Theorem A. \mathcal{T} is a subset of BMOA.
Theorem B. \mathcal{T} is open in BMOA with $\mathcal{T}_{b}=\left\{\log f^{\prime} \in \mathcal{T} ; f(\mathbf{D})\right.$ bounded $\}$ connected. Furthermore, \mathcal{T}_{b} and $\mathcal{T}_{\theta}=\left\{\log f^{\prime} \in \mathcal{T} ; f\left(e^{i \theta}\right)=\infty\right\}, \theta \in[0,2 \pi]$, are the connected components of \mathcal{T}.

The main goal of this paper is to introduce subsets, denoted by \mathcal{T}_{K} with weight K, of the universal Teichmüller space $T(1)$ and to give relationship between \mathcal{T}_{K} and a more general function space \mathcal{Q}_{K}, which has attracted a lot of attention in recent years. Of course, for choosing a special function K, our results are just Theorems A and B above.

For a nonnegative and nondecreasing function K on $[0, \infty)$, the space \mathcal{Q}_{K} consists of analytic functions in \mathbf{D} for which

$$
\|f\|_{\mathcal{Q}_{K}}^{2}=\sup _{a \in \mathbf{D}} \int_{\mathbf{D}}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)<\infty .
$$

If $K(t)=t^{p}$ for $0 \leq p<\infty$, the space \mathcal{Q}_{K} gives a \mathcal{Q}_{p} space. We refer to [19] and [20] for the general theory of \mathcal{Q}_{p} spaces. In particular, if $K(t)=t$, then $\mathcal{Q}_{K}=\mathrm{BMOA}$. Note that \mathcal{Q}_{K} spaces are always contained in the Bloch space. By $[6], \mathcal{Q}_{K}=\mathcal{B}$ if and only if

$$
\int_{0}^{1} K(\log (1 / r))\left(1-r^{2}\right)^{-2} r d r<\infty
$$

We know that \mathcal{Q}_{K} is nontrivial, containing non-constant functions, if and only if

$$
\sup _{t \in(0,1)} \int_{0}^{1} \frac{(1-t)^{2}}{\left(1-t r^{2}\right)^{3}} K\left(\log \frac{1}{r}\right) r d r<\infty .
$$

Throughout this paper we always assume that the condition above is satisfied, so that the space \mathcal{Q}_{K} here is nontrivial. We also assume that $K(0)=0$. Otherwise, \mathcal{Q}_{K} coincides with the Dirichlet space [6]. For more results about the spaces \mathcal{Q}_{K}, see [6] and [7].

To define \mathcal{T}_{K}, we need the following K-Carleson measure. A positive Borel measure ν on $G=\mathbf{D}$ or $G=\mathbf{C} \backslash \overline{\mathbf{D}}$ is said to be a K-Carleson measure if

$$
\sup _{I \subset \mathbf{T}} \int_{S_{G}(I)} K\left(\frac{|1-|z||}{\ell(I)}\right) d \nu(z)<\infty
$$

Clearly, if $K(t)=t^{p}$, then ν is a K-Carleson measure on G if and only if $\left|1-|z|^{p} d \nu(z)\right.$ is a p-Carleson measure on G.

Define \mathcal{T}_{K} the set of all functions $\log f^{\prime} \in T(1)$ such that

$$
\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)
$$

is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. Our first observation is that \mathcal{T}_{K} is not trivial. In fact, let $f(z)=e^{z}$. Then the Schwarzian derivative of f

$$
S_{f}(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2}=-\frac{1}{2}
$$

Since

$$
\left\|S_{f}\right\|_{\mathbf{D}}=\sup _{z \in \mathbf{D}}\left|S_{f}(z)\right|\left(\frac{1}{1-|z|^{2}}\right)^{-2}=\frac{1}{2}
$$

by Theorem II.5.1 in [10], f is univalent in \mathbf{D} and can be extended to a quasiconformal mapping of the complex plane and the complex dilatation

$$
\mu_{f}\left(\frac{1}{\bar{z}}\right)=-\frac{1}{2}\left(\frac{z}{\bar{z}}\right)^{2}\left(1-|z|^{2}\right)^{2} S_{f}(z)=\frac{1}{4}\left(\frac{z}{\bar{z}}\right)^{2}\left(1-|z|^{2}\right)^{2}
$$

for z in \mathbf{D}. This implies

$$
\begin{aligned}
& \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \int_{S_{\mathbf{D}}(I)}\left|\mu_{f}\left(\frac{1}{\bar{z}}\right)\right|^{2}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \leq C K(1) .
\end{aligned}
$$

Hence, $z=\log \left(e^{z}\right)^{\prime} \in \mathcal{T}_{K}$.
Remark 1. If $K_{1}(t)=t$, then $\mathcal{T}_{K_{1}}=\mathcal{T}$.
Remark 2. Let $K_{2}(t)=t^{p}$ for $0<p<\infty$. By the definition we have that $\mathcal{T}_{K_{2}}=\mathcal{T}_{p}$ coincides with the universal Teichmüller space $T(1)$ for $1<p<\infty$. In fact, suppose that f is conformal on \mathbf{D} and admits a quasiconformal extension to \mathbf{C}. Since $\left\|\mu_{f}\right\|_{\infty}<1$, for any $I \subset \mathbf{T}$, we have

$$
\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K_{2}\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \leq \frac{(2+2 \pi)^{p-1}}{2(p-1)} .
$$

It is easy to see that $\mathcal{T}_{p} \subset \mathcal{T}=\mathcal{T}_{1} \subset \mathcal{T}_{q}=T(1)$ for $0<p<1<q<\infty$. For more general case, we give a sufficient and necessary condition for $\mathcal{T}_{K}=T(1)$ in Section 2.

To study \mathcal{T}_{K} we consider the auxiliary function

$$
\varphi_{K}(s)=\sup _{0 \leq t \leq 1} \frac{K(s t)}{K(t)}, \quad 0<s<\infty
$$

which plays a key role in the study of \mathcal{Q}_{K} spaces; see [7], [17] and [18] for example. Our methods require two more constraints on K as follows:

$$
\begin{equation*}
\int_{0}^{1} \frac{\varphi_{K}(s)}{s} d s<\infty \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\varphi_{K}(s)}{s^{1+p}} d s<\infty, \quad 0<p<2 \tag{1.2}
\end{equation*}
$$

The main results provided in this paper are the following Theorems 1.1 and 1.2, which not only generalize Theorems A and B, but also the classical theory related to the Bloch space and the universal Teichmüller space. In particular, our results are also new for \mathcal{Q}_{p} spaces.

Theorem 1.1. Let K satisfy (1.1) and (1.2). Then \mathcal{T}_{K} is a subset of \mathcal{Q}_{K} space.
Theorem 1.2. Let K satisfy (1.1) and (1.2). Then \mathcal{T}_{K} is open in \mathcal{Q}_{K}. Furthermore, $\mathcal{T}_{K, b}=\left\{\log f^{\prime} \in \mathcal{T}_{K}: f(\mathbf{D})\right.$ is bounded $\}$ and $\mathcal{T}_{K, \theta}=\left\{\log f^{\prime} \in \mathcal{T}_{K}: f\left(e^{i \theta}\right)=\infty\right\}$, $\theta \in[0,2 \pi]$, are the connected components of \mathcal{T}_{K}.

In this paper, the letter C denotes a positive constant whose value may change from one occurrence to another.

2. Basic properties of $\boldsymbol{\mathcal { T }}_{\boldsymbol{K}}$ spaces

Theorem 2.1. Assume that $K(c)>0$ for $0<c<\infty$ and define $K_{1}(t)=$ $\inf (K(t), K(c))$. Then $\mathcal{T}_{K}=\mathcal{T}_{K_{1}}$.

Proof. Since $K_{1} \leq K$ and K_{1} is nondecreasing, it is clear that $\mathcal{T}_{K} \subset \mathcal{T}_{K_{1}}$. It remains to prove that $\mathcal{T}_{K_{1}} \subset \mathcal{T}_{K}$.

Let $\log f^{\prime} \in \mathcal{T}_{K_{1}}$. If $c \geq 1$, the result is clear. For $c<1$ and $I \subset \mathbf{T}$,

$$
\begin{aligned}
& \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& =\int_{S_{\mathbf{C \backslash \overline { \mathbf { D } }}}(I) \cap\left\{z: \frac{|z|-1}{\ell(I)}<c\right\}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \quad+\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I) \cap\left\{z: \frac{|z|-1}{\ell(I)} \geq c\right\}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& =\int_{S_{\mathbf{C \backslash \overline { \mathbf { D } }}}(I) \cap\left\{z: \frac{|z|-1}{\ell(I)}<c\right\}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K_{1}\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \quad+\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I) \cap\left\{z:: \frac{|z|-1}{\ell(I)} \geq c\right\}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq \int_{S_{\mathrm{C} \mathrm{\backslash} \mathrm{\overline{ } \mathrm{\mathbf{D}}}}(I)}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K_{1}\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \quad+\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I) \cap\left\{z: \frac{|z|-1}{\ell(I)} \geq c\right\}}(c \ell(I))^{-2} K(1) d A(z)
\end{aligned}
$$

$$
\leq C+\int_{S_{\left.\mathbf{C} \backslash \mathbf{D}^{(}\right)}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K_{1}\left(\frac{|z|-1}{\ell(I)}\right) d A(z)
$$

Hence, $\log f^{\prime} \in \mathcal{T}_{K}$. This proves the theorem.
The significance of Theorem 2.1 is that the space \mathcal{T}_{K} only depends on the behavior of $K(t)$ for t close to 0 . In particular, when studying \mathcal{T}_{K} spaces, we can always assume that $K(t)=K(c)$ for $t \geq c$.

The following result gives a sufficient and necessary condition for $\mathcal{T}_{K}=T(1)$. This result also shows that $\mathcal{T} \neq T(1)$.

Theorem 2.2. The following are equivalent:
(i) $\mathcal{T}_{K}=T(1)$;
(ii) $\int_{0}^{1} \frac{K(t)}{t^{2}} d t<\infty$.

Proof. Let us first assume that $\int_{0}^{1} \frac{K(t)}{t^{2}} d t<\infty$. To show $\mathcal{T}_{K}=T(1)$, we need only to prove $T(1) \subset \mathcal{T}_{K}$. Indeed,

$$
\begin{aligned}
& \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) .
\end{aligned}
$$

Let $a=(1-\ell(I)) e^{i \theta}$ for the middle point $e^{i \theta}$ of I. Then

$$
\frac{1-|a|^{2}}{|1-\bar{a} z|^{2}} \approx \frac{1}{\ell(I)}
$$

for all $z \in S_{\mathbf{D}}(I)$. Thus

$$
\begin{aligned}
& \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)}\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \sup _{a \in \mathbf{D}} \int_{\mathbf{D}}\left(1-|z|^{2}\right)^{-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)=\pi C \int_{0}^{1} \frac{K(t)}{t^{2}} d t<\infty .
\end{aligned}
$$

Hence $\log f^{\prime} \in \mathcal{T}_{K}$ and $\mathcal{T}_{K}=T(1)$.
Conversely, we assume that $\mathcal{T}_{K}=T(1)$. Define a measurable function μ in \mathbf{C} as follows:

$$
|\mu(z)|= \begin{cases}\frac{1}{2}, & 1<|z|<10 \\ 0, & \text { others }\end{cases}
$$

By Existence Theorem in [10], there is a quasiconformal mapping f in \mathbf{C} whose complex dilatation agrees with μ almost everywhere. In this way, f is conformal in \mathbf{D} and admits a quasiconformal extension in \mathbf{C}. Hence $\log f^{\prime} \in T(1)$ and

$$
\sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}|\mu(z)|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z)<\infty .
$$

Since

$$
\int_{0}^{1 / 2} \frac{K(t)}{t^{2}} d t \leq 2 \int_{0}^{1 / 2} \frac{K(t)}{t^{2}}(1-t) d t
$$

we have

$$
\begin{aligned}
\int_{0}^{1 / 2} \frac{K(t)}{t^{2}} d t \leq & 2 \int_{0}^{1} \frac{K(t)}{t^{2}}(1-t \ell(I)) d t \\
\leq & 2 \int_{1-\ell(I)}^{1} \frac{\ell(I)}{(1-|z|)^{2}} K\left(\frac{1-|z|}{\ell(I)}\right) d|z| \\
\leq & \frac{C}{\pi} \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
\leq & C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I) \cap\left\{z \in \mathbf{D}:|z| \leq \frac{1}{2}\right\}}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& +C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I) \cap\left\{z \in \mathbf{D}:|z|>\frac{1}{2}\right\}}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
\leq & C+C \sup _{\ell(I) \leq \frac{1}{2}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
\leq & C+C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
= & C+4 C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C \backslash (\overline { \mathbf { D } }}}(I)}|\mu(z)|^{2}\left(|z|^{2}-1\right)^{-2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
< & \infty .
\end{aligned}
$$

The proof of Theorem 2.2 is complete.

3. Proof of Theorem 1.1

By [15] if K satisfies condition (1.2), we may assume that there exists $c>0$ such that $K(t) / t^{p-c}$ is non-increasing and $K(2 t) \approx K(t)$ for $0<t<\infty$. The following results will be used in the proof of Theorem 1.1.

Theorem C. [21] Let K satisfy the condition (1.1). If f is conformal on \mathbf{D}, then the following are equivalent:
(i) $\log f^{\prime} \in \mathcal{Q}_{K}$;
(ii) $\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} d A(z)$ is a K-Carleson measure on \mathbf{D}.

Lemma D. [16] Let K satisfy the conditions (1.1) and (1.2). Let $b+\alpha \geq 1+p$, $b \geq p$ and $\alpha>0$. There exists $\beta \in(0,1)$ and constant C such that

$$
\int_{\mathbf{D}} \frac{K\left(\frac{1-|z|}{\ell(I)}\right)\left(1-|w|^{2}\right)^{b-1}}{(1-|z|)^{1-\alpha+\beta}|1-\bar{w} z|^{b+\alpha}} d A(z) \leq C \frac{K\left(\frac{1-|w|}{\ell(I)}\right)}{(1-|w|)^{\beta}}
$$

for all $w \in \mathbf{D}$ and $\operatorname{arc} I$ on \mathbf{T}.
Proof of Theorem 1.1. We prove the result by two steps.

Step 1. Suppose that f is defined in $\mathbf{C} \backslash \overline{\mathbf{D}}$ instead of \mathbf{D} for technical purposes. Denote by the same notation f for its extension to \mathbf{C}. We will show that

$$
\begin{aligned}
& \sup _{I} \int_{S_{\mathbf{C \backslash D}}(I)}\left(|z|^{2}-1\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \sup _{I} \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta)
\end{aligned}
$$

Note that f is conformal in $\mathbf{C} \backslash \overline{\mathbf{D}}$. We normalize f such that

$$
f(z)=z+\frac{b_{1}}{z}+\cdots
$$

at infinity. By the proof of Theorem 1 in [4], we know that

$$
\begin{equation*}
\left(\left|z_{0}\right|^{2}-1\right)^{2}\left|S_{f}\left(z_{0}\right)\right|^{2} \leq C \int_{\mathbf{D}} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{\left|\zeta-z_{0}\right|^{4}} d A(\zeta) \tag{3.1}
\end{equation*}
$$

for any $z_{0} \in \mathbf{C} \backslash \overline{\mathbf{D}}$. To prove that $\left(|z|^{2}-1\right)^{2}\left|S_{f}(z)\right|^{2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$, by (3.1), we have to estimate

$$
\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)} \int_{\mathbf{D}} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z)
$$

We cut the integral above into two parts as follows:

$$
P_{1}=\int_{S_{\mathbf{C} \backslash \mathbf{D}^{(I)}}} \int_{S_{\mathbf{D}(2 I)}} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z)
$$

and

$$
P_{2}=\int_{S_{\mathbf{C} \backslash \mathbf{D}}(I)} \int_{\mathbf{D} \backslash S_{\mathbf{D}}(2 I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) .
$$

Here $2 I$ is the arc with the same center as I but with double length.
Note that if $z \in S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)$, then $1<|z| \leq 1+2 \pi$ and $w=\frac{1}{\bar{z}} \in S_{\mathbf{D}}(I)$. For the first part, we have

$$
\begin{aligned}
\int_{S_{C \backslash \overline{\mathbf{D}}}(I)}|\zeta-z|^{-4} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) & \leq C \int_{S_{\mathbf{D}}(I)}|1-\bar{w} \zeta|^{-4} K\left(\frac{1-|w|}{\ell(I)}\right) d A(w) \\
& \leq C(1-|\zeta|)^{-2} K\left(\frac{1-|\zeta|}{\ell(I)}\right)
\end{aligned}
$$

The last inequality above holds by taking $\alpha=\beta+1$ and $b=3-\beta$ in Lemma D . Therefore,

$$
\begin{aligned}
P_{1} & =\int_{S_{\mathbf{C \backslash (}{ }^{(I)}}} \int_{S_{\mathbf{D}}(2 I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \int_{S_{\mathbf{D}}(2 I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{(1-|\zeta|)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta) \\
& \leq C \sup _{I} \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta) .
\end{aligned}
$$

To handle the other part, denote by z_{I} the center of I. Set

$$
S_{n}=S_{\mathbf{D}}\left(2^{n} I\right)=\left\{r \xi \in \mathbf{D}: 1-2^{n} \ell(I)<r<1, \xi \in 2^{n} I\right\}, \quad n=1,2, \cdots
$$

Let n_{I} be the minimum such that $2^{n_{I}} \ell(I) \geq 1$. Then $S_{n}=\mathbf{D}$ when $n \geq n_{I}$. Write $z_{1}=(1+\ell(I) / 2) z_{I}$. If $z \in S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)$ and $\zeta \in S_{n} \backslash S_{n-1}, 1<n<n_{I}$, then

$$
\frac{2}{\pi} 2^{n-2} \ell(I) \leq\left|\zeta-z_{I}\right| \leq \frac{3}{2} 2^{n} \ell(I)
$$

Hence,

$$
\left|\zeta-z_{1}\right| \leq\left|\zeta-z_{I}\right|+\left|z_{I}-z_{1}\right| \leq \frac{3}{2} 2^{n} \ell(I)+\frac{\ell(I)}{2} \leq 3 \cdot 2^{n} \ell(I)
$$

and

$$
\left|\zeta-z_{1}\right| \geq\left|\zeta-z_{I}\right|-\left|z_{I}-z_{1}\right| \geq \frac{2}{\pi} 2^{n-2} \ell(I)-\frac{\ell(I)}{2} \geq \frac{4-\pi}{8 \pi} 2^{n} \ell(I)
$$

Thus,

$$
|z|-1<\ell(I) \leq 8 \pi(4-\pi)^{-1} 2^{-n}\left|\zeta-z_{1}\right|
$$

and

$$
1-|\zeta|<2^{n} \ell(I) \leq 8 \pi(4-\pi)^{-1}\left|\zeta-z_{1}\right|
$$

Note that

$$
\begin{aligned}
\left|\zeta-z_{1}\right| & \leq|\zeta-z|+\left|z_{I}-z\right|+\left|z_{I}-z_{1}\right| \\
& \leq|\zeta-z|+\frac{3}{2} \ell(I)+\frac{1}{2} \ell(I) \leq|\zeta-z|+2 \pi|\zeta-z| .
\end{aligned}
$$

Since K satisfies (1.2), we can assume that $K(t) / t^{p-c}$ is non-increasing for some small $c>0$. Thus

$$
\begin{aligned}
P_{2} & =\int_{S_{\mathbf{C} \backslash \mathbf{D}}(I)} \int_{\mathbf{D} \backslash S_{\mathbf{D}}(2 I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& =\int_{S_{\mathbf{C \backslash} \overline{\mathbf{D}}^{(I)}}} \sum_{n=2}^{n_{I}} \int_{S_{n} \backslash S_{n-1}} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}} d A(z) \sum_{n=2}^{n_{I}} \int_{S_{n} \backslash S_{n-1}} \frac{K\left(\frac{\left|\zeta-z_{1}\right|}{2^{n} \ell(I)}\right)\left|\mu_{f}(\zeta)\right|^{2}}{\left|\zeta-z_{1}\right|^{4}} d A(\zeta) \\
& \leq C(\ell(I))^{2} \sum_{n=2}^{\infty} \int_{S_{n} \backslash S_{n-1}} \frac{K\left(\frac{1-|\zeta|}{2^{n} \ell(I)}\right)\left|\mu_{f}(\zeta)\right|^{2}}{(1-|\zeta|)^{p-c}\left|\zeta-z_{1}\right|^{4-p+c}} d A(\zeta) \\
& \leq C(\ell(I))^{2} \sum_{n=2}^{\infty} \frac{1}{\left(2^{n} \ell(I)\right)^{2}} \int_{S_{n}} \frac{K\left(\frac{1-|\zeta|}{2^{n} \ell(I)}\right)\left|\mu_{f}(\zeta)\right|^{2}}{(1-|\zeta|)^{2}} d A(\zeta) \\
& \leq C \sup _{I} \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta) .
\end{aligned}
$$

Combining our estimates for P_{1} and P_{2}, we obtain

$$
\begin{aligned}
& \sup _{I} \int_{S_{\mathbf{C \backslash D}}(I)}\left(|z|^{2}-1\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \sup _{I} \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{f}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta)
\end{aligned}
$$

Therefore, if $\left|\mu_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{-2} d A(z)$ is a K-Carleson measure on \mathbf{D}, then $\left(|z|^{2}-\right.$ $1)^{2}\left|S_{f}(z)\right|^{2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$.

Step 2. We will prove that if

$$
\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)
$$

is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$, then

$$
\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} d A(z)
$$

is a K-Carleson measure on \mathbf{D}.
It is well known that, for all univalent functions f,

$$
\sup _{z \in \mathbf{D}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right| \leq 6
$$

For $I \subset \mathbf{T}$, if $\ell(I)>\frac{1}{3}$, we have

$$
\begin{aligned}
& \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq \int_{\left\{z \in S_{\mathbf{D}}(I):|z| \leq \frac{3}{4}\right\}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \quad+\int_{\left\{z \in S_{\mathbf{D}}(I):|z|>\frac{3}{4}\right\}}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq 36 \int_{\left\{z \in S_{\mathbf{D}}(I):|z| \leq \frac{3}{4}\right\}}\left(1-|z|^{2}\right)^{-2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \quad+8 \pi \sup _{J \subset \mathbf{T}, \ell(J) \leq \frac{1}{4}} \int_{S_{\mathbf{D}}(J)}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(J)}\right) d A(z) \\
& \leq C+8 \pi \sup _{J \subset \mathbf{T}, \ell(J) \leq \frac{1}{4}} \int_{S_{\mathbf{D}}(J)}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(J)}\right) d A(z) .
\end{aligned}
$$

Thus, it suffices to consider the case $\ell(I) \leq \frac{1}{3}$. Let $z \in S_{\mathbf{D}}(I)$ and then $g(z)=$ $\frac{1}{z} \in S_{\mathbf{C} \backslash \overline{\mathbf{D}}}\left(I^{\prime}\right)$ where $\ell\left(I^{\prime}\right)=2 \ell(I)$. If $z \in S_{\mathbf{D}}\left(I^{\prime}\right)$, then $g(z) \in S_{\mathbf{C} \backslash \overline{\mathbf{D}}}\left(I^{\prime \prime}\right)$ where $\ell\left(I^{\prime \prime}\right)=6 \ell(I)$ and $I^{\prime \prime}$ has the same middle point with I. Clearly, $S_{\mathbf{D}}(I)$ and $S_{\mathbf{D}}\left(I^{\prime}\right)$ do not contain the center of D. By Step 1,

$$
\begin{aligned}
& \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{\left(I^{\prime}\right)}}}\left(1-\left|\frac{1}{w}\right|^{2}\right)^{2}\left|S_{f}\left(\frac{1}{w}\right)\right|^{2} K\left(\frac{1-\left|\frac{1}{w}\right|}{\ell\left(I^{\prime}\right) / 2}\right) \frac{d A(w)}{|w|^{4}} \\
& =\int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{\left(I^{\prime}\right)}}}\left(|w|^{2}-1\right)^{2}\left|S_{f}\left(\frac{1}{w}\right)\left(\left(\frac{1}{w}\right)^{\prime}\right)^{2}\right|^{2} K\left(\frac{|w|-1}{\ell\left(I^{\prime}\right) / 2}\left|\frac{1}{w}\right|\right) d A(w) \\
& \leq C \int_{\left.S_{\mathbf{C} \backslash\left(I^{\prime}\right.}{ }^{\prime}\right)}\left(|w|^{2}-1\right)^{2}\left|S_{f \circ g}(w)\right|^{2} K\left(\frac{|w|-1}{\ell\left(I^{\prime}\right)}\right) d A(w) \\
& \leq C \sup _{I^{\prime}} \int_{S_{\mathbf{D}}\left(I^{\prime}\right)} \frac{\left|\mu_{f \circ g}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell\left(I^{\prime}\right)}\right) d A(\zeta) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\int_{S_{\mathbf{D}\left(I^{\prime}\right)}} \frac{\left|\mu_{f \circ g}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} & K\left(\frac{1-|\zeta|}{\ell\left(I^{\prime}\right)}\right) d A(\zeta)=\int_{S_{\mathbf{D}}\left(I^{\prime}\right)} \frac{\left|\mu_{f}(1 / \zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell\left(I^{\prime}\right)}\right) d A(\zeta) \\
& \leq \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{\left(I^{\prime \prime}\right)}}} \frac{\left|\mu_{f}(z)\right|^{2}}{\left(1-\left|\frac{1}{z}\right|^{2}\right)^{2}} K\left(\frac{1-\left|\frac{1}{z}\right|}{\ell\left(I^{\prime \prime}\right) / 2}\right) \frac{d A(z)}{|z|^{4}} \\
& \leq C \sup _{I^{\prime \prime}} \int_{S_{\mathbf{C} \backslash \mathbf{D}^{\left(I^{\prime \prime}\right)}}} \frac{\left|\mu_{f}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell\left(I^{\prime \prime}\right)}\right) d A(z) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup _{I} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq C+C \sup _{I^{\prime \prime}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}\left(I^{\prime \prime}\right)} \frac{\left|\mu_{f}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell\left(I^{\prime \prime}\right)}\right) d A(z) .
\end{aligned}
$$

We have proved that if $\log f^{\prime} \in \mathcal{T}_{K}$, then

$$
\left(1-|z|^{2}\right)^{2}\left|S_{f}(z)\right|^{2} d A(z)
$$

is a K-Carleson measure on \mathbf{D}. By Theorem $\mathrm{C}, \log f^{\prime} \in \mathcal{Q}_{K}$. The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

Before embarking into the details of our proof, let us recall that $\bar{\partial} f=\mu \partial f$ is called a Beltrami equation if μ is measurable and $\|\mu\|_{\infty}<1$, where μ is called Beltrami coefficient.

Proof of Theorem 1.2. If $\log f^{\prime} \in \mathcal{T}_{K}$, then f has an extension F with

$$
\left|\mu_{F}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)
$$

is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. Moreover, $\partial f(\mathbf{D})$ is a quasicircle. For the convenience of calculating, we assume that $\infty \in \partial f(\mathbf{D})$. Otherwise, it involves a Möbius transformation. By Theorem I.6.1 and Lemma I.6.2 in [10], $\partial f(\mathbf{D})$ admits a quasiconformal reflection which is defined as

$$
\lambda(z)=F\left(1 / \overline{f^{-1}(z)}\right), \quad z \in f(\mathbf{D})
$$

Hence $F\left(\frac{1}{\bar{z}}\right)=\lambda \circ f(z)$.
For an analytic function ψ on \mathbf{D}, set $\phi(z)=\int_{0}^{z} e^{\psi(w)} d w$. Then $\psi=\log \phi^{\prime}$. It means that any analytic function has the form of $\log \phi^{\prime}$. Since $\log f^{\prime} \in \mathcal{T}_{K}$, by Theorem 1.1, $\log f^{\prime} \in \mathcal{Q}_{K}$. For some enough small $\varepsilon>0$, set

$$
O=\left\{\log g^{\prime}:\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{Q}_{K}}<\varepsilon\right\} .
$$

To show \mathcal{T}_{K} is open in \mathcal{Q}_{K}, it suffices to show $O \subset \mathcal{T}_{K}$. Clearly, if $\log g^{\prime} \in O$, then $\log g^{\prime} \in \mathcal{Q}_{K}$. Write $h=g \circ f^{-1}$. Hence,

$$
\begin{aligned}
\left\|S_{h}\right\|_{f(\mathbf{D})}= & \sup _{z \in f(\mathbf{D})}\left|S_{h}(z)\right| \frac{\left(1-\left|f^{-1}(z)\right|^{2}\right)^{2}}{\left|\left(f^{-1}(z)\right)^{\prime}\right|^{2}} \\
= & \sup _{z \in f(\mathbf{D})} \left\lvert\, S_{g \circ f^{-1}}(z)-S_{f \circ f^{-1}(z) \mid} \frac{\left(1-\left|f^{-1}(z)\right|^{2}\right)^{2}}{\left|\left(f^{-1}(z)\right)^{\prime}\right|^{2}}\right. \\
= & \sup _{z \in f(\mathbf{D})}\left|S_{g}\left(f^{-1}(z)\right)-S_{f}\left(f^{-1}(z)\right)\right|\left|\left(f^{-1}(z)\right)^{\prime}\right|^{2} \frac{\left(1-\left|f^{-1}(z)\right|^{2}\right)^{2}}{\left|\left(f^{-1}(z)\right)^{\prime}\right|^{2}} \\
= & \sup _{z \in \mathbf{D}}\left|S_{g}(z)-S_{f}(z)\right|\left(1-|z|^{2}\right)^{2} \\
\leq & \sup _{z \in \mathbf{D}}\left|\left(\log g^{\prime}-\log f^{\prime}\right)^{\prime \prime}\right|\left(1-|z|^{2}\right)^{2} \\
& +\frac{1}{2} \sup _{z \in \mathbf{D}}\left|\left(\left(\log g^{\prime}\right)^{\prime}\right)^{2}-\left(\left(\log f^{\prime}\right)^{\prime}\right)^{2}\right|\left(1-|z|^{2}\right)^{2} .
\end{aligned}
$$

By Lemma 1.3 in [12], we have $\left(1-|z|^{2}\right)\left|\left(\log f^{\prime}\right)^{\prime}\right| \leq 6$ since f is conformal on \mathbf{D}. Thus,

$$
\begin{aligned}
\left\|\log g^{\prime}+\log f^{\prime}\right\|_{\mathcal{B}} & \leq\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{B}}+2\left\|\log f^{\prime}\right\|_{\mathcal{B}} \\
& \leq C\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{Q}_{K}}+12 \leq C \varepsilon+12 .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|S_{h}\right\|_{f(\mathbf{D})} & \leq C\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{B}}+(C \varepsilon+12) \sup _{z \in \mathbf{D}}\left|\left(\log g^{\prime}\right)^{\prime}-\left(\log f^{\prime}\right)^{\prime}\right|\left(1-|z|^{2}\right) \\
& \leq(C \varepsilon+C+12)\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{B}} \\
& \leq(C \varepsilon+C)\left\|\log g^{\prime}-\log f^{\prime}\right\|_{\mathcal{Q}_{K}} \leq(C \varepsilon+C) \varepsilon
\end{aligned}
$$

Note that ε is enough small. By Theorem II.4.1 in [10], h is conformal in $f(\mathbf{D})$ and there exists an extension H of h to the complex plane \mathbf{C} with

$$
\left|\mu_{H}(\lambda(z))\right|=\left|\mu_{H}(\zeta)\right|=\left|\frac{\bar{\partial} H(\zeta)}{\partial H(\zeta)}\right|=\left|\frac{S_{h}(z)(\zeta-z)^{2} \bar{\partial} \omega(\zeta)}{2+S_{h}(z)(\zeta-z)^{2} \partial \omega(\zeta)}\right|
$$

for all $z \in f(\mathbf{D})$, where $\zeta=\lambda(z)$ and $\omega=\lambda^{-1}$. Since $\infty \in \partial f(\mathbf{D})$, by formulas (I.6.1) and (I.6.4) in [10], we have

$$
|\zeta-\omega(\zeta)| \leq C \frac{1-\left|\left(f^{-1}(\omega(\zeta))\right)\right|^{2}}{\left|\left(f^{-1}(\omega(\zeta))\right)^{\prime}\right|}
$$

and

$$
|\partial \omega(\zeta)| \leq C
$$

Hence,

$$
\begin{aligned}
\left|\mu_{H}(\lambda(z))\right| & \leq \frac{\left|S_{h}(z)(\zeta-z)^{2} \bar{\partial} \omega(\zeta)\right|}{2-\left|S_{h}(z)(\zeta-z)^{2} \partial \omega(\zeta)\right|}=\frac{\left|S_{h}(z)\right||\zeta-\omega(\zeta)|^{2}\left|\mu_{\omega}(\zeta)\right||\partial \omega(\zeta)|}{2-\left|S_{h}(\omega(\zeta))\right||\zeta-\omega(\zeta)|^{2}|\partial \omega(\zeta)|} \\
& \leq \frac{C\left|S_{h}(z)\right| \frac{\left.1-\left|-f^{-1}(\omega(\zeta))\right|^{2}\right)^{2}}{\left|\left(f^{-1}(\omega(\zeta))\right)^{\prime}\right|^{2}}}{2-C\left\|S_{h}\right\|_{f(\mathbf{D})}} \leq C\left|S_{h}(z)\right| \frac{\left(1-\left|f^{-1}(z)\right|^{2}\right)^{2}}{\left|\left(f^{-1}(z)\right)^{\prime}\right|^{2}}
\end{aligned}
$$

for all $z \in f(\mathbf{D})$. Therefore, $g=h \circ f$ is conformal on \mathbf{D} and has a quasiconformal extension $G=H \circ F$ with

$$
\left|\mu_{G}\right|=\left|\frac{\mu_{F}+\mu_{H}(F) \overline{(\partial F)} / \partial F}{1+\overline{\mu_{F}} \mu_{H}(F) \overline{(\partial F)} / \partial F}\right| \leq \frac{\left|\mu_{F}\right|+\left|\mu_{H}(F)\right|}{1-\left|\mu_{F}\right|\left|\mu_{H}(F)\right|} \leq C\left(\left|\mu_{F}\right|+\left|\mu_{H}(F)\right|\right),
$$

where C depends only on $\left\|\mu_{F}\right\|_{\infty}$ and $\left\|\mu_{H}\right\|_{\infty}$. Since

$$
\begin{aligned}
\left|\mu_{H}(F(1 / \bar{z}))\right| & =\left|\mu_{H}(\lambda \circ f(z))\right| \leq C\left|S_{h}(f(z))\right| \frac{\left(1-\left|f^{-1}(f(z))\right|^{2}\right)^{2}}{\left|\left(f^{-1}\right)^{\prime}(f(z))\right|^{2}} \\
& =C\left|S_{g \circ f-1}(f(z))-S_{f \circ f-1}(f(z))\right| \frac{\left(1-|z|^{2}\right)^{2}}{\left|\left(f^{-1}\right)^{\prime}(f(z))\right|^{2}} \\
& =C\left|S_{g}(z)-S_{f}(z)\right|\left(1-|z|^{2}\right)^{2}
\end{aligned}
$$

we have

$$
\left|\mu_{H}(F(1 / \bar{z}))\right|^{2}\left(1-|z|^{2}\right)^{-2} \leq C\left|S_{g}(z)-S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2}
$$

Since $\log g^{\prime}$ and $\log f^{\prime}$ belong to \mathcal{Q}_{K}, by Theorem C, $\left|S_{g}(z)-S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a K-Carleson measure on \mathbf{D}. Then $\left|\mu_{H}(F(1 / \bar{z}))\right|^{2}\left(1-|z|^{2}\right)^{-2} d A(z)$ is also a K Carleson measure on D. Hence, for any arc I,

$$
\begin{aligned}
& \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)} \frac{\left|\mu_{H}(F(\zeta))\right|^{2}}{\left(|\zeta|^{2}-1\right)^{2}} K\left(\frac{|\zeta|-1}{\ell(I)}\right) d A(\zeta) \\
& \leq C \int_{S_{\mathbf{D}(I)}} \frac{\left|\mu_{H}(F(1 / \bar{z}))\right|^{2}}{\left(|1 / \bar{z}|^{2}-1\right)^{2}} K\left(\frac{1-|z|}{\ell(I)}\right) \frac{d A(z)}{|z|^{4}} \\
& =C \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{H}(F(1 / \bar{z}))\right|^{2}}{\left(1-|z|^{2}\right)^{2}} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \leq C,
\end{aligned}
$$

which deduces that $\left|\mu_{H}(F(z))\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. Therefore, $\left|\mu_{G}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. Thus $\log g^{\prime} \in$ \mathcal{T}_{K} and \mathcal{T}_{K} is open in \mathcal{Q}_{K}.

Now we consider the connectivity of \mathcal{T}_{K}. As the first step, let μ be a Beltrami coefficient with $\|\mu\|_{\infty}<1$ and vanishing outside the unit disk \mathbf{D}. Then there exists a unique mapping $f=f^{\mu}$ which is conformal in $\mathbf{C} \backslash \overline{\mathbf{D}}$ with expansion $f(z)=$ $z+b_{1} z^{-1}+\cdots$ at ∞ and satisfies Beltrami equation $\bar{\partial} f=\mu \partial f$ in \mathbf{D}. Then $\partial f-1=$ $H(\bar{\partial} f)=H(\mu \partial f)$, where H is the Hilbert transformation. Since H is an isometry on $L^{2}(\mathbf{C})$,

$$
\|H(\mu \partial f)\|_{2}=\|\mu \partial f\|_{2} \leq\|\mu\|_{\infty}\|\partial f\|_{2},
$$

where $\|\cdot\|_{2}$ denotes the L^{2}-norm on \mathbf{D}. Suppose that μ is such a coefficient and $|\mu(z)|^{2}\left(1-|z|^{2}\right)^{-2} d A(z)$ is a K-Carleson measure on \mathbf{D}. For convenience, denote by $g=f^{t \mu}, h=f^{s \mu}, 0 \leq s, t \leq 1$. Checking the proof of Theorem 2 in [4], we have

$$
S_{g}(z)-S_{h}(z)=-\frac{6}{\pi}\left(|z|^{2}-1\right)^{-2} \int_{\mathbf{D}}\left(\mu_{g \circ B}(\zeta) \partial \Phi_{1}(\zeta)-\mu_{h \circ B}(\zeta) \partial \Phi_{2}(\zeta)\right) d A(\zeta)
$$

where B is the Möbius transformation of $\mathbf{C} \backslash \overline{\mathbf{D}}$ sending ∞ to z, Φ_{1} and Φ_{2} are conformal on $\mathbf{C} \backslash \overline{\mathbf{D}}$, and $\bar{\partial} \Phi_{1}=\mu_{g \circ B} \partial \Phi_{1}, \bar{\partial} \Phi_{2}=\mu_{h \circ B} \partial \Phi_{2}$. We show that

$$
\begin{aligned}
\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2} & =\left\|H\left(\mu_{g \circ B} \partial \Phi_{1}\right)-H\left(\mu_{h \circ B} \partial \Phi_{2}\right)\right\|_{2}=\left\|\mu_{g \circ B} \partial \Phi_{1}-\mu_{h \circ B} \partial \Phi_{2}\right\|_{2} \\
& \leq\left\|\mu_{g \circ B}\right\|_{\infty}\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2}+\left\|\partial \Phi_{2}\right\|_{2}\left\|\mu_{g \circ B}-\mu_{h \circ B}\right\|_{\infty} \\
& =\left\|\mu_{g}\right\|_{\infty}\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2}+\left\|\partial \Phi_{2}\right\|_{2}\left\|\mu_{g}-\mu_{h}\right\|_{\infty} \\
& =t\|\mu\|_{\infty}\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2}+\left\|\partial \Phi_{2}\right\|_{2}|t-s|\|\mu\|_{\infty} .
\end{aligned}
$$

By the proof of Koebe area theorem in [10],

$$
\begin{aligned}
\int_{\mathbf{D}}\left|\partial \Phi_{2}(z)\right|^{2} d A(z) & \leq\left(1-\left\|\mu_{h \circ B}\right\|_{\infty}^{2}\right)^{-1} \int_{\mathbf{D}} J_{\Phi_{2}}(z) d A(z) \\
& =\left(1-\left\|\mu_{h}\right\|_{\infty}^{2}\right)^{-1} \int_{\Phi_{2}(\mathbf{D})} d A(z) \leq \pi\left(1-\|\mu\|_{\infty}^{2}\right)^{-1}
\end{aligned}
$$

where $J_{\Phi_{2}}$ is the Jacobian of Φ_{2}. Thus

$$
\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2} \leq \frac{\left\|\partial \Phi_{2}\right\|_{2}\|\mu\|_{\infty}}{1-t\|\mu\|_{\infty}}|t-s| \leq C|t-s|,
$$

where C depends only on μ. Therefore,

$$
\begin{aligned}
&\left|S_{g}(z)-S_{h}(z)\right|^{2}=\frac{36}{\pi^{2}}\left(|z|^{2}-1\right)^{-4}\left|\int_{\mathbf{D}}\left(\mu_{g \circ B}(\zeta) \partial \Phi_{1}(\zeta)-\mu_{h \circ B}(\zeta) \partial \Phi_{2}(\zeta)\right) d A(\zeta)\right|^{2} \\
& \leq \frac{72}{\pi^{2}}\left(|z|^{2}-1\right)^{-4}\left\{\int_{\mathbf{D}}\left|\mu_{g \circ B}(\zeta)-\mu_{h \circ B}(\zeta)\right|\left|\partial \Phi_{1}(\zeta)\right| d A(\zeta)\right\}^{2} \\
&+\frac{72}{\pi^{2}}\left(|z|^{2}-1\right)^{-4}\left\{\int_{\mathbf{D}}\left|\mu_{h \circ B}(\zeta)\right|\left|\partial \Phi_{1}(\zeta)-\partial \Phi_{2}(\zeta)\right| d A(\zeta)\right\}^{2} \\
& \leq \frac{72}{\pi^{2}}\left(|z|^{2}-1\right)^{-4} \int_{\mathbf{D}}\left|\mu_{g \circ B}(\zeta)-\mu_{h \circ B}(\zeta)\right|^{2} d A(\zeta) \int_{\mathbf{D}}\left|\partial \Phi_{1}(\zeta)\right|^{2} d A(\zeta) \\
&+\frac{72}{\pi^{2}}\left(|z|^{2}-1\right)^{-4} \int_{\mathbf{D}}\left|\mu_{h \circ B}(\zeta)\right|^{2} d A(\zeta) \int_{\mathbf{D}}\left|\partial \Phi_{1}(\zeta)-\partial \Phi_{2}(\zeta)\right|^{2} d A(\zeta) \\
& \leq C\left(|z|^{2}-1\right)^{-2}\left\{\int_{\mathbf{D}} \frac{\left|\mu_{g}(\zeta)-\mu_{h}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta)+\left\|\partial \Phi_{1}-\partial \Phi_{2}\right\|_{2}^{2} \int_{\mathbf{D}} \frac{\left|\mu_{h}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta)\right\} \\
& \leq C\left(|z|^{2}-1\right)^{-2}|t-s|^{2} \int_{\mathbf{D}} \frac{|\mu(\zeta)|^{2}}{|\zeta-z|^{4}} d A(\zeta) \\
&= C\left(|z|^{2}-1\right)^{-2} \int_{\mathbf{D}} \frac{\left|\mu_{g}(\zeta)-\mu_{h}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) .
\end{aligned}
$$

For any $I \subset \mathbf{T}$,

$$
\begin{aligned}
& \sup _{I} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}}\left(|z|^{2}-1\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C \sup _{I} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}} \int_{\mathbf{D}} \frac{\left|\mu_{g}(\zeta)-\mu_{h}(\zeta)\right|^{2}}{|\zeta-z|^{4}} d A(\zeta) K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) .
\end{aligned}
$$

Next, let $\log f^{\prime} \in \mathcal{T}_{K}$. Then f has a quasiconformal extension F in \mathbf{C} and its complex dilatation $\mu=\mu_{F}$ satisfies that $|\mu(z)|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. If $f^{t \mu}$ is the mapping with $\bar{\partial} f^{t \mu}=t \mu \partial f^{t \mu}$ in \mathbf{C} and $\left(f^{t \mu}\right)^{-1}(\infty)=$
$f^{-1}(\infty)$, in our second step mainly is to prove that $t \rightarrow \log \left(f^{t \mu}\right)^{\prime}, 0 \leq t \leq 1$, is a continuous path in \mathcal{Q}_{K}. We also write $g=f^{t \mu}, h=f^{s \mu}$. By [10] or [4],

$$
\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{B}} \leq C|t-s| .
$$

Since $|\mu(z)|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)$ is a K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$, a similar technique of Step 2 in the proof of Theorem 1.1 shows that $\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} d A(z)$ is a K-Carleson measure on \mathbf{D}. We give some details as follows. Note that

$$
\begin{aligned}
&\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right| \\
&=\left(1-|z|^{2}\right)^{2}\left|\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{\prime}(z)-\left(\frac{h^{\prime \prime}}{h^{\prime}}\right)^{\prime}(z)-\frac{1}{2}\left(\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{2}(z)-\left(\frac{h^{\prime \prime}}{h^{\prime}}\right)^{2}(z)\right)\right| \\
& \leq\left(1-|z|^{2}\right)^{2}\left|\left(\log g^{\prime}\right)^{\prime \prime}(z)-\left(\log h^{\prime}\right)^{\prime \prime}(z)\right| \\
&+\frac{1}{2}\left(1-|z|^{2}\right)^{2}\left|\left(\left(\log g^{\prime}(z)\right)^{\prime}\right)^{2}-\left(\left(\log h^{\prime}(z)\right)^{\prime}\right)^{2}\right| \\
& \leq C\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{B}}+C\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{B}}\left(1-|z|^{2}\right)\left(\left|\left(\log g^{\prime}\right)^{\prime}\right|+\left|\left(\log h^{\prime}\right)^{\prime}\right|\right) \\
& \leq C\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{B}} \leq C|t-s| .
\end{aligned}
$$

If $\ell(I)>\frac{1}{3}$, then

$$
\begin{aligned}
& \int_{|z| \leq \frac{3}{4}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq C \int_{|z| \leq \frac{3}{4}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} d A(z) \\
& \leq C|t-s|^{2} \int_{|z| \leq \frac{3}{4}}\left(1-|z|^{2}\right)^{-2} d A(z) \leq C|t-s|^{2} .
\end{aligned}
$$

Thus, for $\ell(I)>\frac{1}{3}$,

$$
\begin{aligned}
& \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq \int_{\left\{z \in S_{\mathbf{D}}(I):|z| \leq \frac{3}{4}\right\}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \quad+\int_{\left\{z \in S_{\mathbf{D}}(I):|z|>\frac{3}{4}\right\}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq C|t-s|^{2}+8 \pi \sup _{J \subset \mathbf{T}, \ell(J) \leq \frac{1}{4}} \int_{S_{\mathbf{D}}(J)}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(J)}\right) d A(z) .
\end{aligned}
$$

For $\ell(I) \leq \frac{1}{3}$, using the first step and checking the proof of Theorem 1.1, we have

$$
\begin{aligned}
& \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \leq C \int_{S_{\mathbf{C} \overline{\mathbf{D}}^{(I)}}}\left(|w|^{2}-1\right)^{2}\left|S_{g \circ \psi}(w)-S_{h \circ \psi}(w)\right|^{2} K\left(\frac{|w|-1}{\ell(I)}\right) d A(w) \\
& \leq C \sup _{I} \int_{S_{\left.\mathbf{C} \backslash \mathbf{D}^{(}\right)}} \int_{\mathbf{D}} \frac{\left|\mu_{g \circ \psi}(\zeta)-\mu_{h \circ \psi}(\zeta)\right|^{2}}{|\zeta-w|^{4}} d A(\zeta) K\left(\frac{|w|-1}{\ell(I)}\right) d A(w)
\end{aligned}
$$

$$
\begin{aligned}
& \leq C \sup _{I} \int_{S_{\mathbf{D}}(I)} \frac{\left|\mu_{g \circ \psi}(\zeta)-\mu_{h \circ \psi}(\zeta)\right|^{2}}{\left(1-|\zeta|^{2}\right)^{2}} K\left(\frac{1-|\zeta|}{\ell(I)}\right) d A(\zeta) \\
& \leq C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}}(I)} \frac{\left|\mu_{g}(z)-\mu_{h}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& =C|t-s|^{2} \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}} \frac{|\mu(z)|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \leq C|t-s|^{2},
\end{aligned}
$$

where $\psi(z)=\frac{1}{z}$. Therefore,

$$
\sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \leq C|t-s|^{2} .
$$

By Corollary 3.2 in [7], we have

$$
\sup _{a \in \mathbf{D}} \int_{\mathbf{D}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{h}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \leq C|t-s|^{2}
$$

Thus, for any $a \in \mathbf{D}$,

$$
\begin{aligned}
& \int_{\mathbf{D}}\left|\left(\log g^{\prime}-\log h^{\prime}\right)^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
& \leq C \int_{\mathbf{D}}\left|\left(\log g^{\prime}-\log h^{\prime}\right)^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{\mathbf{D}}\left(1-|z|^{2}\right)^{2}\left|\left(\log g^{\prime}-\log h^{\prime}\right)^{\prime \prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{\mathbf{D}}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)-S_{f}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \quad+C \int_{\mathbf{D}}\left(1-|z|^{2}\right)^{2}\left|\left(\frac{g^{\prime \prime}}{g^{\prime}}\right)^{2}(z)-\left(\frac{h^{\prime \prime}}{h^{\prime}}\right)^{2}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C|t-s|^{2}+C\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{B}}^{2} \int_{\mathbf{D}}\left|\frac{g^{\prime \prime}}{g^{\prime}}(z)+\frac{h^{\prime \prime}}{h^{\prime}}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C|t-s|^{2}+C|t-s|^{2} \int_{\mathbf{D}}\left|\frac{g^{\prime \prime}}{g^{\prime}}(z)+\frac{h^{\prime \prime}}{h^{\prime}}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) .
\end{aligned}
$$

By the proofs of Theorem C and Theorem 1.1,

$$
\begin{aligned}
& \int_{\mathbf{D}}\left|\frac{g^{\prime \prime}}{g^{\prime}}(z)+\frac{h^{\prime \prime}}{h^{\prime}}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C+C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{g}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z) \\
& \quad+C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{D}}(I)}\left(1-|z|^{2}\right)^{2}\left|S_{h}(z)\right|^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z)
\end{aligned}
$$

$$
\begin{aligned}
\leq & C+C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C \backslash \overline { \mathbf { D } }}}(I)} \frac{\left|\mu_{g}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& +C \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C \backslash \overline { \mathbf { D } }}}(I)} \frac{\left|\mu_{h}(z)\right|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
\leq & C+C \sup _{I \subset \mathbf{T}} \int_{S_{\left.\mathbf{C} \backslash \mathbf{D}^{(}\right)}} \frac{|\mu(z)|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup _{a \in \mathbf{D}} \int_{\mathbf{D}}\left|\left(\log g^{\prime}-\log h^{\prime}\right)^{\prime}(z)\right|^{2} K(g(z, a)) d A(z) \\
& \leq C|t-s|^{2}+C|t-s|^{2} \sup _{I \subset \mathbf{T}} \int_{S_{\mathbf{C} \backslash \overline{\mathbf{D}}^{(I)}}} \frac{|\mu(z)|^{2}}{\left(|z|^{2}-1\right)^{2}} K\left(\frac{|z|-1}{\ell(I)}\right) d A(z) \\
& \leq C|t-s|^{2},
\end{aligned}
$$

where the constant C depends only on μ and K. We obtain that

$$
\left\|\log g^{\prime}-\log h^{\prime}\right\|_{\mathcal{Q}_{K}} \leq C|t-s|
$$

that is, $t \rightarrow \log \left(f^{t \mu}\right)^{\prime}, 0 \leq t \leq 1$, is a continuous path in \mathcal{Q}_{K}. Thus, we have shown that each $\log f^{\prime} \in \mathcal{T}_{K}$ can be connected with a path to an element $\log \psi^{\prime} \in \mathcal{Q}_{K}$, where $\psi=f^{0 \mu}$ is a Möbius transformation. If $\psi(\mathbf{D})$ is unbounded, then $f(\zeta)=\psi(\zeta)$ for some $\zeta \in \mathbf{T}$. If $\psi(\mathbf{D})$ is bounded, then $r \rightarrow \log \psi^{\prime}(r z)$, joins $\log \psi^{\prime}$ to $0 \in \mathcal{Q}_{K}$ and we know that there is a continuous path joins $\log f^{\prime}$ and 0 . Hence $\mathcal{T}_{K, b}$ and each $\mathcal{T}_{K, \theta}, \theta \in[0,2 \pi]$, are connected. Since elements in different classes cannot be joined even in the Bloch topology [22], we obtain that $\mathcal{T}_{K, b}$ and the $\mathcal{T}_{K, \theta}$ are the connected components of \mathcal{T}_{K}. The proof of Theorem 1.2 is complete.

5. Results on $\mathcal{Q}_{K, 0}$ spaces

Denote by $\mathcal{Q}_{K, 0}$ the space of analytic functions f in \mathbf{D} such that

$$
\lim _{|a| \rightarrow 1} \int_{\mathbf{D}}\left|f^{\prime}(z)\right|^{2} K(g(z, a)) d A(z)=0
$$

By [6], $\mathcal{Q}_{K, 0}$ is contained in the little Bloch space \mathcal{B}_{0}, which is defined as follows:

$$
\mathcal{B}_{0}=\left\{f \in H(\mathbf{D}): \lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0\right\} .
$$

Moreover, a K-Carleson measure ν is vanishing if

$$
\lim _{\ell(I) \rightarrow 0} \int_{S_{G}(I)} K\left(\frac{|1-|z||}{\ell(I)}\right) d \nu(z)=0
$$

Let f be conformal on \mathbf{D}. By classifying the Carleson boxes to large boxes, bad boxes and father boxes, Zhou proved Theorem C in [21]. Checking the proof of Theorem C, we find that the technique to prove (ii) \Rightarrow (i) in Theorem C in [21] can not be used to prove the similar result on $\mathcal{Q}_{K, 0}$ spaces. This section is to present a short proof of the little version corresponding to Theorem C.

Theorem 5.1. Let K satisfy (1.1). If f is conformal on \mathbf{D}, then the following are equivalent:
(i) $\log f^{\prime} \in \mathcal{Q}_{K, 0}$;
(ii) $\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a vanishing K-Carleson measure on \mathbf{D}.

Proof. Suppose $g=\log f^{\prime} \in \mathcal{Q}_{K, 0}$. Then both

$$
\left|g^{\prime}(z)\right|^{2} d A(z) \quad \text { and } \quad\left|g^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)
$$

are vanishing K-Carleson measures (see [7] and [18]). Since $g \in \mathcal{Q}_{K, 0} \subset \mathcal{B}$,

$$
\left|g^{\prime}(z)\right|^{4}\left(1-|z|^{2}\right)^{2} d A(z)
$$

is also a vanishing K-Carleson measure. The facts above together with the inequality

$$
\left|S_{f}(z)\right|^{2} \leq 2\left(\left|g^{\prime \prime}(z)\right|^{2}+\frac{1}{4}\left|g^{\prime}(z)\right|^{4}\right), \quad z \in \mathbf{D}
$$

imply that $\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a vanishing K-Carleson measure.
On the other hand, suppose that $\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a vanishing $K-$ Carleson measure on D. First we will show that $g=\log f^{\prime} \in \mathcal{B}_{0}$. For any $a \in \mathbf{D}$, let I be the arc with center $\frac{a}{|a|}$ and length $\ell(I)=2(1-|a|)$. Note that $\left|S_{f}(z)\right|^{2}$ is a subharmonic function and for a fixed $r(0<r<1)$, the disk $E(a, r)=\{z:|z-a|<r(1-|a|)\}$ is contained in $S_{\mathbf{D}}(I)$. If $z \in E(a, r)$, then

$$
(1-r)(1-|a|) \leq 1-|z| \leq(1+r)(1-|a|) .
$$

Therefore,

$$
\begin{aligned}
\left|S_{f}(a)\right|^{2}\left(1-|a|^{2}\right)^{4} & \leq C \int_{E(a, r)}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z) \\
& \leq C \int_{E(a, r)}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(\frac{1-|z|}{2(1-|a|)}\right) d A(z) \\
& \leq C \int_{S_{\mathbf{D}}(I)}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(\frac{1-|z|}{\ell(I)}\right) d A(z)
\end{aligned}
$$

which deduces that $\lim _{|a| \rightarrow 1}\left|S_{f}(a)\right|\left(1-|a|^{2}\right)^{2}=0$. By Theorem 11.1 in [13], $g \in \mathcal{B}_{0}$.
Next, we prove that $g \in \mathcal{Q}_{K, 0}$. Recall that $S_{f}=g^{\prime \prime}-\frac{1}{2}\left(g^{\prime}\right)^{2}$, we have

$$
\begin{aligned}
I_{a}:= & \int_{\mathbf{D}}\left|g^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K(g(z, a)) d A(z) \\
\leq & C \int_{\mathbf{D}}\left|g^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
\leq & C \int_{\mathbf{D}}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& +C \int_{\mathbf{D}}\left|g^{\prime}(z)\right|^{4}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) .
\end{aligned}
$$

Note that $g \in \mathcal{B}_{0}$. For any $\varepsilon>0$, there exists $0<r(\varepsilon)<1$ such that if $|z|>r(\varepsilon)$, then $\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|<\varepsilon$. Thus,

$$
\begin{aligned}
& \int_{|z|>r(\varepsilon)}\left|g^{\prime}(z)\right|^{4}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq \varepsilon^{2} \int_{|z|>r(\varepsilon)}\left|g^{\prime}(z)\right|^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq \varepsilon^{2} C \int_{\mathbf{D}}\left|g^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \leq \varepsilon^{2} C I_{a} .
\end{aligned}
$$

On the other hand, by Lemma 1.3 in [12],

$$
\begin{aligned}
& \int_{|z| \leq r(\varepsilon)}\left|g^{\prime}(z)\right|^{4}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C \int_{|z| \leq r(\varepsilon)}\left(1-|z|^{2}\right)^{-2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& \leq C K\left(\frac{2\left(1-|a|^{2}\right)}{1-r(\varepsilon)}\right) \int_{|z| \leq r(\varepsilon)}\left(1-|z|^{2}\right)^{-2} d A(z) \\
& \leq C K\left(\frac{2\left(1-|a|^{2}\right)}{1-r(\varepsilon)}\right) \frac{1}{1-r(\varepsilon)} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(1-\varepsilon^{2} C\right) I_{a} \leq & C \int_{\mathbf{D}}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z) \\
& +C K\left(\frac{2\left(1-|a|^{2}\right)}{1-r(\varepsilon)}\right) \frac{1}{1-r(\varepsilon)}
\end{aligned}
$$

Fix ε such that $1-\varepsilon^{2} C>0$. Since $\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a vanishing K-Carleson measure, by Corollary 3.2 in [7],

$$
\lim _{|a| \rightarrow 1} \int_{\mathbf{D}}\left|S_{f}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} K\left(1-\left|\varphi_{a}(z)\right|^{2}\right) d A(z)=0
$$

These facts together with $K(0)=0$, we obtain that $I_{a} \rightarrow 0$ as $|a| \rightarrow 1$. By Corollary 3.2 in [7] again, $\left|g^{\prime \prime}(z)\right|^{2}\left(1-|z|^{2}\right)^{2} d A(z)$ is a vanishing K-Carleson measure which means that $g \in \mathcal{Q}_{K, 0}$.

6. Final remark

In fact, the little versions of Theorems 1.1 and 1.2 are also true. Let $\mathcal{T}_{K, 0}$ denote the set of all functions $\log f^{\prime}$ on \mathbf{D} where f is conformal on \mathbf{D} and admits a quasiconformal extension to \mathbf{C} with a dilatation μ_{f} such that

$$
\left|\mu_{f}(z)\right|^{2}\left(|z|^{2}-1\right)^{-2} d A(z)
$$

is a vanishing K-Carleson measure on $\mathbf{C} \backslash \overline{\mathbf{D}}$. Let K satisfy (1.1) and (1.2). Checking the proof of Theorems 1.1 and 1.2, using Theorem 5.1, we obtain

Theorem 6.1. Let K satisfy (1.1) and (1.2). Then $\mathcal{T}_{K, 0}$ is a subset of $\mathcal{Q}_{K, 0}$ space.

Theorem 6.2. Let K satisfy (1.1) and (1.2). Then $\mathcal{T}_{K, 0}$ is open in $\mathcal{Q}_{K, 0}$. Furthermore, $\mathcal{T}_{K, b, 0}=\left\{\log f^{\prime} \in \mathcal{T}_{K, 0}: f(\mathbf{D})\right.$ is bounded $\}$ and $\mathcal{T}_{K, \theta, 0}=\left\{\log f^{\prime} \in\right.$ $\left.\mathcal{T}_{K, 0}: f\left(e^{i \theta}\right)=\infty\right\}, \theta \in[0,2 \pi]$, are the connected components of $\mathcal{T}_{K, 0}$.

References

[1] Ahlfors, L.: Lecture on quasiconformal mappings. - Van Nostrand, Princeton, 1966.
[2] Ahlfors, L., and L. Bers: Riemann's mapping theorem for variable metrics. - Ann. of Math. 72, 1960, 385-404.
[3] Astala, K., and F. Gehring: Injectivity, the BMO norm and the universal Teichmüller space. - J. Anal. Math. 46, 1986, 16-57.
[4] Astala, K., and M. Zinsmeister: Teichmüller spaces and BMOA. - Math. Ann. 289, 1991, 613-625.
[5] Baernstein, A.: Analytic functions of bounded mean oscillation. - Aspects of Contemporary Complex Analysis, Academic Press, 1980, 3-36.
[6] Essén, M., and H. Wulan: On analytic and meromorphic functions and spaces of \mathcal{Q}_{K}-type. - Illinois J. Math. 46, 2002, 1233-1258.
[7] Essén, M., H. Wulan, and J. Xiao: Several function-theoretic characterizations of Möbius invariant \mathcal{Q}_{K} spaces. - J. Funct. Anal. 230, 2006, 78-115.
[8] Garnett, J.: Bounded analytic functions. - Academic Press, London/New York, 1981.
[9] Gehring, F.: Univalent functions and the Schwarzian derivative. - Comment. Math. Helv. 52, 1977, 561-572.
[10] Lehto, O.: Univalent functions and Teichmüller space. - Springer-Verlag, 1987.
[11] Lehto, O., and K. Virtanen: Quasiconformal mappings in the plane. - Springer-Verlag, 1973.
[12] Pommerenke, Ch.: Univalent functions. - Vandenhoeck and Ruprecht, Göttingen, 1975.
[13] Pommerenke, Ch.: Boundary behavionr of conformal maps. - Springer-Verlag, 1992.
[14] Wulan, H., and P. Wu: Characterizations of \mathcal{Q}_{T} spaces. - J. Math. Anal. Appl. 254, 2001, 484-497.
[15] Wulan, H., and J. Zhou: Decomposition theorems for \mathcal{Q}_{K} spaces and applications. - Forum Math. 26, 2014, 467-495.
[16] Wulan, H., and J. Zhou: \mathcal{Q}_{K} and Morrey type spaces. - Ann. Acad. Sci. Fenn. Math. 38, 2013, 193-207.
[17] Wulan, H., and K. Zhu: Lacunary series in \mathcal{Q}_{K} spaces. - Studia Math. 173, 2007, 217-230.
[18] Wulan, H., and K. Zhu: \mathcal{Q}_{K} spaces via higher order derivatives. - Rocky Mountain J. Math. 38, 2008, 329-350.
[19] Xiao, J.: Holomorphic \mathcal{Q} classes. - Lecture Notes in Math. 1767, Springer-Verlag, Berlin, 2001.
[20] XiAO, J.: Geometric \mathcal{Q}_{p} functions. - Birkhäuser-Verlag, Basel, 2006.
[21] Zhou, J.: Schwarzian derivative, geometric conditions and \mathcal{Q}_{K} spaces. - Sci. Sin. Math. 42, 2012, 939-950 (in Chinese).
[22] Zhuralëv, I.: A model of the universal Teichmüller space. - Sibirsk. Math. Zh. 27, 1986, 75-82 (in Russian).

[^0]: doi:10.5186/aasfm.2014.3951
 2010 Mathematics Subject Classification: Primary 30C62, 30F60, 30H25.
 Key words: \mathcal{Q}_{K} spaces, universal Teichmüller space, Schwarzian derivative, complex dilatation, Carleson measures.

 The authors are supported by NSF of China (No. 11371234).

